Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Радиус кристаллический

    Зависимость степени гидратации ионов от их размеров становится наглядной при сопоставлении электропроводности различных электролитов. Можно было ожидать, что так как ионные радиусы катионов в кристаллическом состоянии возрастают от Li+ к s+, то наиболее сильно проводить электрический ток будет хлористый литий, а наименее сильно — хлористый цезий. Это подтверждается при сопоставлении электропроводности расплавленных хлоридов (табл. 36). [c.385]


    Теплоты растворения веществ измеряются с достаточной точностью с помощью современных калориметров, а энергии кристаллических решеток рассчитываются по термодинамическим циклам, по формулам Борна или Капустинского (см. 40), а также сравнительными методами. В ряду однотипных солей, имеющих одинаковые заряды катионов и анионов, теплота сольватации уменьшается с увеличением радиусов катиона и аниона. [c.344]

Рис. 2.12. Зависимость свободной энергии АР от радиуса кристаллического зародыша г Рис. 2.12. <a href="/info/629741">Зависимость свободной энергии</a> АР от <a href="/info/133438">радиуса кристаллического</a> зародыша г
    МЫ В воде, образуют кристаллы, структура которых сильно зависит от действия ионных сил (соотношения радиусов, кристаллического поля), и вступают в кислотно-основные и окислительно-восстановительные реакции, аналогичные реакциям соединений кислорода. Как и следовало ожидать, наблюдаемые здесь различия обычно связаны с увеличением размера и меньшей плотностью отрицательного заряда на ионах серы. [c.48]

    При схематическом изображении атомов или молекул вандерваальсовы радиусы можно использовать для указания объема, в котором преимущественно находятся электроны. Для ионов можно пользоваться ионными радиусами (кристаллическими радиусами), о которых шла речь [c.181]

    Если радиус кристаллического зародыша достаточно велик, то его размер должен удовлетворять уравнению Оствальда — Фрейндлиха [c.10]

    Процесс образования кристаллических зародышей в принципе близок к процессам образования капель жидкости в переохлажденном паре. Теория спонтанного зародышеобразования в пересыщенном паре была создана в работах [71—80]. Изменение термодинамического потенциала системы в этих теориях при образовании сферического агрегата радиуса а равно [c.277]

    Исследования показали, что толщина кристаллического слоя на большей части длины охлаждаемой трубы постоянна и возрастает по мере увеличения продолжительности процесса. Путем последовательного высверливания твердой фазы из трубки сверлами нарастающего диаметра были отобраны пробы по длине и радиусу кристаллического слоя. [c.186]


    Поскольку атомы растворителя и растворенного элемента имеют различные радиусы, кристаллическая решетка твердого раствора замещения должна быть искажена (рис. 1.22). Еще более резкие искажения возникают при внедрении атомов и при образовании вакансий. [c.63]

    R — радиус кристаллического зерна (V) [c.4]

    Сущность изоморфизма заключается в том, что ионы, имеющие одинаковое координационное число и близкие радиусы, могут замещать друг друга в кристаллической решетке, не нарушая ее [c.115]

    Как уже указывалось, образованию твердых растворов благоприятствуют близость химических свойств, атомных радиусов и типов кристаллической структуры исходных веществ (с. 134). Несоблюдение одного из этих условий приводит к тому, что твердые растворы между компонентами образуются лишь в ограниченных пределах концентраций или же не образуются вообще. Например, предельная растворимость ряда металлов в никеле г =0,124 нм) выражается в виде следующего ряда  [c.254]

    Ес. 1и бы не было влияния кристаллического поля, то радиусы ионов должны были бы монотонно уменьшаться по мере увеличения заряда ядра (порядкового номера элемента), что на рис. 211 показано пунктирной кривой. Она проходит через точки, соответствующие сферически симметричным ионам Са2+ ( ), Мп2+ 2п2- - ( 10). [c.509]

    Если кристаллический радиус иона обозначим через Гс, то объем сольват-4 о 4 3 [c.444]

