Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Мембраны искусственные, перенос СОа

    Описанные экспериментальные методы пассивного переноса могут быть эффективно использованы для оценки КРЭ и коэффициента разделения а при хроматографическом расщеплении на оптические изомеры, особенно в случае, когда Од и 0 оба малы. Более того, оптически избирательный перенос, основанный на методе хирального комплексообразования, создает важный путь для биофизических исследований и может служить моделью переноса веществ в биологических системах. Кроме того, он может найти применение в медицине, например для создания искусственной мембраны. Помимо этого метод расщепления на оптические изомеры, разработанный Крамом, в ближайшем будущем будет усовершенствован для пра тического применения как важный инструмент для расщепления различных энантиомеров, включая аминокислоты [71]. Крам и его коллеги продолжают работы по расщеплению на оптические изомеры и оптически избирательному переносу. [c.304]


    Весьма существенным недостатком мембранного метода является значительная продолжительность эксперимента (3—12 ч). В тех случаях, когда процесс диффузии внутри мембраны связан с ее физикохимическими изменениями, приводящими к изменению коэффициента диффузии, мембранный метод не позволяет точно выяснить характер этого изменения. Поэтому мембранный метод в рассмотренном выше виде мало пригоден для изучения переноса в материалах растительного и животного происхождения, а также выполненных из искусственных полимерных материалов, но может быть приемлем для капиллярно-пористых материалов минерального происхождения, имеющих соответствующую механическую прочность. Высказанные положения объясняют расхождения, которые имеют место при сравнении экспериментальных данных по определению коэффициента диффузии сахара в растительной ткани мембранным и более точным методом деления на слои [1291 и при сравнении опытных данных по определению коэффициента диффузии сахара в силикагелях с результатами теоретических расчетов [196]. [c.171]

    Полярографический метод успешно используют при изучении состава и констант устойчивости комплексов ш,елочных металлов с макроциклическими лигандами, электродные реакции которых протекают при высоких отрицательных потенциалах [194, 1951. Большой интерес, проявляемый в последнее время к изучению комплексов металлов с макроциклическими лигандами, обусловлен способностью последних переносить ионы металлов через биологические и искусственные мембраны, а также их высокой избирательностью при образовании комплексов со сходными по свойствам ионами, например, щелочных и щелочноземельных металлов (см., например, в [79]). [c.109]

    ТО скорость перемещения ионов К+ через мембрану возрастет в несколько раз, тогда как скорость переноса ионов На+ останется практически неизменной. Иначе действует грамицидин, молекула которого имеет иные размеры и другую структуру при добавлении к мембране грамицидина увеличивается скорость переноса обоих ионов — не только К+, но и N8+. Искусственные мембраны используются также для изучения механизмов, при помощи которых свет и гормоны регулируют рост растений (об этом мы будем говорить в гл. 11). [c.29]

    До сих пор мы говорили лишь об одном возможном механизме ионного транспорта, опосредованного переносчиками. Необходимо, однако, помнить о том, что суш,ествуют и многие другие способы переноса веш,еств через мембрану. На рис. 6.11 приведены некоторые важнейшие виды транспортных механизмов, обнаруженные в биологических мембранах. В левой части рисунка изображены простейшие способы переноса — пассивная диффузия ионов (1) и массовый поток жидкости (2). Далее следует пассивная диффузия, опосредованная переносчиком,— либо в одном направлении (3), либо в обоих (4). Весьма распространена такая пассивная диффузия, при которой перенос какого-либо вещества сопряжен с транспортом другого вещества так, во многих клетках осуществляется сопряженный перенос сахаров и аминокислот с Ма+ по градиенту концентрации этого иона (5). Наконец, существуют такие системы транспорта, для работы которых требуется энергия. К ним относятся насосы того типа, который мы только что рассмотрели (6) (источником энергии для работы таких насосов служат макроэргические фосфаты), и протонный насос (7), действующий во внутренней мембране митохондрий (см. гл. 4). Поставщиками энергии для работы протонного насоса служат дыхательные ферменты. Все эти механизмы действуют в биологических мембранах, но, кроме того, некоторые из них были воспроизведены и на искусственных мембранах, составленных из различных органических веществ. Это обстоятельство, открывающее широкие возможности для экспериментального анализа, свидетельствует о том, что особенности процессов переноса в значительной степени определяются свойствами органических молекул и макромолекулярных комплексов, образующих монослои или очень тонкие мембраны. [c.146]


