Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Вода энтропия

    В зависимости от характера взаимодействия растворенного вещества с водой энтропия образования гидрофобных связей (A5f) может быть иногда равной нулю или даже отрицательной. Именно это имеет место в случае гетероциклических соединений, которые содержат как гидрофобные участки, так и полярные группы, способные образовывать водородные связи с водой. Хотя эти группы действительно образуют водородные связи, тем не менее они все же вызывают уменьшение [c.248]


    По изменениям энтропии гидратации установлено, что при появлении иона в воде энтропия системы не уменьшается, а наоборот увеличивается вследствие искажения структуры воды (поскольку гидратированный ион не вписывается в структуру воды — сетку водородных связей). [c.13]

    Определение реальных энергий (теплот) гидратации отдельных ионов. Энтропии гидратации ионов. С помощью модельных методов определяются химические энергии сольватации, так как В них не учитывается поверхностный потенциал на границе жидкость— вакуум XI- Поскольку пока величину нельзя ни изме-1)ить, ни рассчитать (она отвечает разности потенциалов между точками, расположенными в двух разных фазах), химическая энергия гидратации определяется с точностью до некоторой неопределенной постоянной. Рекомендуемые разными авторами значения /р10 для воды отличаются на 0,5 В, что может дать ощибку в определении энергии гидратации однозарядного иона порядка БО кДж-моль- . Вероятные значения лежат внутри =Р0,2 В. Многие авторы принимают В. Если это значение от- [c.62]

    Такой вывод косвенно подтверждается слабо выраженным и почти линейным уменьшением диэлектрической проницаемости раствора при увеличении концентрации электролита вплоть до 0,5—1,0 М растворов. Дальнейшее повышение концентрации электролита приводит к некоторому замедлению спада диэлектрической проницаемости и отклонению экспериментальной кривой от прямой линии в сторону больших величин диэлектрической проницаемости. Предполагается, что такой ход кривых е — с обусловлен наложением эффектов упорядочения структуры воды и ее разрушения под действием введенных ионов. Если рассматривать воду как систему, состоящую из квазикристаллических образований, то при введении первых порций электролита наиболее заметно проявляется их упорядочивающее действие — образование внутреннего сольватного (замороженного) слоя молекул воды, частичная ориентация молекул воды во внешнем сольватном слое, уменьшение свободного объема жидкости. Все эти эффекты охватывают главным образом преобладающую аморфную форму воды, связь между молекулами в которой слабее, чем в квазикристаллических образованиях, и приводят к уменьшению энтропии. При возрастании концентрации электролита, когда значительная часть аморфной воды становится [c.64]

    С) и кипения (—191,5°С) стандартные энтропии близки (для СО 97,3 Дж/град моль, N2 191,3 Дж/град моль) в твердом состоя- ии оксид углерода (II), как и азот, существует в виде двух модифи-<аций (кубической и гексагональной) плохо растворяются в воде и г. д. Сходство проявляется также в структуре спектров СО и N2. [c.406]


    ЗАВИСИМОСТЬ МЕЖДУ ЗАРЯДАМИ ИОНОВ И ЭНТРОПИЕЙ ДЛЯ НЕКОТОРЫХ ионных РАВНОВЕСИЙ В ВОДЕ ПРИ 25° [c.463]

    Для сравнения в табл. XV.8 перечислены изменения энтропии для ряда ионных равновесий в воде при 25°. Несмотря на то, что в таблицу включены частицы с ковалентными связями, для которых возможность применения электростатической модели весьма сомнительна, общее изменение энтропии симбатно изменению, соответствующему уравнению (XV.12.2). Величины АР° и АЯ° дают гораздо худшее совпадение. [c.464]

    Рассчитаем в качестве примера изменение энтропии и приведенной теп лоты при неравновесном процессе—переходе в лед одного моля жидкой воды, переохлажденной до —5 °С. [c.94]

    I. Жидкая вода нагревается от —5 до О С (1), затем обратимо затвердевает (2), и, наконец, лед охлаждается до —5 °С (3). Изменения энтропии при трех процессах этого пути вычисляют изложенными выше способами  [c.94]

