Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Адгезия пути повышения

    Феноло-формальдегидная смола имеет малую адгезию к стеклопластикам и к металлам, ее можно повысить, добавив в клеевой состав поливинилбутираль (клей БФ), некоторые синтетические каучуки (например, клей ВК-32) или эпоксидную смолу. Для ускорения процесса отверждения феноло-формальдегидной смолы при склеивании металлов нельзя применять кислоты, так как они вызывают сильную коррозию металлических изделий. Поэтому отверждение феноло-формальдегидной смолы в таких случаях ускоряют путем повышения температуры склеивания. [c.574]


    Итак, развитые на базе термодинамических и молекулярно-кинетических представлений об адгезии пути повышения адгезионной способности полимеров являются надежной основой для решения большинства практически важных задач интенсификации процессов межфазного взаимодействия высокомолекулярных соединений. [c.200]

    На адгезию между контактирующими поверхностями оказывают влияние межмолекулярные силы их взаимодействия, число точек контакта и расстояние между этими точками, среда между контактирующими поверхностями и истинная площадь контакта. Полярные вещества (асфальтены, смолы) обладают большей адгезией к поверхности, чем слабополярные (парафино-нафтеновые углеводороды) или неполярные. Чем выше поляризуемость или чем больше полярность жидкого вещества, тем сильнее адгезионное взаимодействие между контактирующими поверхностями. Увеличению адгезии способствует повышение площади истинного контакта между связующим и поверхностью углерода путем заполнения связующим пор, трещин и микронеровностей поверхности углерода. [c.76]

    Образование ориентированных слоев играет также большую роль в процессах прилипания и склеивания. В этих процессах связующее вещество должно вначале быть жидким (для заполнения впадин и повышения фактической площади контакта) и затвердевать в процессах схватывания, посредством замерзания (лед), химических реакций окисления (лаки), гидратации (цемент), полимеризации (клеи) и др. Склеивание полимерных материалов осуществляется путем взаимной диффузии сегментов полимерных цепей. Силы адгезии между твердой поверхностью и затвердевшим клеем или пленкой, согласно представлениям, развитым Дерягиным, имеют во многих случаях (например, при взаимодействии металлов с полимерами) электрическую природу и определяются величиной Аф, возникающей при ориентации молекул в поверхностном слое. Поэтому при разработке новых склеивающих материалов и пленочных покрытий, широко используемых в современной технике, особое внимание следует уделять способности этих веществ к образованию ориентированных слоев. Для повышения этой способности разрабатываются специальные полярные присадки. [c.119]

    Создается впечатление, что основной путь повышения адгезии к таким инертным полимерам, как полиэтилен и полиизобутилен, — применение неполярных адгезивов. Однако необходимо [c.248]

    Свойства фторопластовых покрытий в значительной степени определяются темп-рой их сушки. Для покрытий холодной сушки, к-рые образуются в результате улетучивания растворителя (время высыхания при 18— 23°С составляет 1—2 ч), характерна низкая адгезия к защищаемым поверхностям, особенно к металлическим. Возможности улучшения адгезии путем модификации лакокрасочного материала ограничены из-за плохой совместимости фторопластов с др. пленкообразующими. Поэтому Ф. л. и э. наносят обычно по слою грунтовки (фосфатирующей поливинилбутиральной, эпоксидной, полиакриловой). При хранении окрашенных изделий или их эксплуатации в атмосферных условиях наблюдаются улучшение адгезии покрытий и повышение их твердости. [c.399]


    Таким образом, одним из эффективных путей повышения прочности связи в системе корд —адгезив — резина является усиление взаимодействия компонентов адгезива и каркасной резины в граничном слое, сопровождающееся образованием прочной сетки. [c.81]

    Повышение полярности клея приводит к росту его адгезии к полярной подложке, но повышение полярности клея при неполярном или слабополярном склеиваемом материале приводит к снижению прочности соединения [174, с. 248]. Основной путь повышения адгезии к таким неполярным полимерам, как полиэтилен, полиизобутилен, политетрафторэтилен, — применение клеев менее полярных, чем склеиваемые материалы. [c.202]

