Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фокусировка ионов двойная

    Как упомянуто ранее, масс-спектрометры (МС) в неорганическом элементном анализе подобны используемым в органической масс-спектрометрии, только диапазон масс у них отличается. МС с магнитным сектором разделяют ионы в пространстве, времяпролетные МС разделяют ионы во времени, тогда как квадрупольный прибор является масс-фильтром. Квадрупольный масс-фильтр широко распространен из-за его низкой стоимости и надежности, и он не требует столь высокого вакуума, как секторные масс-спектрометры [8.5-19]. Основным ограничением квадрупольного фильтра является ограниченное разрешение, которое составляет обычно 1 а.е.м. по всему диапазону масс. Благодаря наличию изобарных помех существует необходимость применять масс-спектрометры высокого разрешения. Большинство из них имеет двойную фокусировку, т. е. сочетание электростатического анализатора и [c.139]


    Использование масс-спектрометров с двойной фокусировкой во много раз увеличило надежность идентификации неизвестных соединений благодаря уменьшению перекрывания спектров компонентов смеси. Кроме того, получение масс-спектров индивидуальных соединений высокого разрешения позволило более детально проследить различные этапы распада молекулярного иона и обнаружить значительное количество ионов, имеющих совершенно непредвиденное строение. Накопление подобных данных приводит к более полной корреляции между строением молекул и их масс-спектрами, а значит и к более тонкой оценке характеристических ионов, используемых при идентификации. Так, например, с помощью масс-спектрометра высокого разрешения исследовались алифатические эфиры муравьиной, уксусной, пропионовой и масляной кислот [218] был идентифицирован состав всех ионов. Основное преимущество высокого разрешения при исследовании [c.125]

    Наиболее важной характеристикой масс-спектроскопа является метод, которым осуществляется фокусировка ионного пучка. Эту характеристику очень удобно использовать при разделении приборов на отдельные типы. Фокусировка улучшает степень разделения соседних масс, увеличивает интенсивность измеряемого ионного пучка и, таким образом, делает измерение интенсивности и положения пучка более точным. Область применения того или иного масс-спектроскопа определяется в большой степени эффективностью фокусировки. Возможны следующие типы фокусировки, использующиеся для концентрирования ионов одинаковой массы в пучок фокусировка по направлению, в которой ионный пучок формируется из ионов, имеющих различное начальное направление, но одинаковую скорость, фокусировка по скорости, в которой ионный пучок формируется из ионов, имеющих различную скорость, но предполагает-гО ся, что все они обладали одним и тем же начальным направлением. В случае Р двойной фокусировки ионный пучок формируется из ионов, обладающих [c.17]

    Разделенные таким образом пучки ионов с различными массами, но с одинаковой кинетической энергией через щель 5 электростатического анализатора поступают в магнитный анализатор. Такая дополнительная фокусировка по энергии резко повышает разрешающую способность масс-спектрометра. Современные масс-спектрометры с двойной фокусировкой имеют разрешение до 150 ООО. [c.50]


    Качественный анализ и идентиф икация органических соединений с помощью масс-спектрометра высокого разрешения с двойной фокусировкой основаны на точном определении разности масс ионов в сочетании с известными дефектами масс изотопов атомов в исследуемых веществах. Этот метод, впервые предложенный Бейноном [214—216] для качественного анализа соединений относительно низкого молекулярного веса (меньше 250), представляет собой спектроскопию дефектов масс и при выводе структурной формулы учитывает соотношение интенсивностей пиков ионов, входящих в состав мультиплетов, обладаюишх одинаковой номинальной массой. [c.125]

    В масс-спектрографах Астона [71, 77, 85] так же, как и в приборе Коста [398], применяются последовательные электростатическое и магнитное поля. Астону [74] удалось осуществить фокусировку ионного пучка по скоростям при помощи устройства, схематически изображенного на рис. 1. Эта система полей не обеспечивает фокусировку по направлению, вследствие чего интенсивность и разрешение, хотя и повышены по сравнению с параболическим спектрографом, но все-таки не так высоки, как в приборах с двойной фокусировкой. [c.18]

