Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фракционирование хроматографическое

    Для полного разделения неуглеводородных и углеводородных компонентов и эффективного разделения двух основных составляющих неуглеводородной части нефтей, природных асфальтов и тяжелых нефтяных остатков (асфальтенов и смол), предложено большое число модификаций селективного растворения и осаждения с использованием разнообразных органических растворителей в комбинации с адсорбционной хроматографией. Одним из примеров такой модификации может служить предложенная М. Бестужевым [5] методика выделения асфальтенов из асфальта с последующим разделением их на фракции. В качестве растворителей были последовательно использованы н-гептан (горячий), циклогексан, смесь н-гептана с бензолом, диэтиловый эфир. Фракционирование завершалось хроматографическим разделением. [c.43]


    С рождением сорбционных и особенно хроматографических методов в распоряжении исследователей оказались самые эффективные пз современных средств фракционирования. Разработка широкого круга разнообразнейших сорбентов, твердых носителей и стационарных жидких фаз, препаративного и аналитического [c.14]

    Несмотря на различия физических процессов, лежащих в основе методов хроматографического фракционирования, можно провести теоретическое рассмотрение ряда основных вопросов, общих для всех этих методов. Разумеется, здесь нет места для глубокого изложения теории хроматографии, но ознакомиться с ее основными положениями и выводами имеет смысл как для понимания ссылок и терминов, встречающихся в литературе, так и потому, что некоторые из этих выводов носят сугубо практический характер. Кроме того, знание общих закономерностей процесса хроматографической элюции послужит основой для дальнейшего, более углубленного анализа каждого из описываемых ниже специфических методов хроматографии. [c.14]

    В проведенном теоретическом рассмотрении было сделано предположение, что исходная зона имеет очень малую (точнее, бесконечно малую) ширину. На самом деле это не так начальная зона имеет форму прямоугольника, который, очевидно, не может скачком превратиться в колоколообразную кривую распределения Гаусса. Вначале расширение зоны идет за счет размывания ее переднего и заднего фронтов (рис. 8). Можно доказать, что профиль каждого фронта может быть описан соответствующей половиной кривой Гаусса. Практически в большинстве случаев аналитического фракционирования хроматографические пики за время прохождения по колонке, расплываясь, успевают принять колоколообразную форму распределения Гаусса, поэтому сделанные выше качественные выводы относительно выбора скорости элюции и диаметра гранул сохраняют свою силу и для реального хроматографического процесса. [c.31]

    Область скоростей и < 10 см/с характерна для проточной тонкослойной хроматографии, которая позволяет использовать для фракционирования хроматографические слои малой длины (10 см). Этот вид хроматографии выгодно отличается от обычной колоночной хроматографии ( / = 38 10 см/с) и качеством упаковки слоя. [c.133]

    Заслуживают внимания также другие методы фракционирования хроматографическая адсорбция, ультрацентрифугирование и молекулярная перегонка. [c.35]

    Среди лабораторных методов очистки, фракционирования и анализа структуры белков, нуклеиновых кислот и их компонентов совокупность различных хроматографических методов занимает центральное место. Ни один другой метод не может сравниться с хроматографией по широте количественного диапазона. Начиная от препаративных колонок объемом в несколько литров, на которых можно вести фракционирование граммовых количеств препарата на первых этапах выделения фермента, через разделение близких по своей природе компонентов очищенной смеси веществ, количество которых измеряется миллиграммами или долями миллиграмма, этот диапазон простирается до микроанализа аминокислотного состава белка, когда на колонку вносят сотые доли микрограмма исходного гидролизата. Вне конкуренции остается и разнообразие физико-химических параметров, по которым может осуществляться хроматографическое фракционирование молекулярные размеры, вторичная или третичная структура биополимеров, растворимость, адсорбционные характеристики молекул, степень их гидрофоб-ности, электрический заряд и, наконец, биологическое сродство к другим молекулам. [c.3]