    ПУТИ ПОВЫШЕНИЯ АДГЕЗИИ И ПРОЧНОСТИ КОНТАКТНОГО [c.205]

    Следовательно, изучение влияния прочности взаимодействия на границе пленка — подложка на свойства покрытий позволило разработать физико-химические способы повышения долговечности покрытий в результате упорядочения структуры подложки при использовании модификаторов, обеспечивающих регулярное чередование на ее поверхности участков с функциональными группами различной природы, значительно отличающихся по адгезии к покрытиям, а также в результате применения эластичных грунтов оптимальной толщины с высокой адгезией к подложке и покрытиям. Указанные пути повышения долговечности основаны на резком понижении внутренних напряжений при формировании по- [c.92]

    Были разработаны пути повышения адгезии, в основе которых лежит использование в качестве адгезива смесей двух термодинамически несовместимых полимеров, взятых в соотношениях, при которых их прочность резко повышается. Применение в качестве адгезивов полимерных смесей имеет и другие преимущества. Двухкомпонентные термодинамически несовместимые смеси характеризуются избыточным свободным объемом вследствие несовместимости и образования межфазной области между компонентами [221]. Благодаря этому релаксационные процессы в таких системах протекают с большими скоростями, и внутренние напряжения снижаются, что приводит к повышению адгезионной прочности. [c.78]

    Каковы же коренные физические различия молекул и макромолекул Главное из них заключается в том, что масса макромолекул огромна и они обладают поверхностью. Отсюда вытекают и все особенности твердого вещества. В то время как молекулы подвижны, диффундируют в окружающей среде, макромолекулы в тепловом движении не могут перемещаться. Они реагируют только с теми веществами, которые попадают на их поверхность или, i когда дело касается твердых веществ, плотно примыкают к их поверхности. В первом случае мы встречаемся с сорбцией — проявлением универсального свойства твердых тел достраиваться с поверхности путем присоединения любых структурных единиц, любыми силами, включая силы Ван-дер-Ваальса во втором — с адгезией— процессом синтеза пространственно разделенных твердых молекулярных соединений — аддуктов. Как уже упоминалось, наружные атомы по сравнению с внутренними атомами твердого тела связаны менее прочно и находятся в состоянии повышенной химической активности. Вот почему макромолекулы сравнительно легко вступают во всевозможные химические реакции, в том числе и при контакте твердых тел. При этом, благодаря большой массе и связанной с этим особой прочности макромолекула является настоящим резервуаром избыточной энергии. Последняя, выделяясь [c.16]

    Температура воды, циркулирующей через червяк, поддерживается 50—65°С, температура корпуса 60—90°С, а головки 110°С. При повышении и понижении температуры снижается производительность червячной машины, которая зависит от адгезии смеси к металлу. Поэтому червячные машины оснащают системой автоматического регулирования (с точностью до 1—2°С) температуры червяка, корпуса и головки путем принудительной подачи теплоносителей. [c.153]

    Способ нанесения слоя по методике Андреева. Андреев пытался решить задачу тремя способами I) за счет оптимизации реологических характеристик таким образом, чтобы оптимальной оказалась проницаемость слоя 2) повышением однородности структуры слоя 3) сокращением внешних путей, проходимых за счет диффузии (т.е.снижением др). Предполагается, что слои, наносимые обычным методом, характеризуются нижним критическим пределом размера частиц 2-3 мкм (в зависимости как от удельной поверхности, так и от способа образования слоя). Чтобы тонкопленочный слой оказался подходящим, должны быть равны силы сцепления микрочастиц (друг с другом) и силы адгезии, благодаря которым частицы "приклеиваются" к подложке. Фракционирование частиц выполнялось с использованием воды в трехлитровых стеклянных стаканах, имеющих высоту 30 см (фракционирование силикагеля) и в смеси хлороформа с обезвоженным метанолом, для которой р=1.33. Операции выполнялись таким образом, чтобы отношение времени начала (15) и времени окончания (1г) для каждой [c.121]