    Диализ-разделение растворенных в-в, различающихся мол массами Процесс основан на неодинаковых скоростях диффузии этих в-в через проницаемую мембрану, разделяющую конц и разб р-ры Под действием градиента концентрации растворенные в-ва с разными скоростями диффундируют через мембрану в сторону разб р-ра Скорость переноса в-в снижается вследствие диффузии р-рителя (обычно воды) в обратном направлении Для диализа используют, как правило, нитро- и ацетатцеллюлозные мембраны Площадь их пов-сти рассчитывается из ур-ния F = K FA /V, где V-кол-во пермеата, Дс-разность концентраций в-ва по обе стороны мембраны, т е движущая сила процесса, = (1/Pi + h/D + 1/Р2) -коэф массопередачи, или диализа, определяемый экспериментально, причем и Pj-соотв коэф скорости переноса в-ва в конц р-ре к перегородке н от нее в разб р-ре, 5-толщина мембраны, D - коэф диффузии растворенного в-ва Процесс используют в произ-ве искусственных волокон (отделение отжимной щелочи от гемицеллюлозы), ряда биохим. препаратов, для очистки р-ров биологически активных в-в Мембранные аппараты подразделяют на плоскокамерные, трубчатые, рулонные, с полыми волокнами, а также электродиализаторы (см выше) В плоскокамерных аппаратах (рис 3) разделительный элемент состоит из двух плоских [c.26]

    Предприняты попытки встраивания молекул пигмента в искусственные системы и повыщения эффективности их использования. В частности, растущие бактерии Н. каЬЫит переносят в мелкие водоемы с высокой концентрацией КаС1 и других минеральных солей, в которых исключается загрязнение. У некоторых щтаммов половина клеточной мембраны покрыта пурпурным пигментом, и из 10 л бактериальной культуры можно получить 0,5 г пурпурных мембран. В таких биомембранах содержится до 100000 молекул родопсина. Биомембраны фиксируют на особой подложке, которая должна обладать всеми свойствами, необходимыми для обеспечения тока протонов, а не других ионов. В частности, для этих целей вполне пригодны пористые подложки, пропитанные липидами, которые, сливаясь с мембраной, сплощным слоем покрывают поверхность фильтра. Мембранные фрагменты можно смещивать и с акриламидом с образованием геля. Вместо создания плотных слоев молекул бактериородопсин и липиды могут создавать протеолипосомы, которые встраивают в структуры, обеспечивающие эффективное перекачивание протонов. [c.27]

    Все формы обмена между клеткой и внешней средой, за исключением явлений пинаиитоза. предполагают пересечение окружающей клетку мембраны это остается в силе и для любых других замкнутых мембранных структур, находящихся в клетке (ядро, митохондрии, лизосомы и т. п.). Для подавляющего большинства веществ и ионов биологические (и искусственные) мембраны представляют диффузионный барьер, и в таком случае перенос через липидную фазу требует значительных энергетических затрат. В то же время вода и некоторые низкомолекулярные соединения проникают через мембрану с поразительной легкостью, вероятно, за счет использования дефектов жидкокристаллической решетки липидного бислоя. Высокая проницаемость клеток для воды — важный биологический фактор, обеспечивающий осмотическое равновесие. [c.590]