    Проблема анализа распределения компонентов остатков по размерам приобрела большое значение сравнительно недавно и в основном связана с развитием процессов их каталитического гидрооблагораживашм. Возможность получать какие-то определенные результаты появилась после разработки метода гель-хроматографического разделения. Метод этот — гель-проникающая хроматография (ГПХ) — впервые нашел широкое применение в биохимии и химии полимеров [31]. При ГПХ разделение органических веществ осуществляется совсем на иных принципах, чем при других хроматографических методах. Принцип метода заключается в том, что во время прохождения раствора исследуемого вещества через колонку, заполненную частицами твердого геля, происходит разделение молекул этого вещества за счет различной способности их проникать в поры геля. Поры в частице геля имеют различный размер. Молекулы образца также различаются по величине. Некоторые молекулы слшиком велики, чтобы войти даже в самые крупные поры, и исключаются из частицы геля. Поэтому они двигаются через слой геля между его частицами и первыми выходят из колонки. Другие молекулы так малы, что входят во все поры геля, полностью проникая в частицу. Эти соединения задерживаются в наибольшей степени и появляются на хроматограмме последними. Молекулы промежуточных размеров могут входить только в некоторые поры и двигаются по колонке со средней скоростью. При разделении смеси с ширркой областью молекулярных масс используют набор гелей с разными пределами исключения. Это позволяет расширить область фракционирования колонки. Использование различных гелей дает эффект только при последовательном соединении колонок с разными гелями. При разделении соединений, мало различающихся по размеру, используют гели с узкой областью [c.36]

    Для контроля за дисперсностью различных высокомолекулярных соединений пользуются методами светорассеяния, диффузии, ультрацентрифугирования, осмометрии, вискозиметрии, электронной микроскопии, хроматографического фракционирования [13]. Однако ни один из этих методов не является надежным, а некоторые просто неприменимы для контроля за состоянием асфальтенов в нефти без добавления к ней соответствующих растворителей. Причиной этого являются темная окраска и высокая вязкость нефти, а также высокая дисперсность асфальтеновых частиц. Кроме того, перечисленные методы не позволяют исследовать пробы пластовой нефти, содержащей растворенный газ и находящейся под высоким давлением. Этих недостатков нет у метода инфракрасной фотоколориметрии [1, 23]. Поэтому он может успешно использоваться для контроля за состоянием асфальтенов в нефти. [c.17]

    Установлено, что от нижних к верхним горизонтам в газах закономерно уменьшается содержание тяжелых углеводородов. Причем дифференцируются все углеводороды от этана до пентана. Характер разделения углеводородов аналогичен хроматографическому фракционированию. [c.8]

    Чистый метан получают из природного газа фракционированной ректификацией или очисткой его хроматографическими методами. [c.301]

    Естественно, что фракционирование по столь широкому кругу параметров реализуется путем использования достаточно разнообразных методических подходов и аппаратуры. Тем не менее, одна принципиальная особенность остается неизменной для всех этих подходов, что и позволяет объединит ) их в одну категорию хроматографических методов. В любом из них можно обнаружить двухфазную систему, в которой одна фаза неподвижна, а другая перемещается относительно нее с некоторой скоростью в одном определенном направлении. Неподвижная фаза остается неизменной, заполняя полость трубки (хроматографической колонки ) или фиксируясь на поверхности стеклянной или пластиковой пластинки иногда ее основу образует фильтровальная бумага или пленка ацетилцеллюлозы. Подвижная фаза непрерывно обновляется, поступая в систему с одного ее конца и покидая с другого. Молекулы компонентов исходной смеси веществ распределяются между двумя фазами в соответствии со степенями своего сродства к ним. На каждом участке неподвижной фазы это распределение стремится к состоянию динамического равновесия, которое непрерывно нарушается вследствие перемещения подвижной фазы. В результате постоянно идущего перераспределения молекул вещества между фазами они мигрируют в направлении течения подвижной фазы. Скорость такой миграции тем меньше, чем больше сродство молекул к неподвижной фазе. Распределение между фазами происходит независимо для каждого компонента смесн веществ. Еслп соотношения сродства к двум фазам у молекул разных компонентов смеси не одина- [c.3]