    Тепловая очистка и сушка. Тепловая очистка от жидкостей может осуществляться либо путем нагрева изделий до температуры выше температуры кипения жидкости, либо за счет ее испарения из дефектов при температуре ниже температуры кипения. В процессе нагрева жидкости и достижения температуры, равной температуре кипения в капилляре, образуются пузырьки пара, которые будут расти до размера, равного диаметру капилляра. При этом пузырек перестает перемещаться вследствие адгезии его со стенками дефекта. Дальнейшее повышение температуры должно приводить к разрыву пузырька и выбросу жидкости из капилляра. [c.667]

    Присутствие низкомолекулярных примесей, которые являются поверхностно-активными веществами по отношению к полимеру, на поверхности полимеров — обычное явление. Например, в техническом полиэтилене различные примеси выделяются на поверхность в процессе охлаждения [30]. Концентрируясь на поверхности, эти вещества создают ослабленную зону и снижают адгезию к поверхности. Удаление из полиэтилена низкомолекулярных примесей путем фракционного осаждения приводит к значительному улучшению физико-механических свойств полиэтилена и повышению его адгезии к различным материалам [30—32]. [c.107]

    Любая система адгезив — субстрат характеризуется не толькс величиной адгезионной прочности, но и типом нарушения связи между компонентами, т. е. характером разрушения. Вопрос о характере разрушения имеет и теоретическое, и большое практическое значение только зная слабое место системы, можно искать пути повышения ее работоспособности. Обш епри-нятой является следующая классификация видов разрушений адгезионное (адгезив целиком отделяется от субстрата), когезионное (разрыв происходит по массиву адгезива или субстрата), смешанное (наблюдается частичное отделение адгезива от субстрата, частичное разрушение субстрата и частичное разрушение адгезива). [c.161]

    Одним из путей повышения адгезии клеев к инертным материалам является привитая сополимеризация. Так, поверхность полиэтиленовой пленки можно модифицировать различными мономерами [287]. Для такой прививки можно использовать самые различные соединения, например Ы-винилпирро-лидон-2, 4-винилпиридин, серный ангидрид и жидкие полибу-тадиеновые каучуки марок СКДЖ и СКД-1А. При этом физико-механические свойства поверхностного слоя практически остаются неизменными, и значительная часть функциональных групп участвует в образовании адгезионных связей. Максимальной адгезионной прочности соответствует строго определенное содержание функциональных групп 1[288]. Реакционную смесь, представляющую собой раствор мономера и каучука, наносят на поверхность полиэтилена, затем проводят его обработку в атмосфере азота при давлении 0,1 МПа на ускорителе с энергией электронов 0,5 МэВ при скорости движения полиэтилена 1 м/мин и дозе излучения 8 Мрад. Проч- [c.168]

    Увеличение адгезии при повышении температуры нанесения пленок на поверхность нагретой детали. Из результатов работ [99, 255, 256] следует, что повышение устойчивости пленок MgFj возможно путем испарения и конденсации соли при температуре 300°С. Известно также, что пленки ТЮг и SiOj, образующиеся из газовой фазы при разложении паров Ti U и 51(ОСНз)4 на поверхности стекла, нагретого до 200—250° С, отличаются высокой [c.93]

    Величина Купр отражает сложный комплекс явлений, происходящих на границе контакта адгезив — субстрат, который ответствен за увеличение прочности комбинированного материала. Было показано, что уменьшение молекулярной массы ПЭТФ от 2,5-10 до 1,5-10 приводит к увеличению адгезии. Относительно низкое максимальное значение адгезии (60 Н/м) при молекулярной массе ПЭТФ 1,5-10 обусловлено тем, что снижение молекулярной массы сопровождается резким падением когезионной прочности адгезива вследствие потери способности образовывать прочную сплошную пленку. Таким образом, особенности структуры ПЭТФ не позволяют полностью реализовать возможность увеличения адгезионной способности материала путем повышения подвижности его макромолекул за счет снижения молекулярной массы. [c.194]