    Жидкие и твердые вещества характеризуются определенной аморфной или кристаллической решеткой. Аморфная решетка характеризуется наличием близкого порядка в расположении атомов, ионов или молекул, а кристаллическая — близкого и дальнего порядка. Ближний порядок определяется тем, что в пределах радиуса ионов, атомов или молекул образуется устойчивая (для твердого тела) и малоустойчивая (жидкости), среднестатистического состава и строения пространственная фигура. В этой пространственной фигуре можно выделить центральную частицу (атом, ион, молекулу) и частицы из окружения, которые называют лигандами (ионы, атомы или молекулы). [c.248]

    В модификации активности катализаторов могут играть роль и физические факторы. Среди них первостепенную роль играет величина поверхности. Так, при сравнении в реакции гидрирования фенола различных образцов WS2, освобожденных от физических загрязнений (в том числе от механически увлеченной избыточной серы) прокаливанием в вакууме, показано что активность катализатора была прямо пропорциональна его удельной поверхности. Следовательно, развитая поверхность — обязательное условие получения активного катализатора. В ходе эксплуатации поверхность катализатора уменьшается за счет упорядочения кристаллической структуры и образования углистых отложений. Считают что упорядочение кристаллической структуры протекает не вследствие перехода из моноклинной в гексагональную систему, как полагали ранее так как все образцы катализаторов независимо от отношений S W состояли из одной фазы с одинаковыми порядками решетки. Свежий катализатор представляет собой небольшие тонкие пакеты, образованные беспорядочно смещенными по отношению друг к другу слоями WSg. Упорядочение при кратковременном нагревании происходит только при температуре выше 700 °С. При этом быстро уменьшается удельная поверхность в основном за счет пор радиусом 20—80 А. По этой же причине уменьшается и поверхность ката- [c.272]

    Радиусы ионов элементов вставных декад имеют тенденцию уменьшаться с ростом порядкового номера (d-сжатие). Однако зависимость радиусов ионов от заряда ядра имеет довольно сложный характер. Изменение радиуса двухзарядных ионов, находящихся в октаэдрическом окружении, в ряду Са + — Zn + представлено на рис. 1.62. Неравномерное изменение г, хорошо объясняет теория кристаллического поля. Действительно, при переходе от Са + к V + d-электроны попадают на слабо экранирующие 2й-орбитали, что обусловливает сильное уменьшение радиуса иона при возрастании заряда ядра. В ионах Сг + и Мп + заполняются сильно экранирующие g-орбитали и раднус ионов при уве- [c.126]

    Приведенные значения атомных радиусе (А) получены путем деления на 2 межатомных расстояний з кристаллических структура  [c.380]

    При схематическом изображении атомов или молекул вандерваальсовы радиусы можно использовать для указания объема, в котором преимущественно находятся электроны. Для ионов можно пользоваться ионными радиусами (кристаллическими радиусами), о которых шла речь в разд. 6.10. Вандерваальсов и ионный радиусы данного атома в состоянии отрицательного иона по существу одни и те же. Так, вандер-ваальсов радиус хлора равен 180 пм, а ионный радиус хлорид-иона равен 181 пм. [c.165]