    Предварительное фракционирование по молекулярным массам дает большой эффект при последующем фракционировании на хроматографических колонках. Так, если смесь должна быть фракционирована в широком диапазоне молекулярно-массового распределения, то применение гель-хроматографии малоэффективно, так как раствор должен быть пропущен через ряд колонок, чтобы достичь нужной степени разделения индивидуальных компонентов. Но если исходную смесь предварительно разделить с помощью ультрафильтрации на несколько фракций, то дальнейшее фракционирование на хроматографических колонках не представляет труда. При этом разделение будет пр01ведено не только быстрее, но и качественней. Более того, ультрафильтрацией рас- [c.284]


    Как уже упоминалось, в любом хроматографическом процессе фигурируют неподвижная и подвижная фазы, между которыми распределяются молекулы фракционируемой с.меси веществ. Под основным принципом фракционирования буде.м подразумевать природу физического, химического или биологического явления, обусловливающего такое распределение. [c.6]

    Различие степени доступности объема неподвижной фазы для молекул различных компонентов исходной смеси веществ является фактором, определяющим возможность их фракционирования. Очевидно, что оно будет происходить по размерам молекул. Если в составе смеси имеются очень крупные молекулы, вовсе не проникающие внутрь гранул, то они будут выходить из колонки или достигать края хроматографической пластины вместе с передним фронтом подвижной фазы ( фронтом элюции ). В то же время мелкие молекулы, свободно диффундирующие внутрь гранул, часть времени будут находиться в неподвижной фазе. Статистически эта часть времени одинакова для всех молекул такого размера и зависит от соотношения объемов жидкости в неподвижной и подвижной фазах. Таким образом, все мелкие молекулы достигнут конца хроматографического пути более или менее одновременно и заведомо позднее, чем крупные. Молекулы промежуточных размеров, для которых из-за разброса значений эффективных диаметров пор внутри гранул неподвижной фазы доступна только часть ее объема, должны, очевидно, перемещаться вдоль колонки или пластины с промежуточной скоростью. [c.7]

    Практически хроматографическому фракционированию подвергается отнюдь не бесконечно малое количество вещества, и оно соответственно должно занимать изначально некоторый объем на старте своего движения. Далее будет показано, что в ходе хроматографической миграции каждое индивидуальное вещество перемещается в направляющей системе в ограниченном (постепенно изменяющемся) объеме. Эти объемы и соответствующие им участки длины колонки, равно как пятна и полосы на хроматографической пластинке, будем ниже именовать хроматографическими зонами, или просто зонами. С рассмотрения ситуации внутри такой зоны и целесообразно начать анализ хроматографического процесса. [c.15]

    Величина К в принципе может принимать любые положительные значения от О до оо. При ЙГ = О молекулы вещества не сорбируются и даже не входят внутрь гранул. Такая ситуация имеет место при гель-фильтрации крупных макромолекул. При А оо вещество практически нацело сорбировано в неподвижной фазе. Значения вблизи К = характерны для гель-фильтрации малых молекул. Для хроматографического фракционирования при использовании сорбции любого рода, как правило, 1. Именно такой случай [c.17]

    Исследовано влияние концентрации высокомолекулярных ио-листиролов в элюате на их фракционирование хроматографическим методом fipjj этом установлено, что объем элюента зависит от распределения полистирола по молекулярным весам, а также от среднего молекулярного веса исследуемой пробы. [c.324]

    Выше было отмечено, что имеется большое количество противоречивых литературных данных о влиянии температурного градиента (если оно вообще имеется) на эффективность фракционирования хроматографическим методом. Одни авторы считают, что наличие температурного градиента в действительности ухудшает эффективность фракционирования, другие же утверждают, что градиент температуры важен для достижения условий эффективного фракционирования. В этом разделе будет предпринята попытка объективного рассмотрения соответствующих работ и выводов теории и проведено сравнение метода хроматографического фракционирования с другими методами. Рассмотрение ограничим случаем температурного градиента, в гл. 3 рассмотрена теория фракциоиирования методом элюирования в отсутствие градиента температуры. Существуют также другие модификации метода, например ступенчатый градиент температуры в отсутствие градиента концентрации растворителя [36]. В последующем разделе все альтернативные теоретические модели рассматриваться не будут. [c.100]

