Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Газовая носители неподвижных фаз

    Величины t f хотя и пропорциональны константе Генри, но не являются физико-химическими константами, зависящими при данной температуре колонки только от природы системы данный компонент газовой фазы—неподвижная фаза. Это видно из того, что входящее в уравнение (16) время удерживания газа-носителя tQ зависит от объемной скорости газа w. Действительно, вводя выражение (14) в уравнение (16), получаем  [c.559]


    В случае газовой хроматографии полагают, что хроматографируемый газ проходит через каждую тарелку периодическими толчками. А за время каждого толчка на каждой тарелке успевает установиться равновесие между газовой и неподвижной фазами для данного компонента разделяемой смеси. С каждой новой порцией газа-носителя, поступающей на первую тарелку, компонент распределяется между подвижной и неподвижной фазами. При следующем толчке на вторую тарелку вместе с газом-носителем поступит меньшее количество компонента, так как часть его остается поглощенной в неподвижной фазе в первой тарелке и частично остается непоглощенной в газе-носителе, вошедшем в первую тарелку. С каждой новой порцией газа-носителя концентрация данного компонента на первых тарелках уменьшается, а на следующих возрастает, потом снова уменьшается, так как свежие порции газа-носи- [c.47]

    Анализируемую газовую смесь пропускают через колонку с адсорбентом или носителем неподвижной жидкости в непрерывном потоке воздуха при одновременном нагреве хроматографической колонки. Нагрев колонки дает возможность полнее и быстрее разделять компоненты вследствие изменения их адсорбционной способности. В зависимости от состава смеси для хроматографической колонки применяют различные адсорбенты или носители с различными неподвижными жидкими фазами. Так, для разделения смеси предельных углеводородов используют газо-адсорбционную хроматографию в качестве адсорбента применяют, например, крупнопористый силикагель МСК или КСК, а для разделения смесей, содержащих также и непредельные углеводороды, — окись алюминия. Однако на указанных адсорбентах не удается выделить некоторые изомерные компоненты. В этом случае применяют комбинацию газо-адсорбционной и газожидкостной хроматографии, а именно разделительную колонку наполняют адсорбентом, смоченным небольшим количеством малолетучей жидкости. Такие адсорбенты называются модифицированными. Сочетание газо-адсорбционной и газо-жидкостной хроматографии позволяет полнее разделить сложную смесь, состоящую из большого Числа разных по своей природе компонентов. [c.144]

    Реальный сорбент в ГЖХ состоит из двух объемных фаз (твердый носитель и неподвижная жидкая фаза) и двух поверхностей раздела твердый носитель — неподвижная жидкая фаза и неподвижная жидкая фаза — газовая фаза. Для таких сложных систем В. Г. Березкиным и сотр. выявлено [50] существование линейных зависимостей вида [c.176]


    Д e с и Ш Д., Г о д ф p e й Ф., К а р б о р н К., Результаты применения ДВУХ носителей неподвижной фазы в книге Газовая хроматография , T . 188—201, ИЛ, М., 1961. [c.523]

    Большое применение пористые полимеры нашли в газовой хроматографии. Первой работой ио применению пористых полимеров в газохроматографическом процессе разделения была работа Баума [49], использовавшего пористый полиэтилен с норами размером около 10 для разделения спиртов. Автор отметил возможность использования пористого полиэтилена п в качестве сорбента, и в качестве носителя неподвижных жидких фаз. Лучшее разделение наблюдалось на пористом полиэтилене без жидкой фазы, причем спирты элюировали в форме узких симметричных пиков. [c.10]

    Использование полимерных сорбентов в качестве носителей неподвижных жидких фаз расширяет возможности газовой хроматографии на пористых полимерных сорбентах. [c.92]

    В газовой хроматографии подвижной фазой является газ-носитель, неподвижной фазой — адсорбент, твердое вещество или жидкость, нанесенная гонким слоем на гранулированный инертный материал-носитель или на стенку капиллярной колонки. [c.368]

    Газовая хроматография — хроматография, в которой подвижная фаза находится в состоянии газа или пара — инертный газ (газ-носитель). Неподвижной фазой (НЖФ) является высокомолекулярная жидкость, закрепленная на пористый носитель или на стенки длинной капиллярной трубки. [c.3]