    Кажущиеся атомные и ионные радиусы. Объемы, занимаемые атомами элементарных веществ в кристаллическом состоянии, в настоящее время удается определить значительно точнее, чем это допускает расчет по упомянутой функции атомных объемов . Это можно сделать измерениями (о которых подробнее будет сказано ниже) со значительной точностью расстояний между центрами атомов в кристаллах. Если теперь представить себе, что вокруг центров атомов описаны шаровые поверхности так, чтобы они соприкасались друг с другом, то, согласно Брэггу и Гольдшмидту, радиусы этих шаров следует назвать кажущимися атомными радиусами. Это имеет силу для того случая, когда кристаллы, как, например, кристаллы элементарных веществ, построены из незаряженных атомов. Для веществ, построенных из электрически заряженных атомов (ионов), аналогичным образом получим кажущиеся ионные радиусы. В последнем случае, определяя расстояние между центрами атомов, сначала получим только сумму кажущихся ионных радиусов. Если, однако, удается каким-либо путем найти величину одного из этих ионных радиусов, то другой определяется простым вычитанием известной величины из всего расстояния между центрами ионов. Полученную величину можно вновь использовать для определения радиуса какого-нибудь другого элемента, образующего с данным ионом-известного радиуса кристаллическое соединение и т. д. В 1926 г. Гольдшмидт доказал, что для некоторых ионов получается в общем лишь с очень небольшими колебаниями одна и та же величина радиуса при определениях ее в кристаллах самых разнообразных соединений. При этом, однако, сравнимы только соединения, кристаллизующиеся в определенных структурных типах, которые Гольдшмидт назвал коммензуралъными (соизмеримыми) типами. (Подробнее об этом см. т. II.) Для коммензу ральных типов, однако, для величины кажущегося радиуса определенного иона независимо от вида соединения всегда получается приблизительно одно и то же значение. Так, величины, получаемые для кажущихся радиусов ионов щелочноземельных металлов, почти (существенно) не зависят от того, вычислены ли они из данных измерений кристаллов фторидов, хлоридов или окислов. [c.36]


Рис. 2.6. Модель Франка и Ивенса [298] и Франка и Вина [эОО]. А — область иммобилизованной воды В — область воды с нарушенной структурой С — нормальная вода. гс — кристаллический радиус г п — собственный радиус (кристаллический радиус, увеличенный с учетом пустот в упаковке окружающей воды). Рис. 2.6. Модель Франка и Ивенса [298] и Франка и Вина [эОО]. А — область иммобилизованной воды В — <a href="/info/1260960">область воды</a> с <a href="/info/490662">нарушенной структурой</a> С — <a href="/info/594374">нормальная вода</a>. гс — <a href="/info/133438">кристаллический радиус</a> г п — собственный радиус (<a href="/info/133438">кристаллический радиус</a>, увеличенный с учетом пустот в упаковке окружающей воды).
    Типы кристаллических структур окислов металлов разно образны и определяются электронным строением катиона, степенью его окисления, ионным радиусом. В целом для твердых окислов характерны простые кубические решетки типа ЫаС1, гексагональные решетки типа а-ЛЬО , тетрагональные решетки типа Т1О2, моноклинные решетки типа МоО, [1.2]. [c.6]

Рис. 8.8. Соотношение между свободной энергией и радиусом кристаллического зародыша. Гкрит — критический радиус. Рис. 8.8. <a href="/info/1513835">Соотношение между свободной энергией</a> и <a href="/info/133438">радиусом кристаллического</a> зародыша. Гкрит — критический радиус.
    В отличие от радиуса Ва + радиус Са + (1,06 А) значительно меньше, чем радиус Ка2+. Вследствие этого Са + и Ка2+ не могут входить в одну и ту же кристаллическую решетку, т. е. изоморфно замещать друг друга. В соответствии с этим Ка +-ионы не соосаждаются с Са304. [c.116]

    Здес ) /(м — константа Маделунга, зависящая от характера взаимного расположения ионов в кристаллической решетке (ее значения известны Д.ПЯ различных типов решетки так, например, для решетки Na l — гранецентрированного куба —/(м = 1,7476) г—равновесное расстояние между ионами противоположного знака в данном кристалле (обычно оно определяется по принципу плотной упаковки и отвечает сумме кристаллохимических радиусов Гольдшмидта) п — константа, характеризующая изменение сил отталкивания с расстоянием между частицами оиа лежит в пределах от 5 до 12 (для Na l п = 7,5). [c.44]

    Свободная энергия образования зародыша зависит не только от степени нересьпцения или от размеров (радиуса) зародыша, но и от его формы, отражаемой коэффициентом формы в случае сферического зародыша /гф=16л/3 для кристаллического зародыша, имеющего форму куба, кф = 32 для октаэдрическо. о = 16/ / 3 и т. д. Поэтому в общем случае вместо (16.7) следует писать [c.331]