    Книга посвящена современному состоянию исследований и применения нефтяных битумов для строительства автомобильных дорог. В ней приведены сведения о нефтях и способах получения дорожных битумов, их химическом составе в зависимости от природы нефти и технологии получения битумов. Наряду с описанием свойств битумов, приведены данные, подробно характеризующие свойства битумоминеральных материалов, приготовленных с использованием битумов, имеющих разные структуры. Сравнительная оценка поведения различных битумов в условиях эксплуатации позволила дать обоснования стандарта (ГОСТ 11954—66) на улучшенные дорон ные битумы, показать пути получения из различных нефтей битумов, отвечающих этим требованиям, с помощью технологий, учитывающих природу нефти. Больщое внимание уделено описанию способов улучшения дорожных битумов добавками поверхностно-активных веществ (ПАВ). Показано не только воздействие ПАВ на повыщеиие адгезии битума к минеральной поверхности и, следовательно, повышение водо- и морозостойкости битумоминерального материала, но и воздействие ПАВ на структуру и комплекс механических свойств битума, на процессы старения битума под влиянием факторов погоды и климата. [c.2]

    Широкое применение находит введение реакционноспособных карбоксильных групп в молекулы некоторых эластомеров, например бутадиен-акрилонитрильных каучуков [89]. В качестве источника таких карбоксильных групп целесообразно пспользовать акриловую или метакриловую кислоту, добавляемую как третий мономер. Одним из результатов такого модифицирования является повышение специфических свойств полимерного латекса, в частности адгезии повышение стойкости к попеременному замораживанию и оттаиванию и растворителям повышение растворимости в щелочах, в том числе в водном аммиаке образование активных центров для структурирования при помощи таких агентов структурирования, как окись цинка, диамины или эпоксиды повышение маслостойкостк, твердости, температуры размягчения и стойкости к истиранию. В большинстве случаев такое улучшение свойств достигается путем-введения лишь нескольких процентов карбоксилсодержащего мономера. Утверждают [181], что применение такого латекса в клеях для шинного корда значительно повышает прочность сцепления. [c.214]

    Ионам Са принадлежит центральная роль в регуляции многих клеточных функций. Изменение концентрации внутриклеточного свободного Са является сигналом для активации или ингибирования ферментов, которые в свою очередь регулируют метаболизм, сократительную и секреторную активность, адгезию и клеточный рост. Источники Са могут быть внутри- и внеклеточными. В норме концентрация Са в цитозоле не превышает 10 М, и основными источниками его являются эндоплазмати-ческий ретикулум и митохондрии. Нейрогормональные сигналы приводят к резкому повышению концентрации Са (до 10 М), поступающего как извне через плазматическую мембрану (точнее, через потенциалзависимые и рецепторзависимые кальциевые каналы), так и из внутриклеточных источников. Одним из важнейших механизмов проведения гормонального сигнала в кальций—мессенджерной системе является запуск клеточных реакций (ответов) путем активирования специфической Са -кальмодулин-зависимой протеинкиназы. Регуляторной субъединицей этого фермента оказался Са -связывающий белок кальмодулин (мол. масса 17000). При повышении концентрации Са в клетке в ответ на поступающие сигналы специфическая протеинкиназа катализирует фосфорилирование множества внутриклеточных ферментов —мишеней, регулируя тем самым их активность. Показано, что в состав киназы фосфорилазы Ь, активируемой ионами Са , как и КО-синтазы, входит кальмодулин в качестве субъединицы. Кальмодулин является частью множества других Са -свя-зывающих белков. При повышении концентрации кальция связывание Са с кальмодулином сопровождается конформационными его изменениями, и в этой Са -связанной форме кальмодулин модулирует активность множества внутриклеточных белков (отсюда его название). [c.296]

    Кроме этого следует отметить недостатки самого полимерного продукта, в частности, повышенную ползучесть, относительно низкую скорость вулканизации, несовулканизуемость с каучуками общего назначения, неудовлетворительную адгезию, плохую совместимость с некоторыми ингредиентами, малую эластичность при комнатных температурах, высокое теплообразование при многократных деформациях. Лишь некоторые из отмеченных недостатков можно устранить изменением рецептуры резиновых смесей и условий их обработки. Однако радикального изменения свойств БК и в первую очередь увеличения скорости вулканизации можно достигнуть лишь химическим путем. [c.322]