    На основе исследования процессов взаимодействия гигантских импульсов лазерного излучения с веществом разработан и сконструирован высокопроизводительный лазерно-пламенный источник с фокусировкой ионов на входную щель масс-спектрометра с двойной фокусировкой. Источник обеспечивает стократную компрессию ионного пучка и коэффициент сбора ионов (отношение числа регистрируемых ионов к числу испаренных атомов) 10- . Проведены исследования выхода ионов различной зарядности. Выход однозарядных ионов основы и примесей пропорционален т / . Содержатся сведения о режимах работы источника. Приводятся данные по анализу разнообразных веществ — металлов, полупроводников, диэлектриков, показывающие аналитические возможности метода. На стандартных образцах стали, латуни, олова и международном геологическом стандарте показано, что правильность без применения эталонов составляет 30%, сходимость 15%. Предел обнаружения при фоторегистрации масс-спектра составляет 3-10- ат.% при наборе экспозиции 300 нк и достигается за 3 часа. [c.272]

    В гл. 3 рассмотрено прохождение ионов через масс-спектрометры с двойной фокусировкой в общем случае и через масс-спектрометры с геометрией Маттауха—Герцога в частности. Описаны способы одновременной фокусировки ионов по энергиям и по углам при помощи электрических и магнитных полей или их комбинации. Представлены отклонения свойств реальных полей от параметров, рассчитанных по упрощенной теории первого порядка. Обсуждены критерии оценки основных параметров, а также характеристики выпускаемых приборов. Поскольку геометрия Маттауха—Герцога является по существу основной для масс-спектрометров с искровым источником и ей уделено главное внимание в гл. 3, написание этой главы вдвойне обоснованно. [c.10]

    Наиболее важной характеристикой масс-спектроскопа является метод, которым осуществляется фокусировка ионного пучка. Эту характеристику очень удобно использовать при разделении приборов иа отдельные типы. Фокусировка улучшает степень разделения соседних масс, увеличивает интенсивность измеряемого ионного пучка и, таким образом, делает измерение интенсивности и положения пучка более точным. Область применения того или иного масс-спектроскопа определяется в большой степени эффективностью фокусировки. Возможны следующие типы фокусировки, использующиеся для концентрирования ионов одинаковой массы в пучок фокусировка по направлению, в которой ионный пучок формируется из ионов, имеющих различное начальное направление, но одинаковую скорость, фокусировка по скорости, в которой ионный пучок формируется из ионов, имеющих различную скорость, но предполагается, что все они обладали одним и тем же начальным направлением. В случае двойной фокусировки ионный пучок формируется из ионов, обладающих различной начальной скоростью и направлением. За редкими исключениями, фокусирующие устройства, используемые в масс-спектроскопии, фокусируют ионные лучи лишь в одной плоскости, и потому они эквивалентны цилиндрическим линзам. Были описаны приборы, в которых применены все эти методы фокусировки первого и более высокого порядка. Известны также методы получения идеальной двойной фокусировки были сконструированы приборы, использующие подобные системы. Еще один важный метод фокусировки пучка > ионов — по времени пролета , используется в масс-спектрометрах, которые описаны позже. В этом методе все ионы с определенным отношением массы к заряду достигают коллектора в одно и то же время и могут быть отделены от ионов с иным отношением массы к заряду, которые попадают на этот же самый коллектор в иное время. [c.17]


    Масс-спектры дают возможность исследовать устойчивость и энергетику многозарядных ионов фуллеренов. С этой целью в [16] использовался масс-спектрометр с двойной фокусировкой и энергией электронов в ионном источнике 200 эВ. В [17] методом высокотемпературной масс-спектрометрии определены давления насыщенного пара фуллерена С60 в интервале 637-846 К и рассмотрено влияние нескольких побочных факторов на измеряемое давление. [c.10]

    Для регистрации потока ионов в искровых масс-спектрометрах чаще всего используют ионно-чувствительные фотопластинки. На рис. 13.3 показана схема масс-спектрометра с двойной фокусировкой. Ионный пучок 1 проходит сначала через электрическое поле, отклоняясь на ЗГ50, а затем через магнитное поле, где он отклоняется на 90°. Ионы с различными массами фокусируются в точках Мх и М2 вдоль границы магнитного поля. Пучки ионов вызывают в местах попадания засвечивание фотопластинки. После проявления фотопластинки находят положение полос и инФенсивность их почернения. На рис. 13.4 приведена типичная масс-спектрограмма. [c.224]

    Масс-спектрометр с двойной фокусировкой Нира — Джонсона (рис. 22.5). В приборе этого типа углы отклонения как электростатического, так и магнитного полей составляют 90° и все ионы фокусируются в одной и той же точке детектора. [c.371]