    В пользу первой гипотезы — о том, что карбоангидраза облегчает перенос СО2 через мембрану хлоропластов, — говорят результаты экспериментов с искусственными мембранами, к которым этот фермент может быть присоединен с любой из сторон или с обеих сторон (рис. 29). Эти искусственные мембраны, подобно настоящим клеточным мембранам, гидрофобны. Поэтому сквозь них не могут диффундировать заряженные частицы вроде НСОз) в то время как незаряженные молекулы, в том числе СО2, свободно проходят через гидрофобный слой. [c.98]

    Наиболее важным фактором процессов переноса газообразных веществ через полимерные пленки является наблюдаемая избирательность, что позволяет широко использовать такие пленки для практических целей. Например, пленки, пропитанные тетраметиленсульфоном и ди-гидротиофен-1,1-диоксидом, избирательны по отношению к 80 . Давно известна избирательность полидиметилсилоксановых пленок к кислороду воздуха. Полимерные мембраны с близким к единице отношением коэффициентов проницаемости СОг и Ог перспективны для использования в медицинских аппаратах типа искусственные легкие . [c.150]

    Перспективы развития мембранной технологии в большой мере связаны с надеждалП на воспромзведеннс и практическое использование свойств биологических мембран, важнейшим из которых является способность осуществлять селективный обмен молекулами различных веществ. Уже сейчас промышленность располагает значительным набором мембран с селективными свойствами. Однако разработка и использование селективных мембранных материалов сталкивается до сих пор со значительными трудностями. Это связано главным образом с тем, что механизмы проницаемости как биологических, так и многих искусственных мембран окончательно не выяснены и не существует общего подхода к их описанию. Создание универсальной математической модели, адекватно описывающей мембранный транспорт, осложняется разнообразием процессов переноса через мембраны. В биологических мембранах выделяется пассивный транспорт (обычная диффузия), активный транспорт (перенос вещества против градиента концентрации) и облегченная диффузия (перенос вещества по градиенту концентрации с аномально высокой скоростью). В формировании реального процесса переноса могут принимать участие все механизмы в различных соотношениях. Одной из характерных особенностей многих селективных мембран является аномальная зависимость потока переноса от градиента концентрации [30—32]. В силу специфических свойств мембран, больших трансмембранных градиентов и активного взаимодействия потока переноса со структурой мембраны наблюдаются значительные отклонения от закона Фика. При этом линейная зависимость потока переноса от градиента концентрации оказывается справедливой только для малых трансмембранных градиентов. Наблюдается замедление роста потока переноса или даже насыщение при больших значениях трансмембранного градиента. [c.123]


    Клеточные мембраны, так же как и искусственные липидные бислои, способны пропускать воду и неполярные молекулы за счет простой физической диффузии. Олнако клеточные мембраны пропинаемы и для различных полярных молекул, таких, как сахара, аминокислоты, нуклеотиды и многие другие метаболиты, которые проходят через синтетические бислои чрезвычайно медленно. За перенос подобных растворенных веществ через клеточные мембраны ответственны специфические белки, называемые мембранными транспортными белками. Они обнаруживаются во всех типах биологических мембран и могут сильно отличаться друг от друга. Каждый конкретный белок предназначен для определенного класса молекул (например, неорганических ионов, Сахаров или аминокислот), а нередко лищь какой-то разновидности молекул из этих классов. Специфичность транспортных белков была впервые показана, когда обнаружилось, что мутации в олном-единственном гене приводят к исчезновению у бактерий способности гранспортировать определенные сахара через плазматическую мембрану. Аналогичные мутации теперь известны и у людей, страдающих различными наследственными болезнями, при которых нарушается транспорт тех или иных веществ в почках или кишечнике. Например, у индивидуумов с наследственной болезнью цистинурией отсутствует способность транспортировать определенные аминокислоты (включая цистин - связанный дисульфидной связью димер цистеина) из мочи или кишечника в кровь. В результате происходит накопление цистина в моче, что приводит к образованию цистиновых камней в почках. [c.381]