    Термодинамические расчеты энтропии растворителя в растворе показы вают, что энтропия воды уменьшается при растворении в ней ионов (пр.и малых концентрациях). Этот факт также соответствует представлению о том, что ионы связывают молекулы воды в первичную сольватную оболочку (увеличение упорядоченности распределения молекул вызывает уменьшение энтропии) .  [c.420]

    Таким образом, можно считать, что влияние ионов на структуру воды представлено как сумма двух различных действий во-первых, происходит образование сольватных оболочек, сопровождающееся сжатием и уменьшением энтропии, а во-вторых, ионы, особенно большие и при больших концентрациях, разрушающе действуют на структуру воды, что вызывает уве.ж чение энтропии. [c.421]

    Энтропия возрастает при растворении твердого вещества или жидкости в воде или в другом растворителе  [c.62]

    Энтропия уменьшается при растворении газа в воде или в другом растворителе  [c.62]

    Растворение газа в воде в какой-то мере подобно его конденсации в жидкость, если судить по близости контакта соседних молекул. Как и в рассмотренном выше случае, энтропия растворенного ионного соединения определяется путем суммирования энтропии его гидратированных ионов. [c.62]

    Вычислите изменения свободной энергии, энтальпии и энтропии для процесса испарения жидкой воды. Проверьте при помощи полученных вами результатов уравнение (16-9). Какая часть свободной энергии, энтальпийная или энтропийная, ответственна за протекание процесса испарения  [c.73]

    Почему растворение твердого или жидкого вещества в воде приводит к возрастанию энтропии, тогда как растворение газа вызывает уменьшение энтропии  [c.84]

    Увеличивается ли энтропия водного раствора ионов кальция в результате окружения их молекулами воды Как объяснить, связав это с ответом на первый вопрос, явление гидратации ионов в растворе  [c.84]

    Что больше энтропия моля льда или энтропия моля жидкой воды  [c.84]

    В каком из каждых двух примеров больше энтропия а) нераспечатанная колода карт или те же карты, разбросанные по столу б) собранный автомобиль или отдельные его части, необходимые для сборки в) диоксид углерода, вода, соединения азота и минеральные вещества или дерево, вырастающее из них  [c.85]

    В каком из каждых двух примеров выше энтропия а) моль жидкой воды или моль водяных паров при давлении 1 атм и 25°С б) моль сухо- [c.85]

    Напомним, что 1 энтр. ед. (энтропийная единица) = 1 Дж-К . ] Такие теплота и энтропия требуются, чтобы разрушить упорядоченную структуру кристаллического льда и позволить молекулам скользить одна вдоль другой. Сравним эти значения с соответствующими теплотой и энтропией испарения, когда молекулы жидкости действительно отрываются одна от другой, образуя газ. Для воды при 298 К [c.122]

    Теплоту и энтропию испарения воды, значения которых приведены выше, можно вычислить, рассматривая испарение воды как химическую реакцию  [c.122]

    В табл. 18-1 сравниваются теплоты и энтропии испарения ряда распространенных жидкостей. Прежде всего можно заметить, что энтропии испарения всех жидкостей приблизительно одинаковы. Неупорядоченность, вносимая в систему из 6,022 -10 молекул, находящихся в тесном контакте в жидкости, когда их разъединяют при образовании пара из жидкости, сравнительно мало зависит от природы этих молекул. Это обобщение известно под названием правила Трутона, по имени ученого, который установил его эмпирически в XIX в. Наиболее высокие молярные энтропии испарения, превышающие молярные энтропии других веществ на 10-20 энтр. ед., имеют метанол, этанол и вода. Повышенные энтропии испарения этих веществ объясняются тем, что их полярные молекулы удерживаются в жидкости друг возле друга силами диполь-дипольного взаимодействия и водородными связями. Повышенная степень упорядоченности жидкости означает, что для образования из нее газа требуется внести несколько большую неупорядоченность. Поскольку для разъединения взаимодействующих молекул такой жидкости требуется больше энергии, теплота ис- [c.123]