    В результате творческого содружества Б. А. казанского и Г. С. Ландсберга [38] н пх сотрудников разработан новый метод исследования индивидуального состава бензинов. Метод включает в себя хроматографическую адсорбцию, деги-дрогенизационный катализ, фракционированную перегонку и анализ при помощи спектров комбинационного рассеяния света. [c.150]

    Сорбционные и хроматографические процессы, основанные на использовании эксклюзионных (молекулярно-ситовых) явлений — одно из важнейших современных средств фракционирования. Применение в анализе нефтяных ГАС твердых молекулярных сит (цеолитов, широкопорнстых силикагелей и стекол с узким распределением пор по размерам) ограничено из-за сильного проявления адсорбционных эффектов, которые часто действуют противоположно ситовым эффектам, что ухудшает результаты чисто эксклюзионного разделения в соответствии с размерами и формой молекул [109]. Наибольшее распространение получили методы эксклюзионного разделения па пористых, набухающих в растворителях органических полимерах (пространственно сшитых сополимерах стирола и дивинилбензола, полидекстранах и т. д.) или неорганических макропористых сорбентах с поверхностью, модифицированной прочно сорбированной или химически связанной неполярной органической стационарной фазой [117]. [c.16]

    В работе [329] был изучен фотолиз (СНз)зССНО и смесей изовалерианового альдегида с этиленом. Продукты фотолиза после низкотемпературного фракционирования анализировались хроматографическим методом. Из отношений выходов продуктов фотолиза при различных температурах были определены константы скоростей различных элементарных стадий фотолиза изовалерианового альдегида, отнесенные к константе скорости рекомбинации третичных изобутильных радикалов. Предполагая, что константа рекомбинации равна 10 для константы диспропорционирования третичных изобутильных радикалов нашли значение Реакция взаимодействия третичных изобутильных радикалов с молекулами изовалерианового альдегида, приводящая к образованию изобутана и триметилкарбонила, имеет в температурном интервале 300—797 К константу скорости, вычисленную по формуле 10 ° ехр Исследование фотолиза (СНз)2СНСН2СНО в области 25—417° С позволило определить константу диспропорционирования первичных изобутильных радикалов, которая равна 10 при условии, что константа рекомбинации этих радикалов принимается равной 10 .  [c.245]

    С. Р. Сергиенко и Е. В. Лебедев [91], используя метод хроматографического фракционирования в сочетании с методами карбамидной депарафинизации, обработкой тиокарбамидом и др. методами, выделили из ромашкинской (девонской) нефти индивидуальные парафиновые углеводороды от ji до gQ. Было показано, что фракция твердых предельных высокомолекулярных уг.леводородов данной нефти, образующих комплекс с карбамидом, состоит в основном из парафиновых углеводородов нормального строения и слабо разветвленных структур. При этом на долю углеводородов нормального строения с числом атомов углерода 21 — 27 приходится 67%, содержание к-парафиновых углеводородов Gji—Сдц равно 78%, а углеводороды с циклопарафиновыми структурами содержатся в малом количестве. Характеристика фракций предельных высокомолекулярных углеводородов ромашкинской (девонской) нефти приведена в табл. 62. [c.196]

    Лучшим методом анализа аминокислотного состава белковых гидролизатов является хроматографическое фракционирование на колонках из крахмала (Мур и Штейн , 1948) или при помощи ионообменных смол (Мур и Штейн, 1951). Количественное определение на ионообменных смолах с применением автоматической схемы (1958) делает возможным за несколько часов провести полный анализ смеси аминокислот, со,цержащей лишь 10 —10 моль каждого компонента. [c.656]