    Динамическая структура липидного бислоя наиболее полно изучена на примере искусственных бислойных везикул. Эти исследования показали, что молекула фосфолипида как целое может вращаться вокруг своей продольной оси и имеет достаточно высокую подвижность в слое с коэффициентами латеральной диффузии 10 —10 см /с. Полярные головки образуют на поверхности короткоживу-щие (10 —10 с) кластеры из 20—30 молекул, в результате чего могут возникать временные дефекты в структуре бислоя. Диффузия молекул воды через липидный бислой возможна при их попадании в эти свободные объемы между гидрофобными хвостами липидов. Молекулы фосфолипидов, находясь в бислое, могут осуществлять перескок из одного слоя в другой (флип—флоп). Однако в искусственных бислойных мембранах это происходит сравнительно редко из-за энергетической невыгодности переноса полярной головки через гидрофобный слой (Оеепеп, 1981). Только селективное взаимодействие с интефальными белками природных мембран может обеспечить быстрый переход фосфолипида из одного слоя в другой. Например, из печени быка был выделен белок, селективно взаимодействующий с ФХ и транспортирующий его с внешней стороны мембраны на внутреннюю, из искусственных везикул в плазматическую мембрану. После гидролиза этого комплекса был [c.110]

    Свойства белковых систем, катализирующих транспорт через сопрягающие мембраны, обычно сильно отличаются от свойств бислойных участков как в присутствии, так и в отсутствие ионофоров. Транспортные белки обладают многими свойствами, присущими ферментам они проявляют стереоспецифичность, часто их можно специфически ингибировать, они генетически детерминированы. Последнее обстоятельство делает невозможной ту степень обобщения, которая применима к транспорту через бислой. Например, если РССР (рис. 2.5) индуцирует протонную проводимость в митохондриях, то можно смело полагать, что его эффект будет тем же в случае хлоропластов, бактерий или искусственного бислоя. В отличие от РССР транспортный белок может быть специфическим не только для данной органеллы, но и для органеллы из определенной ткани. Например, переносчик цитрата существует в митохондриях из печени, где он участвует в переносе промежуточных соединений синтеза жирных кислот (разд. 8.3), но отсутствует в митохондриях из сердца. Иногда утверждают, что для белковых транспортных систем характерна кинетика насыщения. Хотя в некоторых случаях это может быть верным, в целом кинетика транспортных процессов настолько сложна (особенно если они зависят от мембранного потенциала), что интерпретация ее требует большой осторожности. [c.40]

    Хотя природный путь переноса электронов в хлоропластах не является циклическим, в них можно искусственно индуцировать циклический перенос, если добавить вещества типа феназинме-тосульфата (PMS), которые могут служить как донорами, так и акцепторами электронов в фотосистеме I. Эти вещества восстанавливаются на наружной стороне мембраны, затем диффундируют через мембрану и вновь отдают электроны фотосистеме I на внутренней стороне. Если такой реагент является переносчиком Н-атома, то может возникнуть искусственная петля, заряжающая мембрану и способная поддерживать циклическое фотофосфорилирование (рис. 6.11). [c.143]

    За прогиедший период хемиосмотическая гипотеза Митчелла получила целый ряд экспериментальных подтверждений. Одним из доказательств роли протонного градиента в образовании АТР при окислительном фосфорилировании может служить разобщающее действие на этот процесс некоторых веществ. Известно, что 2,4-динитрофенол (2,4-ДНФ) подавляет синтез АТР, но стимулирует транспорт электронов (поглощение О2), т. е. разобщает дыхание (окисление) и фосфорилирование. Митчелл предположил, что такое действие 2,4-ДНФ связано с тем, что он переносит протоны через мембрану (т. е. является протонофором) и поэтому разряжает ее. Это предположение полностью подтвердилось. Оказалось, что разные по своей химической природе вещества, разобщающие окисление и фосфорилирование, сходны в том, что, во-первых, они растворимы в липидной фазе мембраны, а, во-вторых, это слабые кислоты, т. е. легко приобретают и теряют протон в зависимости от pH среды. В. П. Скулачев на искусственных фосфолипидных мембранах показал, что чем легче вещество переносит протоны через мембрану, тем сильнее разобщает эти процессы. Другое экспериментальное подтверждение роли протонного градиента в фосфорилировании было получено Митчеллом, который сообщил о синтезе АТР в митохондриях в результате замены щелочной инкубационной среды на кислую (т. е. в условиях искусственно созданного трансмембранного градиента ионов Н ). [c.159]