    Большие возможности для анализа метастабильных ионов открыли масс-спектрометры с двойной фокусировкой. Эти приборы имеют два БПП - первое между ионным источником и первым анализатором и второе - между анализаторами (рис. 5.4). Такие приборы могут иметь как прямую а и б, первым является электростатический анализатор, а вторым магнитный), так и обратную (в) конфигурацию (электростатический анализатор следует за магнитным). Существующие методы анализа метастабильных ионов в приборах с двойной фокусировкой позволяют регистрировать 1) все дочерние ионы mj, возникающие из родительского иона /И], 2) все родительские ионы т , из которых образуется общий дочерний ион тг, 3) все процессы распада nii т , в результате которых элиминируется конкретная нейтральная частица, 4) специфические переходы m W2, характеризующие определенное соединение или класс соединений. Среди методов анализа метастабильных ионов наибольшее распространение получили следующие. [c.61]

    Второй метод определения элементарного состава соединения основан на весьма точном определении массы молекулярного иона. Использование для этой цели масс-спектрометров с двойной фокусировкой представляет собой исключительно важное достижение [7]. [c.12]

    ИОНЫ В процессе образования могут приобрести кинетическую энергию [7]. Чтобы преодолеть эту трудность, используют масс-спектрометры с двойной фокусировкой однако такие приборы еще не нашли широкого применения. Указанные недостатки метода не имеют особого значения при установлении молекулярной структуры, так как типичные молекулярные системы дают характерные картины распада, как это показано ниже. [c.14]

    Лучшее разрешение секторных приборов (уравнение 9.4-1) можно получить при сочетании магнитного сектора с электростатическим анализатором (ЭСА). ЭСА обеспечивает фокусировку ионов ионы с одеюй величиной тп/г, но различной кинетической энергией отклоняются к одной фокальной точке. Такая фокусировка существенно улучшает разрешение прибора без потери интенсивности сигнала. Приборы с двойной фокусировкой позволяют достичь высокого разрешения и точного определения масс. Схематичное изображение масс-спектрометра с двойной фокусировкой приведено на рис. 9.4-7,а. Порядок расположения магнитного сектора (В) и ЭСА (Е) обычно не важен используют приборы и с прямой (ЕВ), и с обратной (ВЕ) геометрией, некоторые производители даже выпускают спектрометры с ЕВЕ-конфигурацией. [c.275]

    Для улучшения фокусировки нонов и получения более высокой разрешаю щей способности служат анализаторы с двойной фокусировкой В этом случае к магнитному анализатору добавляется электростатический анализатор, обес печквающий фокусировку ионов по энергиям Он представляет собой сектор ный конденсатор с радиальным электрическим полем Имеется два основных типа масс счектрометров с двойной фокусировкой отличающихся взаимным расположением магнитного и электростатического анализаторов Геометрия Нира — Джонсона допускает только электрическую регистрацию прн геомет рии Маттауха — Герцога возможна как электрическая, так и фотографическая регистрация Масс спектрометры с двойной фокусировкой обычно обеспечи вают разрешающую способность 10 ООО—30 ООО а приборы наиболее высокого класса —до 100 000 Однако увеличение разрешающей способности сопровож дается уменьшением чувствительности [c.16]

    Метод основан на бомбардировке исследуемой поверхности газообразными ионами и масс-спектрометрическом анализе выбиваемых поверхностных ионов. Достоинство метода — его высокая чувствительность, применимость ко всем элементам и значительное пространственное разрешение ( 1 мкм), дости- гаемое при использовании тонко сфокусированного пучка ионов. Полученные данные обобщены Соха [106] и Кейном и Ларраби [107]. Источник ионов представляет собой двойной плазмотрон [108, 109], в котором создается сжатый магнитным полем дуговой разряд газа при давлении около 2—3 Па 0,02. мм рт. ст.) образующиеся ионы выходят через узкую диафрагму в аноде. После ускорения и дополнительной фокусировки ионы падают на образец. Выбиваемые ионы имеют значительную кинетическую энергию, и для их анализа обычно применяют масс-спектрометр с двойной фокусировкой. [c.430]