    Силикагели с низкой поверхностью успешно применяются как адсорбенты и носители неподвижных фаз в газовой хроматографии. Наличие ультрапор в силикагеле в ряде случаев является помехой при использовании их для указанных целей [235, 236]. Так, ультрапоры не оказывают заметного влияния на адсорбцию и газовую хроматографию больших молекул углеводородов, но могут ухудшать разделение молекул с выдвинутыми звеньями типа [c.102]

    В полупромышленных условиях изготовляется макропористый силикагель с малой удельной поверхностью типа силохрома. Такой силикагель можно применять как. адсорбент и носитель неподвижных фаз в газовой хроматографии, в катализе, при адсорбции высокомолекулярных соединений и полимеров из растворов. [c.111]

    Эффективность колонки и фактор эффективности растворителя. Эффективность колонки измеряли при помощи ВЭТТ (высоты, эквивалентной теоретической тарелке). Теоретическая тарелка определяется как участок колонки, необходимый для достижения равновесия при распределении растворенного вещества между движущейся газовой и неподвижной жидкой фазами. Это свойство колонки связано с такими параметрами, как скорость потока газа-носителя, температура колонки и физические свойства растворенного вещества и растворителя. Однако эффективность — неудачное слово для этого случая. Значение ВЭТТ в колонке в действительности является мерилом отклонения колонки от идеальной линейной хроматографии. Это особенно справедливо при использовании рекомендованного метода вычисления ВЭТТ, т. е. по формуле (U/16) (х /у ), где I — длина колонки, х — экстраполированное основание треугольника, у — время удерживания данного растворенного вещества [4]. В этом выражении ничто не говорит о разделяющей способности колонки. [c.61]

    Из определения вариантов газовой хроматографии следует, что для проведения процесса необходимо использовать газ-носитель (газовая фаза), неподвижную жидкость (жидкая фаза) и твердый носитель или адсорбент (твердая фаза). [c.34]

    Разделение в газовой хроматографии основано на различном распределении молекул разделяемых компонентов между движущейся газовой фазой (газ-носитель) и неподвижной фазой (сорбент в колонке). Между этими фазами для каждого компонента анализируемой смеси в колонке устанавливается динамическое равновесие. Под действием потока газа-носителя компоненты анализируемой смеси с разными скоростями перемещаются вдоль хроматографической колонки. Скорость этого перемещения определяется для каждого компонента константой его распределения (см. ниже) между газовой и неподвижной фазами. Скорость движения хроматографической зоны обратно пропорциональна константе распределения, т.е. хорошо сорбируемые компоненты передвигаются вдоль слоя сорбента медленнее, чем плохо сорбируемые [1]. [c.12]

    При введении в поток инертного газа-носителя пробы исследуемой смеси, образующие ее компоненты распределяются между газовой и жидкой фазами. Последняя представляет собой раствор заданных компонентов в веществе, использованном в качестве неподвижной фазы. При перемещении пробы с газом,-носителем вдоль колонки непрерывно происходит взаимодействие газовой и неподвижной фаз, заключающееся в абсорбции каждого компонента из газовой в неподвижную фазу и последующей десорбции из нее в газовую фазу. За счет многократно повторяемых по длине колонки актов абсорбции и десорбции и осуществляется разделение смеси. Очевидно, что некоторая доля любого компонента, введенного в колонку с пробой, в произвольный момент времени находится в газовой, а остальное количество — в неподвижной фазе. [c.56]


    Таким образом, по данным газо-жидкостной хроматографии представляется возможным рассчитывать коэффициенты активности компонентов в бесконечно разбавленных растворах. Это имеет очень важное практическое значение, поскольку эти величины весьма затруднительно определять другими методами. Нужно, однако, учитывать, что в изложенных выше рассуждениях рассматривается система газ — носитель — летучий компонент — неподвижная фаза, нанесенная на насадку, т. е. предполагается, что твердый носитель является инертным и не оказывает никакого влияния на фазовое равновесие в указанной системе. Как показывает практика, это условие не всегда выполняется. На поверхности носителя возможна адсорбция компонентов исследуемых смесей, оказывающая большое влияние на условия их равновесного распределения между газовой и неподвижной фазами. Это приводит к существенным отклонениям коэффициентов активностей летучих компонентов в бесконечно разбавленных растворах в малолетучих растворителях, найденных по данным газо-жидкостной хроматографии, от значений, определенных другими методами. Наибольшее влияние адсорбции на поверхности носителя обнаруживается при использовании для хроматографических экспериментов жидких фаз, полярность которых значительно меньше полярности исследуемых летучих веществ. Это влияние проявляется в асимметричности хроматографических пиков (появление адсорбционных хвостов ), а также в изменении удерживаемого объема с изменением величины вводимой пробы. Отмеченные явления обусловлены нелинейностью изотерм адсорбции на твердых поверхностях и обнаруживаются при использовании обычно применяемых носителей — кизельгура, огнеупорного кирпича, силикагеля, окиси алюминия, целита, пористого тефлона. [c.61]