    Какие процессы биологических мембран можно моделировать на искусственных мембранах 2. Что такое электрохимический потенциал подвижного иона 3. Назовите разновидности ионофоров и механизм переноса ионов через мембрану ионофором. 4. Какова активность иона в растворе и факторы, на нее влииющие 5. Какова зависимость трансмембранной разности электрических потенциалов от ионной селективности мембраны  [c.275]

    IV. Наиболее полно изучены реакции, катализируемые так называемыми оксигеназами смешанной функции, активность которых связана с группой гемопротеидов, известных под общим названием цитохрома Р-450. Их назначение заключается в окислительной деградации широкого спектра липофильных соединений, включая стероидные, а также полициклические углеводороды и обширный круг фармакологически активных соединений. Во всех этих реакциях один атом молекулярного кислорода внедряется в соответствующий продукт и сопровождается окислением восстановленного пиридиннуклеотида [2, 63,119, 222, 560]. Начальный компонент этой электронтранспортной редокс-цепи мембрано-связанный флавопротеид НАДФН—цитохром Р-450 редуктаза содержит в эквимолярных количествах ФАД и ФМН 1299]. Фермент специфичен для мик-росомальной фракции, так как 65—85% его энзимной активности обнаружено именно в ней [2]. До 30% его активности связывается с наружной мембраной ядра [229, 321, 550]. В митохондриальной мембране НАДФН— цнтохром Р-450 редуктаза не найдена [487]. Этот флавопротеид может реагировать с искусственными акцепторами различного рода и переносить электроны к анаэробным акцепторам типа цитохрома с, 2,6-дифенил-индофенола, менадиона, а также к молекулярному кислороду [251] и цитохрому bs [304, 376, 405, 465]. [c.121]

    Как исходное образование фосфатидиловой кислоты, так и ее последующие модификации с формированием различных типов молекул фосфолипидов происходят в той половине липидного бислоя ЭР, которая обращена к цитозолю. Этот процесс мог бы в конце концов превратить липидный бислой в монослой, если бы не существовало механизма для переноса части вновь образованных молекул фосфолипидов в другую половину бислоя ЭР. В искусственных липидных бислоях липиды не сов ерш ают таких флип-флоп -переходов. В ЭР же количество фосфолипидов выравнивается с двух сторон мембраны за минуты, что почти в 100000 раз быстрее, чем скорость, рассчитанная для спонтанного флип-флопа . Полагают, что столь быстрое перемещение поперек бислоя происходит при участии транслокаторов фосфолипидов, которые специфичны для каждого их типа (в зависимости от головной группы). По-видимому, в мембране ЭР имеется транслокатор ( флип-паза ), который способен переносить холин-содержащие фосфолипиды (но не этаноламин-, серии- или инозитол-содержащие) из одной половины бислоя в другую. Это означает, что ФХ достигает внутренней поверхности бислоя гораздо легче, чем ФЭ, ФС или ФИ. Таким образом транслокатор отвечает за асимметричное расположение липидов в бислое (рис. 8-57). [c.55]


Библиография для Мембраны искусственные, перенос СОа: [c.173]   
Смотреть страницы где упоминается термин Мембраны искусственные, перенос СОа: [c.302]    [c.181]    [c.98]    [c.476]    [c.116]    [c.80]    [c.172]   
Стратегия биохимической адаптации (1977) -- [ c.97 ]




ПОИСК







© 2024 chem21.info Реклама на сайте