    В литературе [6] детально обсуждены причины нарушения фокусировки ионного пучка, следствием чего является уменьшение разрешающей силы масс-спектрометра. Здесь целесообразно только обсудить вопрос о том, каким образом можно получить необходимую для работы разрешающую силу у используемох о прибора. Следует обсудить также вопрос о пригодности различных количественных определений разрешающей силы. Наилучшее разрешение двух линий достигается тогда, когда щели коллектора и источника имеют минимальную ширину. Наилучшее возможное разрешение, соответствующее бесконечно малой ширине обеих этих щелей, наиболее полно характеризует потенциальные возможности данного прибора. Управлять шириной щелей можно либо механически, либо электрически [7]. Интересно рассмотреть влияние ширины щелей на форму линии. Линия масс-спектра дает распределение интенсивности в изображении щели источника. Щель коллектора обычно достаточно широка, чтобы можно было регистрировать интеграл этого распределения. По мере уменьшения ширины щели коллектора форма линии приближается к кривой распределения интенсивности в изображении, т. е. сужение этой щели эквивалентно дифференцированию линии масс-сиектра. Если с малой амплитудой модулировать ускоряющее напряжение и регистрировать сигнал на частоте модуляции, то можно записывать непосредственно производную кривой контура линии. При этом изменение амплитуды модуляции эквивалентно изменению ширины щели коллектора. Получаемый таким образом сигнал был математически исследован [8], и можно показать, что сужение щели источника эквивалентно второму дифференцированию кривой контура линии. Было показано, что можно регистрировать дублетные линии, образованные молекулярными ионами, для которых М/АМ составляет 2300, используя прибор секторного типа с радиусом 152 мм. Такую регистрацию проводили при помощи двойного дифференцирования линии обычного масс-спектра. Это наглядно иллюстрирует возможности прибора такого типа. [c.334]

    А48. Reutersward С., Новый масс-спектрометр. (Масс-спектрометр с двойной фокусировкой. Ионный пучок входит наклонно по отношению к границам магнитного поля. Полный спектр от Н до U может быть зарегистрирован за три экспозиции. В предварительных экспериментах достигалась теоретическая разрешающая сила, равная 4400.) Агк. Mat. Astr. Fys., 30 А, No. 7, 4 pp. (1944). [c.578]

    Чтобы обойти эту трудность, к отклоняющему магнитному полю добавляют отклоняющее электростатическое поле. Главная цель такой комбинации полей — добиться компенсации отклонений от центральной траектории, вызванных небольшим изменением энергии частиц в пучке. В таких приборах осуществляется фокусировка ионов как по направлению, так и по энергии, поэтому они называются масс-спектрометрами с двойной фокуси- [c.65]

    Среди высокочувствительных методов анализа разнообразных веществ своими возможностями выделяется искровая масс-спектрометрия. Этот метод наиболее интенсивно развивается в последнее десятилетие после освоения производством масс-спектрометров с двойной фокусировкой и искровым ионным источником. Принцип двойной фокусировки ионов (электростатическим и магнитным полями) был предложен в 1934 г. Мат-таухом — Герцогом, а в 1935 г. А. Демпстер разработал ионный источник нового типа с искровым разрядом в вакууме и применил его на масс-спектрометре, послужившем прообразом современных приборов. [c.5]

    При проведении масс-спектрометрического анализа непроводящих образцов регистрируются узкие линии, что свидетельствует об уменьшении разброса ионов по энергиям [28]. Изучение факторов, влияющих на разброс ионов по энергиям, представляет большой интерес для дальнейшего развития метода ИМС, поскольку использование двойной фокусировки ионов связано именно с уменьшением этого разброса. Если бы удалось разброс ионов уменьшить с 3—5 кэВ до нескольких десятков электроновольт, тогда на существующих приборах с двойной фокусировкой можно было бы значительно повысить коэффициент использования ионов, или, что то же самое, уменьшить количество вещества, затрачиваемого на проведение анализа. Б связи с этим рассмотрим более подробно результаты исследований авторов [29]. [c.126]

    Для анализа состава твердых веществ и сплавов необходимо использовать масс-спектрометры с двойной фокусировкой и универсальным источником ионов (паЕгример искровым). [c.521]

    Для решения некоторых частных структурных задач могут быть использованы разные методы фиксирования метастабильных ионов, т. е. ионов, образующихся не в ионном источнике, а в беспо-левом пространстве (первом или втором) масс-спектрометра с двойной фокусировкой. Так, были применены спектры метастабильных переходов для определения терпанов и стеранов во фракциях нефти [189]. Вариант техники прямого анализа дочерних ионов был использован для различения изомерных полициклических аренов [190j, дающих практически не различающиеся обычные масс-спектры. Этим же методом определяли элементы структуры ванадилпорфиринов [190]. Для анализа последних использовался и метод дефокусировки [191]. [c.134]

    Наиб, часто применяют статистические масс-ана-лизаторы с однородным магнитным полем(оди-нарная ( кусировка) нли комбмацией электрич. и магн. полей (двойная фокусировка). В масс-анализаторах с одинарной фокусировкой (рис. 4) ионный луч, сформированный [c.660]