    При достаточно низких давлениях твердые вещества также могут непосредственно переходить в паровую фазу этот процесс называется сублимацией. Сублимация - обычное явление для твердого диоксида углерода при давлении 1 атм, и именно по этой причине его принято называть сухим льдом . Обычный лед при таком давлении плавится с образованием жидкости, но холодным зимним утром при сухом воздухе сугробы могут сублимировать, превращаясь непосредственно в пары воды, без предварительного перехода в жидкое состояние. Поскольку энтальпия и энтропия являются функциями состояния, теплота или энтропия сублимации должны представлять собой суммы теплот или энтропий плавления и испарения при той же самой температуре. Например, для воды в предположении, что АЯ и AS при 273 К имеют такие же значения, как и при 298 К, находим [c.124]

    В отличие от АЯ п и AS . , которые мало зависят от температуры, AG° очень сильно зависит от температуры, Т, которая явно входит в соотношение (18-1). Если ради простоты предположить, что изменения энтальпии и энтропии постоянны, то можно графически представить зависимость AG от ДЯ и AS, как это сделано на рис. 18-3 на примере Н2О. При высоких температурах произведение 7AS° больше, чем АЯ°, свободная энергия испарения отрицательна и испарение воды при парциальном давлении водяных паров 1 атм должно происходить самопроизвольно. При низких температурах АЯ° больше, чем TAS°, так что AG° положительно, и самопроизвольно осуществляется конденсация водяных паров. При некоторой промежуточной температуре энтальпийный и энтропийный эффекты в точности компенсируют друг друга, AG° становится равным нулю и жидкая вода находится в равновесии с парами воды при парциальном давлении 1 атм. Такое состояние отвечает нормальной температуре кипения жидкости, (температура кипения на уровне моря). Для воды эта температура равна 100°С, или 373,15 К. При более низком атмосферном давлении (на большой высоте над поверхностью моря) вода кипит при температуре ниже 100°С. [c.124]

    Полагая, что энтальпия и энтропия испарения не зависят от температуры, вычислите температуру кипения воды в скороварке при давлении внутри нее 2 атм. Какое значение для приготовления пищи имеет повышенное давление внутри скороварки  [c.152]

    Гидратация растворенного вещества обусловливает энтропийные изменения, которые могут быть значительными даже при невысокой температуре раствора. Это объясняет большую прочность образуемых в растворах комплексов, несмотря на эндотермичность многих редакций комплексообразовання. Величина энтропии чувствительна к нарушениям структурных особенностей водных растворов и изменению подвижности молекул воды. Энтропия раствора возрастает при разупорядочивающем воздействии поля иона На молекулы воды и уменьшается при его упорядочивающем воздействии. Поэтому изменение энтропии, связанное со структурны- [c.65]

    Для исследования кинетики образования донорно-акцепторного комплекса с переносом заряда между 1,3,5-тринитробензолом (ТНБ) и нейтральным донором, диэтиламином (Ат),со-став - ТНБ-2Ат при низкой техмпературе использован метод остановки струи [62]. В ацетоне, в смесях ацетон — вода и ацетон—эфир при температурах приблизительно от —30 до —85° период полупревращения реакции 0,05—1 сек. В этих условиях реакция обратима и подчиняется первому порядку потринитро-бензолу и второму порядку по диэтиламину. В растворе ацетон — вода энтропия образования положительна даже несмотря на то что в комплекс соединяются три молекулы. По-видимому, при взаимодействии компонентов десольватация происходит в очень значительной степени [63] [c.170]

    В результате процесса сольватации в растворе должны присутствовать не свободные иопы, а ионы с сольватной оболочкой. Как уже отмечалось, Бокрис и Конвеи различают первичную и вторичную сольватную оболочки. Для понимания многих электрохимических процессов важно знать, сколько молекул раствортеля входит во внутреннюю сольват11ую оболочку. Это количество молекул называется числом сольватации п,., или, в случае водных растворов, числом гидратации ионов Пу. Они имеют относительное значение и дают ориентировочные сведения о ч теле молекул растворителя, входящих во внутренний слой. Различные методы определения чисел сольватации приводят к значениям, существенно отличающимся друг от друга. В методе Улиха предполагается, что образование внутреннего гидратного слоя подобно замерзанию воды. Такое представление разделяют и многие другие авторы, Эли и Эванс, например, сравнивают сольватный слой с микроскопическим айсбергом, сформировавшимся вокруг частицы растворенного вещества. Так как уменьшение энтропии при замерзании воды составляет 25,08 Дж/моль град, то число гидратации [c.66]