    Простые системы — все признаки при распознавании однотипны (например, масса). Сложные системы — в качестве признаков могут использоваться различные физические и химические свойства, результаты прямых и косвенных измерений. Сложные системы наиболее типичны для прикладных исследований в каталитических процессах. Например, в [2] для решения задачи прогнозирования многокомпонентных катализаторов использовались экспериментальные данные пассивных опытов по определению селективности на основе смеси УзО, и М0О3 (в реакции парофазного контактного окисления 2,6-диметилииридина). В качестве признаков были выбраны 20 разнотипных характеристик. В их число вошли отношение радиуса атома металла к радиусу атома кислорода в твердом оксиде, плотность оксида, цветность оксида по трехбальной шкале, отношение кристаллических пустот к собственному объему молекулы оксида в кристаллической структуре, зонный фактор (расчетная величина), мольная магнитная восприимчивость твердого оксида и т. п. Сложные системы в зависимости от способа получения информации можно подразделять на одноуровневые и многоуровневые. [c.80]

    По данным [15], переход растворенных солей в кристаллическое состояние и их отложение в призабойной зоне скважины происходят при степени пересыщения С/Снас = 1,01. В работе [10] отмечается, что при таких малых степенях пересыщения в пористых пластах многих месторождений формирование зародышей твердой фазы, например гипса, исключается, так как средний размер пор в 2—4 раза меньше критического радиуса кристаллов Са304-2И20. Но на практике возможно выпадение твердой фазы, так как пористая среда может способствовать образованию зародышей с радиусом меньшим, чем г р. [c.231]

    К нюталлические цеолиты характеризуются геометрической однородностью размеров нор и внутренних дегидратированных ноло(тей прп постоянстве кристаллической структуры. Диаметр пор неолита определяется видом катиона и его положением в кристаллической решетке. Катион в цеолите подвижен — он способен замещаться другими катионами (К" , Ва +, и др.). При замеге одного катиона другим вследствие различия размеров их радиуса уменьшается или увеличивается размер пор адсорбента [c.53]

    Изучение влияния содержания окиси кремния на свойства промышленных алюмокобальтмолибденовых и алюмоникельмолибдено-вых катализаторов показало, что введение 3102 увеличивает объем и средний радиус пор, повышает в 1,5 раза механическую прочность катализатора. При этом возрастают расщепляюш,ая и изомеризующая активности катализаторов У Большое значение в настоящее время уделяется катализаторам на цеолитной основе. Эти катализаторы обладают высокой активностью и хорошей избирательностью, а кроме того позволяют часто проводить процесс без предварительной очистки сырья от азотсодержащих соединений. Содержание в сырье до 0,2% азота практически не влияет на их активность Применение цеолитных катализаторов часто позволяет проводить процесс при более низкой температуре Повышенная активность катализаторов на основе цеолитов объясняется более высокой концентрацией активных кислотных центров в кристаллической структуре по сравнению с аморфными алюмосиликатными катализаторами [c.322]

    Взаимная поляризация ионов облегчает разрушение кристаллов, т. е. понижает температуру плавления, и тем значительнее, чем сильнее деформируется в результате поляризации кристаллическая решетка. Так, хотя у RbF иТ1Р радиусы катионов одинаковы, однако ион Т1+ сильнее поляризуется и оказывает значительно большее поляризующее действие на ион F , чем ион Rb+, и это сказывается, в частности, на температура х плавления указанных солей т. пл. RbF 798 °С, а т. пл. T1F 327 °С. [c.114]

    Фтороберкллаты щелочных металлов стабильнее, чем щелочно- земельных. С увеличением радиуса катиона их стойкость врзра- стает Mg[B p4] не образуется, а Ва[Вер4] плавится без разло жения. Одна из форм кристаллического ВеСЬ " имеет структуру, состоящую из полимерных цепей [c.321]