    Искровой источник используют, в основном, с двойной фокусирующей системой Маттауха—Херцога высокого разрешения. Двойная фокусировка обеспечена одновременно для всех масс, поэтому весь спектр получается в плоскости, что дает возможность использовать в качестве детектора фотопластинку. Система Маттауха—Херцога имеет то преимущество, что способна работать с высоким энергетическим распределением ионов, образованных в искровом источнике. [c.137]

    Несмотря на то, что МС-МС можно реализовать с большинством из описанных выше (в разд. Разделение ионов , с. 274) масс-анализаторов, в большинстве случаев используют секторные и квадрупольные анализаторы. Схематичное изображение нескольких типов приборов для МС-МС приведено на рис. 9.4-9. В спектрометрах с двойной фокусировкой с геометрией ЕВ или ВЕ ионизационную камеру помещают либо в первой, либо во второй бесполевой области. Если камера расположена в первой бесполевой области масс-спектрометра с геометрией ВЕ (рис. 9.4-9,а), детектирование дочерних ионов конкретного родительского иона проводят сканированием при постоянном отношении В/Е (так называемый В/ связанный режим сканирования). Очевидно, при таком подходе разрешение ограничено оно составляет около 1000 для родительского иона и 5000 для дочернего иона. Другие секторные спектрометры, обладающие лучшим разрешением, состоят из трех или четырех секторов с камерой столкновений, расположенной в третьей бесполевой области, либо представляют собой комбинированные спектрометры, например, с BE-q тoлкн-Q геометрией (см. рис. 9.4-9,б) и квадрупольной ионизационной камерой. В комбинированных спектрометрах ионы, проходящие через область ВЕ, замедляются перед квадрупольной камерой. Важное преимущество комбинированных спектрометров заключается в возможности выбора родительского иона с большим [c.283]

    В разд. 9.4 были описаны масс-спектрометры различных типов. Ограничимся характеристикой особенностей, относящихся к газовой хромато-масс-спектрометрии, таких, как чувствительность, линейный динамический диапазон, разрешение, диапазон масс и скорость сканирования. Скорость сканирования масс-спектрометра—это время, необходимое для сканирования одного порядка на шкале масс (например, от т/г 50 до 500). В газовой хромато-масс-спектрометрии с капиллярными колонками благодаря небольшой ширине пика необходима высокая скорость сканирования (< 1 с/порядок), чтобы получить по крайней мере 3-5 спектров для пика в режиме полного сканирования. Ограниченный диапазон масс некоторых масс-анализаторов не является проблемой, поскольку молекулярная масса соединений, поддающихся газохроматографическому разделению, обычно меньше 600. Различные типы масс-спектрометров значительно различаются разрешающей способностью. Разрешение Д —мера способности масс-спектрометра разрешать два пика иона с различными т/г, она определяется как К = т/Ат. Способность масс-спектрометра разрешать два пика с различающимися на единицу массами называется единичным массовым разрешением. С едичичным массовым разрешением обычно работают квадрупольные приборы. Приборы же с двойной фокусировкой достигают высокого массового разрешения (Д > 10 ООО). Это важно, поскольку из точной массы иона фрагмента часто можно непосредственно получить элементный состав. Для разделения ионов С5Н11О2 и 4HllN20 (табл. 14.2-1) с Дт = 0,01123 требуется разрешение по крайней мере К = 9172. [c.603]

    Наличие кислородной функции, например в хинонах, ослабляет молекулярный ион и приводит к образованию осколочных ионов. Как установил Лестер [54], два самых крупных осколочных иона (помимо молекулярного иона) образуются путем отщепления сначала одной, а затем двух молекул окиси углерода. Бейнон и сотр. [10] с помощью масс-спектрометра с двойной фокусировкой получили доказательство, что отщепляется действительно окись углерода, а не этилен. Остаток должен претерпеть глубокую перегруппировку, так как он не распадается даже после отщепления обеих групп С — О от хиноидного кольца. [c.23]


Смотреть страницы где упоминается термин Фокусировка ионов двойная: [c.316]    [c.653]    [c.56]    [c.56]    [c.653]    [c.73]    [c.266]    [c.32]    [c.296]    [c.45]    [c.661]    [c.661]    [c.140]    [c.361]    [c.604]    [c.40]   
Массопектрометрический метод определения следов (1975) -- [ c.75 , c.79 , c.83 , c.100 , c.102 , c.414 ]




ПОИСК





Смотрите так же термины и статьи:

Движение ионов в масс-спектрометрах с двойной фокусировкой Герцог)

Ионная фокусировка

Ионы двойные

Масс-спектрометр с двойной фокусировкой и искровым ионным источником

Фокусировка ионного пучка двойная

Фокусировка ионов



© 2025 chem21.info Реклама на сайте