    Соответственно степени беспорядка энтропия вещества в газовом состоянии значительно больше, чем в жидком, а тем более — чем в кристаллическом. Напрн.мер, стандартная энтропия воды 5 гая = = 69,96 Дж/град-моль, а водяного пара = 188,74 Дж/град-моль. У вещества в аморфном состоянии энтропия больше, чем в кристаллическом (более упорядоченном) состоянии, например для стекловидного и кристаллического Si02 стандартные энтропии равны 46,9 и 42,(19 Дж/град-моль соответственно. Стандартная энтропия графита (5,740 Дж/град-моль) больше, чем алмаза (2,368 Дж/град-моль), отличающегося особо жесткой структурой. При данном агрегатном состоянии энтропия тем значительнее, чем больше атомов содержится в молекуле. Так, энтропия Oj(r) (238,8 Дж/град моль) больше, чем газообразных Ог (205,03 Дж/град-моль) и [c.171]

    При превращении одной фазы в другую удельные (интенсивные) свойства вещества (удельный или мольный объем, внутренняя энергия и энтропия одного грамма или одного моля) изменяются скачкообразно. Однако отсюда не следует, что внутренняя энергия всей двухфазной системы не является в этом случае непрерывной функцией ее состояния. В самом деле, система, состоявшая в начале процесса, например, из некоторого количества льда при О °С и 1 атм, при поотоянном давлении и подведении теплоты превращается в двухфазную систему лед—жидкая вода, в которой по мере поглощения теплоты масса льда постепенно и непрерывно убывает, а масса воды растет. Поэтому также постепенно и непрерывно изменяются экстенсивные свойства системы в целом (внутренняя энергия, энтальпия, энтропия и др.). [c.139]

    Введенные в полярную жидкость ионы нарушают структуру растворителя на больших расстояниях вокруг ионов. На это указывают результаты рентгенографических и спектроскопических 1 следований растворов и некоторые другие факты (например, увеличение энтропии растворителя при высоких концентрациях ионов). Особенно заметно разрушающее действие на структуру воды ионов больших размеров, тогда как ионы небольшого размера помещаются в пустотах воды и мало изменяют ее структуру. Координационное число ионов средних размеров, особенно одновалентных, в разбавленных растворах равно четырем. Очевидно, они просто замещают молекулы воды в целом, не изменяя структуры последней. Правда, они притягивают и ориентируют находящиеся вблизи молекулы воды и, образуя сольватную оболочку, несколько искажают структуру воды в ближайшем окружении (уменьшается объем, теплоемкость, энтропия, сжимаемость раствора). Однако можно считать, что структура воды в растворе искажена незначительно и да51 е в сольватной оболочке напоминает структуру чистой воды. [c.421]

    Обнаруживаемые изменения структуры воды в граничных слоях не только сказываются на ее физических свойствах, но и вызывают изменение расклинивающего давления в тонкой прослойке [42, 43]. Этот эффект возникает при перекрытии граничных слоев с измененной структурой в достаточно тонких прослойках. Структурные изменения прослойки, происходящие при перекрытии, ведут к изменению ее свободной энергии Fs, которая становится функцией толщины прослойки /г. Термодинамическим следствием этого является появление структурной составляющей расклинивающего давления П5 = — др1/ дк)т, величина и знак которой зависят от характера происходящей при перекрытии структурной перестройки. Так как AFs = AHs—TASs (где ДЯ — изменение энергии межмолекулярных связей, а Д5 — изменение энтропии в прослойке при изменениях взаимной ориентации молекул, характеризуемой параметром порядка), знак производной дР /дк зависит от изменений энтропии и энтальпии прослойки воды при изменении ее толщины. [c.15]