    С кислотами NH3 образует соли аммония, содержащие ион NH4. Это кристаллические вещества. Большинство их, подобно солям щелочных металлов, хорошо растворимо в воде. Многие из, них изоморфны. этим солям. Сходство данных соединений на одном, примере иллюстрирует рис. 3.46 оно в значительной степени обусловлено близостью радиусов ионов для NH< г= 143 пм, а для К" " г =133 пм. Однако проявляется саоеобразие катиона NH — его вытесняет любой щелочной металл (по шкале ср° нейтральный аммоний NHil расположен между марганцем и алюминием), при этом происходит разложение аммония NH4 на NH3 и На (однако растворенный в ртути NH некоторое время может существовать в виде амальгамы при низкой температуре). Соли аммония термически неустойчивы, а также подвергаются гидролизу по катиону. [c.399]

    Соли Ре + во мнбгом похожи на соли Mg +, что обусловлено близостью радиусов ионов (у Nig + г, = 66 пм, у Ре + п — 74 пм] , Это сходство относится к свойствам, определяемым, в основном, межионными и ион-дипольными взаимодействиями (кристаллическая структура, энергия решетки, энтропия, растворимость в воде, состав и структура кристаллогидратов, способность к комплексообразованию с лигандами, обладающими слабым полем). Наоборот, не проявляется аналогия в свойствах, связанных с электронными взаимодействиями (способность к реакциям окисления-восстановления, образование комплексов со значительной долей "ковалентной связи). На рис. 3.127 сопоставлены энтропии кристаллических соединений Ре + и М +. При сравнении рис. 3.127 и 3.125 прослеживается степень сходства и различия двухвалентных состояний элементов семейства железа между собой и между Ре и Мд, принадлежащим к разным группам периодической системы элементов. [c.562]

    Координационными или комплексными называют соединения, содержащие центральный атом или ион и группу молекул или ионов, его окружающих и связанных с ним (лигандов). Число лигандов, связанных с центральным атомом (ионом), называют координационным числом иона. Оно зависит как от электронной структуры, так и от соотношения между радиусами центрального атома (иона) и лигандов. Координационное число центрального атома (иона) обычно превышает его валентность, понимаемую как формальный положительный заряд на атоме. Высокая устойчивость многих комплексных соединений указываает, что химическая связь в них не отличается по своей природе от химической связи в обычных ионных или ковалентных соединениях. В большинстве координационных соединений центром является ион переходного металла (Т , Со , Сг " и др.), а лигандами — ионы или полярные молекулы (обладающие к тому же неподеленной парой электронов.) Именно поэтому электростатические представления легли в основу теории комплексных соединений, так называемой теории кристаллического поля, учитывающей также квантовомеханические особенности строения электронной оболочки центрального иона (Бете, Ван Флек). [c.120]


Смотреть страницы где упоминается термин Радиус кристаллический: [c.169]    [c.10]    [c.35]    [c.108]    [c.55]    [c.88]    [c.151]    [c.301]    [c.403]    [c.443]    [c.443]    [c.292]    [c.105]    [c.180]    [c.348]    [c.185]   
Общая химия (1974) -- [ c.316 ]

Кинетика реакций в жидкой фазе (1973) -- [ c.105 ]




ПОИСК





Смотрите так же термины и статьи:

Ионные радиусы кристаллические

Кристаллическая решетка отношения ионных радиусов

Кристаллические ионные радиус влияние координационного числ

Кристаллические ионные радиус и атомные номера

Кристаллические ионные радиус таблицы

Кристаллические ионные радиус экспериментальные значения

Кристаллические структуры предельное отношение радиусов

Отношение радиусов влияние на кристаллические

Отношения радиусов и кристаллические структуры

Радиус и кристаллическая структура

Радиусы атомов и ионов кристаллические

Размеры ионов. Одновалентные и кристаллические радиусы



© 2025 chem21.info Реклама на сайте