    Безусловно, что в кратком обзоре невозможно охарактеризо- вать все классы неорганических материалов, однако нельзя не сказать о графитовых материалах, которые выделяются исключительно высокой теплопроводностью, превышающей теплопроводность многих металлов и сплавов. Это качество наряду с химической инертностью и термической стойкостью при резких перепадах температур, высокой электрической проводимостью и хорошими механическими свойствами сделали графит и материалы на его основе незаменимыми в различных областях техники и промышленности. В частности, в химической промышленности применение графита особенно эффективно для изготовления теплообменной аппаратуры, эксплуатируемой в агрессивных средах. На ее поверхности в значительно меньшей степени откладываются накипь и загрязнения, чем на поверхности всех других металлических и неметаллических материалов. Сырьем для получения искусственного графита служит нефтяной кокс, к которому добавляют каменноугольный пек, играющий роль вяжущего материала при формовании изделий из графитовой шихты. Сам цикл получения изделий включает измельчение и прокаливание сырья, смешение шихты, прессование, обжиг и графитизацию. Условия обжига тщательно подбирают, чтобы избежать появления механических напряжений и микротрещин. При графитизации обожженных изделий, проводимой при температуре 2800—3000 °С, происходит образование упорядоченной кристаллической структуры из первоначально аморфизованной массы. Чтобы изделиям из графита придать непроницаемость по отношению к газам, их пропитывают полимерами, чаще всего фенолформальдегидными, или кремнийор-ганическими смолами, или полимерами дивинилацетилена. Пропитанный графит химически стоек даже при повышенных температурах. На основе графита и фенолформальдегидных смол в настоящее время получают новые материалы, свойства которых существенно зависят от способа приготовления. Материалы, формируемые при повышенных давлениях и температурах, известны под названием графитопластов, а материалы, получаемые холодным литьем, названы графитолитами. Графитолит, например, применяют не только как конструкционный, но и как футеровочный материал. Он отверждается при температуре 10 °С в течение 10—15 мин, имеет высокую адгезию ко многим материалам, хорошо проводит теплоту и может эксплуатироваться вплоть до 140—150°С. В последнее время разработан метод закрытия пор графита путем отложения в них чистого углерода. Для этого графит обрабатывают углеводородными соединениями при высокой температуре. Образующийся твердый углерод уплотняет графит, а летучие продукты удаляются. Такой графит назван пироуглеродом. [c.153]

    Коллоидный кремнезем можно использовать на разных поверхностях либо с целью повышения их адгезии по отношению к другим веществам (фактически путем огрубления поверхности, если вводимый кремнезем оказывается сцепленным с поверхностью), либо с целыЬ понижения адгезии в других случаях посредством удерживания на расстоянии способные к слипанию поверхности. [c.593]

    Коллоидный кремнезем вместе с щавелевой кислотой наносился и сжигался на поверхности железа и стали перед формированием химического покрытия из оксалата или фосфата. Этот исходный продукт, состоящий из оксалата и реакционноспособного кремнезема, вероятно, подвергался пиролизу с образованием участков прочно связанного кремнезема и силиката железа, которые затем закрепляли химическое покрытие [603]. С целью обеспечения повышенной адгезии к органическим полимерам кремнеземное покрытие на металлической подложке готовится путем смешивания коллоидного кремнезема с разбавленным растаором аммониевой соли карбоксильного полимера при pH 6,5 II последующим наложением смеси в виде пленки на поверхность черного металла. После высушивания благодаря органическому полимеру сводится к минимуму образование сетки волосных трещин на таком кремнеземном покрытии. Может быть применена альгиновая кислота [604]. Хромовая кислота используется для формирования ингибирующей противокоррозионной пленки на поверхности цинка или оцинкованного железа. Пленка с улучшенными свойствами для более надежной защиты от коррозии с хорошей адгезией красочных покрытий получается при смешивании коллоидного кремнезема с раствором Н2СГО4 [605]. По-видимому, хромовая [c.594]