    В стеклянный капилляр диаметром примерно 0,01 мм засасывается пробка в несколько миллиметров длиной. Длина пробки определяется измерительной лупой. Заполненный дозировочный капилляр подсоединяют с помощью силиконовой резины к капиллярной колонке и к вводу газа-носителя. Быстрым открыванием вентиля в линии газа-носнтеля подают пробу при одновременном испарении в начало хроматографической колонки. Существенным недостатком этого метода дозирования является то, что каждый раз с подачей пробы прерывается поток газа-носителя, а это вызывает искажение времени удерживания. Следуят также отметить, что при испарении в капилляре не исключено фракционирование. [c.343]

    Смесь разделяют фракционированной перегонкой (примечание 2) на хроматографически чистые компоненты. Т.кип. 2-н-бутил-5-метилтиолана 130°С/76 мм, 1,4772, 0,9006 найдено 49,56, вычислено 49,48. [c.76]

    Эфирный раствор 4-пентентиола получают из 9,0 г (0,15 моля) тиооксида этилена как описано в № 119, методика Б, п. 1 и 2, и облучают УФ-светом аналогично № 128, п. 3. После отгонки эфира остаток перегоняют, получают 30 г (выход 84%) смеси с т.кип. 137-141 С/744 мм, 1,4969, состоящей (по данным ГЖХ, см. примечание 3 к № 119, методика Б) из 90,89/ тиана и 9,2% 2-метилтиолана. Хроматографически чистый тиан получают фракционированной перегонкой (см. примечание 4 к № 119, методика Б), т. кип. 139-140°С/755 мм, 1,50608, с11° 0,9862 найдено 30,71, [c.83]

    Выделяющийся этан очищают от примесей двуокиси углерода, паров метанола и метилацетата, этилена, водорода, ки.слорода и окиси углерода, пропуская его последааатеяьно через промывные склянки с 30%-ным раствором КОН, с дымящей серной кислотой, с концентрированной серной кислотой и снова с 30%-ным -раствором КОН. Затем газ сушат в колонках с твердым КОН и с пятиокисью фосфора. В дальнейшем газ сжижают, подвергают фракционированной ректификации (см. стр. 52), многократной Дистилляции, замораживанию и откачке трудно конденсирующихся газов (см. ст.р. 313) или очищают хроматографическими методами (см. стр. 59—76). Конечный чисгый продукт ранят в небольшом стальном баллоне. [c.315]

    Анализ остатков показал, что основная масса кислорода сосредоточена, в карбонильных группах и карбонилсодержащие соединения являются наиболее представительным классом кислородсодержащих соединений в остатках, причём, соотношение кетонов и флу-оренонов различно. для различных остатков. При анализе хроматографических фракций остатков установлено, что наряду с разделением углеводородов, происходит фракционирование карбонильных соединений во фракции ароматических углеводородов концентрируются, в основном, кетоны, значительно меньшая доля приходится на флуореноны. В целом, во фракции ароматических углеводородов карбонильная группа содержится в 40% молекул. Смолы остатка обогащены флуоренонами, кетоны содержатся в значительно меньших количествах, или вообще отсутструют. Рассмотрено влияние исходного состава нефтей на содержание карбонильных соединений. [c.115]

    Неподвижная фаза может быть твердой или жидкой, подвижная — жидкой или газообразной. В зависимости от агрегатного состояния подвижной фазы различают <<жидкостную и газовую хроматографию. Для очистки и фракционирования белков, нулеиновых кислот и их компонентов используется почти исключительно жидкостная хроматография, поэтому (в соответствии с названием книги) мы ограничились рассАЮтрением только этого вида хроматографии во всех его вариантах, каждому из которых посвящена отдельная глава. Варианты жидкостной хроматографии различаются по природе сродства фракционируемых молекул к хроматографическим фазам в соответствии с этим при изложении мы опираемся на классификацию по принципу фракционирования. Бурно развивающиеся в последние годы методы хроматографии при высоком давлении включены в состав каждой главы в виде особых разделов. Тонкослойную хроматографию, ввиду ее технического своеобразия, имеет смысл выделить в отдельную главу, хотя в рамках этой главы и приходится рассматривать различные варианты взаимодействия веществ с хроматографическими фазами. [c.4]