    В результате проведенного выше анализа данных по плотности прочно связанной воды можно сделать вывод, что высокая энергия взаимодействия ее молекул с активными центрами гидрофильной поверхности и, как следствие, друг с другом еще не предопределяет повышенной по сравнению с объемной плотности связанной воды. Поверхность навязывает адсорбционным слоям структуру, зависящую от топографии и природы активных центров, т. е. в определенном смысле оказывает разу-порядочивающее действие на связываемую воду. Конечно, подвижность адсорбированных на гидрофильных поверхностях молекул воды, как это следует из анализа изменений энтропии при адсорбции [85] и данных ЯМР (см., например, [86]), намного ниже, чем в жидкой воде. Но приспособление адсорбционного водного слоя к топографии активных центров приводит к нарушению в нем целостности сетки межмолекулярных водородных связей в ИК-спектрах сорбированной воды полосы валентных колебаний слабо нагруженных ОН-групп воды существенно выше, чем в жидкой воде [66]. [c.35]

    В заключение отметим, что формирование слоев связанной воды вблизи поверхности силикатных частиц коллоидных размеров тесно связано с формированием коагуляционной сетки в дисперсии. Из работ [132—134] следует, что формирование гиксотропной структуры в дисперсиях монтмориллонита приводит к заметному увеличению так называемого всасывающего давления я — величины, которая измеряется с помощью тен-зиометров и характеризует способность почвы при соприкосновении с чистой водой впитывать ее в себя. По величине я легко определить изменение химического потенциала связанной воды граничного слоя по сравнению с объемной, а по зависимостям я от температуры — парциальные молярные энтальпии и энтропии связанной воды. Перемешивание дисперсий (разрушение тиксотропной структуры) приводило к резкому уменьшению значений я. Получаемые на их основе парциальные термодинамические функции связанной воды практически не отличались от таковых для объемной воды. Тиксотропное структу-рообразование, наоборот, вызывало повышение значений я, а термодинамические характеристики связанной в структурированной дисперсии воды были существенно иными, чем в объемной воде [133]. [c.44]

    Энтропия метанола, СН3ОН, при растворении возрастает лишь незначительно, поскольку моль молекул метанола, диспергированных между молекулами воды, оказывается нена шого больше неупорядоченным, чем моль чистого жидкого метанола. Растворение муравьиной кислоты, НСООН, приводит к большему возрастанию энтропии, поскольку ее молекулы частично диссоциируют на протоны и формиат-ионы, НСОО в результате чего из одной частицы образуются две. Кристаллическая решетка хлорида натрия при растворении полностью разрушается, и при этом образуются гидратированные ионы Na и С1 , что обусловливает значительное возрастание неупорядоченности, хотя часть молекул воды оказывается связанной вследствие гидратирования ионов. Заметим, что энтропия раствора Na l получена из данньк приложения 3 путем сум шрования энтропий водных растворов двух ионов  [c.62]

    Все три описанные выше реакции протекают, несмотря на необходимость поглощения при этом теплоты, потому, что их продукты обладают большей внутренней неупорядоченностью, чем исходные реагенты. Пары воды характеризуются большей неупорядоченностью и, следовательно, имеют большую энтропию, чем жидкая вода. Гидратированные ионы NH4 и I имеют большую энтропию, чем кристаллический NH4 I. Газообразные NO2 и О2 обладают большей неупорядоченностью и имеют большую энтропию, чем твердый N2O5. Химическая система стремится не только к состоянию с минимальной энергией или энтальпией, но также к состоянию с максимальной неупорядоченностью (вероятностью, или энтропией). На этом основании следует ввести новую функцию состояния, называемую свободной энерг ией, G. [c.68]


Смотреть страницы где упоминается термин Вода энтропия: [c.27]    [c.31]    [c.75]    [c.8]    [c.155]    [c.155]    [c.112]    [c.289]    [c.463]    [c.37]    [c.90]    [c.378]   
Термохимические расчеты (1950) -- [ c.177 , c.200 ]

Теплопередача (1961) -- [ c.635 , c.636 ]




ПОИСК







© 2025 chem21.info Реклама на сайте