    Коалесценция может быть ускорена или замедлена путем изменения степени турбулентности в дисперсиях. Высокая турбулентность приводит к повышению частоты соударения капель и росту общей вероятности коалесценции. Однако следующий за соударением двух капель процёсс удаления пленки требует определенного времени для того чтобы стало возможным слияние капель. Эта пленка упруго действует на капли, предотвращая их слияние, поэтому с усилением турбулентности будет уменьшаться вероятность коалесценции. Эффективность сил, препятствующих коалесценции, будет функцией размеров каждой капли, так как адгезия и динамический напор являются функциями диаметра капель. В связи с этим возможно, что энергия турбулентных вихрей, подводимая к паре маленьких капель, может оказаться недостаточной для преодоления адгезии. Так, например, Шиннар [931 показал, что сила адгезип двух капель диаметрами и d равна  [c.310]

    Путем изменения соотношения функциональных групп на основе только одного Вида альдегида возможно получение продуктов с разнообразным комплексом свойств Так, неацеталированные гидроксильные группы обусловливают повышенную адгезию С увеличением степени ацеталирования уменьшаются прочность при разрыве, температура размягчения, твердость, ио возрастают водостойкость, эластичность и улучшаются диэлектрические свойства [c.173]

    Широко известен способ повышения адгезии к полиэтилену путем оксиления его поверхности [227, 228] (рис. 11.13). В процессе окисления изменяется смачиваемость поверхности полиэтилена, поскольку повышается ее гидрофильность. В результате адгезионная прочность системы полиэтилен — эпоксидная смола — полиэтилен возрастает (как это показано на рис. 11.14) мерой гидрофильности является угол смачивания водой. Это [c.80]

    Существенное повышение прочности связи в резинокордной системе достигается путем введения в резину различных смол. Имеется большое количество разновидностей этого способа повышения адгезии. ] 1ожно один из компонентов резорциноформальдегидной смолы (например, альдегид) нанести на корд, а другой ввести в резиновую смесь. В процессе вулканизации на границе между волокнами и резиной образуется смола, которая играет роль адгезива. Можно на ткань нанести латекс с резорцином, а альдегид ввести в резину [49]. Источником альдегида должны быть продукты, достаточно устойчивые при температурах [c.283]

    Практические рекомендации, вытекающие иа анализа приведенного выше материала с позиций молекулярной теории адгезии, сводятся к следующему. Для направленного воздействия на адгезионную прочность необходимо, во-первых, выбрать оптимальный тип адгезива для данного субстрата и заданных условий эксплуатации адгезионного соединения во-вторых, подготовить поверхность субстрата к нанесению адгезива в-третьих, выбрать оптимальные условия формирования адгезионного соединения. Наконец, часто приходится выбирать оптимальную форму и размеры адгезионного соединения, допустимые пределы нагружения, т. е. решать вопросы, связанные с механикой адгезионного соединения. Подготовка поверхности субстрата включает, естественно, не только ее очистку, но зачастую и модификацию, причем модификация может заключаться в окислении поверхности для повышения ее полярности, в прививке на поверхность соответствующих мономеров, в обработке поверхпостно-активными веществами и т. д. Выбор оптимального адгезива для данного субстрата также может быть решен по-разному изменением дозировки компонентов с активными функциональными группами, введением специальных добавок (с учетом особенности применяемого субстрата), введением в адгезив пластификаторов, подбором растворителя и т. д. Кроме того, выбирая оптимальный тип адгезива, следует постоянно иметь в виду когезионную прочность адгезива. Часто достижение интенсивного взаимодействия адгезива с субстратом и создание возможно более прочного адгезива достигаются компромиссным путем, так как эти проблемы оказываются трудно совместимыми. [c.364]


Смотреть страницы где упоминается термин Адгезия пути повышения: [c.125]    [c.27]    [c.19]    [c.32]    [c.78]    [c.30]    [c.144]    [c.108]    [c.50]    [c.283]    [c.39]    [c.302]    [c.315]   
Температуроустойчивые неорганические покрытия (1976) -- [ c.205 ]




ПОИСК





Смотрите так же термины и статьи:

Адгезия



© 2025 chem21.info Реклама на сайте