    Всем хроматографическим методам присущи некоторые общие характеристики, позволяющие ниже изложить элементы их обобщенной теории. Однако сначала рассмотрим специфические особенности различных вариантов хроматографического фракционирования. Это, с одно11 стороны, позволит за теоретическими рассуждениями все время видеть реальные черты хроматографического эксперимента, а с другой — даст возможность ввестп классификацию хроматографических методов. В ходе дальнейшего изложения (в частности, для его разбиения по главам) удобнее всего классифицировать методы по основному принципу фракционирования. Такую классификацию мы рассмотрим достаточно подробно и лишь в конце раздела кратко отметил другие возможные варианты классификации. [c.6]

    В этом варианте в колонку или па стартовую линию хроматографической пластинки наносят определенную порцию раствора исходной смеси веществ, а затем ведут элюцию раствором вещества, обладающего заведомо большим сродством к неподвижной фазе хроматографической системы, чем любой из компонентов смеси. Происходит вытеснение их пз неподвижной фазы, причем в первую очередь тех, которые обладают меньшнм сродством к сорбенту, а затем и всех остальных. Элюеит выталкивает все компоненты смеси впереди себя наподобие поршня. Так как они выходят в подвижную фазу концентрированными, то между ними также идет конкуренция за связь с неподвижной фазой. Компоненты, уступающие другим в силе сродства к этой фазе, оттесняются еще вперед, где сорбируются, но только до тех пор, пока их опять не вытеснят компоненты, обладающие большим сродством к сорбенту. В результате такого чередования сорбции и вытеснения компоненты смеси будут выходить из колонки один за другим в порядке возрастания силы их связи с неподвижной фазой. Ясно, что при этом зоны соседних компонентов будут соприкасаться или даже немного перекрываться друг с другом. Для аналитического фракционирования метод непригоден, но хорош для препаративного или полупромышленного разделения веществ, поскольку емкость колонки здесь используется очень эффективно. [c.12]

    Фундаментальный факт замедления скорости миграции зоны с увеличением К лежит в основе любого варианта хродгатографиче-ского фракционирования смеси веществ. После анализа, проведенного с помощью следующего рисунка, читатель Схможет убедиться в том, что скорость миграции центра зоны не зависит от выбора величины скачков модельной системы. Из этого следует, чго сделанный вывод сохраняет свою силу и для реального хроматографического процесса. [c.22]

    Неподвижная фаза при гель-фильтрации представлена жидкостью, находяш ейся внутри пористых, хорошо смачиваемых гранул, заполняющих хроматографическую колонку. Если на такую колонку подается растворенная в элюенте смесь молекул различных размеров, то крупные молекулы, неспособные проникнуть внутрь гранул, будут двигаться вдоль колонки вместе с подвижной фазой для них коэффициент распределения К = 0. В то же время наиболее мелкие молекулы, размеры которых заведомо меньше диаметра пор в гранулах, будут равномерно распределяться между подвижной и неподвижной фазами. Для них будет осуществляться хроматографический процесс с присущим ему замедлениехм миграции хроматографической зоны значение К прп этом близко к единице. Для молекул промежуточной величины благодаря статистическому распределению размеров пор окажется доступной только часть объема неподвижной фазы. Для них О < < 1, поэтому зона или зоны таких молекул будут мигрировать вдоль колонки быстрее, чем мелкие молекулы, но медленнее, чем крупные. В результате произойдет фракционирование исходной схмеси молекул на зоны в зависимости от их размеров. Зоны выходят из колонки в порядке убывания этих размеров (рис. 56). [c.109]


Смотреть страницы где упоминается термин Фракционирование хроматографическое: [c.140]    [c.44]    [c.19]    [c.204]    [c.191]    [c.53]    [c.6]    [c.66]    [c.79]    [c.320]    [c.104]    [c.10]    [c.39]    [c.43]    [c.102]    [c.109]   
Кристаллические полиолефины Том 2 (1970) -- [ c.153 ]




ПОИСК







© 2025 chem21.info Реклама на сайте