    В гл. 24 дано широкое определение хроматографии как процесса разделения, в котором подвижная фаза является газом или жидкостью, а стационарная фаза — жидкостью или твердым телом. В обшем хроматография может быть газовой или жидкостной в соответствии с состоянием подвижной фазы. В газовой хроматографии неподвижная фаза представляет собой или тонкую пленку жидкости на носителе, или твердое тело с большой поверхностью. Жидкостная хроматография может быть нескольких видов ионообменная, в которой подвижная фаза — обычно жидкая, а стационарная фаза — нерастворимый полимер, содержащий ионные группы адсорбционная, в которой стационарная фаза — твердое тело с большой поверхностью жидкостно-жидкостная, в которой неподвижная фаза — тонкая пленка из одной несмешивающейся жидкости, нанесенной на твердое тело гель- или эксклюзионная, в которой неподвижная фаза — гель или другой пористый материал тонкослойная, в которой неподвижная фаза — жидкость, нанесенная на слой тонко измельченного твердого тела, или твердый адсорбент бумажная, в которой стационарная фаза — тонкая пленка жидкости на бумаге как носителе электрохроматография, в которой разделение проводят под влиянием электрического поля. [c.534]

    Одной из особенностей современного этапа развития газовой хроматографии является распространение ее на неорганические соединения. Создается впечатление, что почти все элементы периодической системы могут быть переведены в летучие соединения и стать объектом хроматографического анализа. При этом, однако, необходимо преодолеть ряд специфических трудностей, связанных с реакциями образования летучих соединений, их реакционной способностью и т. д. Ряд осложнений возникает также при выборе носителей, неподвижных фаз и конструировании узлов хроматографической аппаратуры и особенно детекторов. [c.5]

    В процессе газовой хроматографии неподвижная жидкая фаза находится в длинной трубке — колонке в виде тонкой пленки, нанесенной либо на инертный зернистый носитель (насадочные колонки), либо на [c.9]

    Необходимость уменьшения сорбционной емкости диктовалась практическими потребностями, связанными с использованием газовой хроматографии для анализа высокомолекулярных соединений. Это достигалось путем перехода к газо-жидкостной хроматографии, уменьшения степени пропитки твердого носителя неподвижной фазой, перехода к капиллярной хроматографии, программирования температуры колонки и использования слабых адсорбентов. Действительно, величина частного коэффициента Генри (отношение емкостей неподвижной и подвижной фаз) [c.5]

    НОЙ температуре колонки только от природы системы данный компонент газовой фазы — неподвижная фаза. Это видно из того, что входящее в уравнение (16) время удерживания газа-носителя 0 зависит от объемной скорости газа ш. Действительно, вводя выражение (14) в уравнение (16), получаем  [c.525]

    В теории тарелок реальный непрерывный хроматографический процесс был заменен эквивалентным по результатам идеальным равновесным периодическим процессом, при котором размывание полосы компонента в газе-носителе вызывалось последовательной серией равновесных распределений этого компонента между подвижной газовой и неподвижной твердой или жидкой фазами на отдельных ступенях колонки. В начале предыдущего параграфа (см. стр. 539) было отмечено, что физические причины размывания хроматографической полосы различны они связаны как с процессами диффузии в движущемся газе и в порах адсорбента или носителя, так и со сложными процессами массообмена между газом и неподвижной фазой. Удобно, однако, описать все эти процессы единообразно как процессы диффузии, приписывая и процессу массообмена эквивалентный по результатам процесс диффузии с соответствующим эффективным коэффициентом диффузии. Это позволяет представить суммарный процесс размывания хроматографической полосы как процесс, эквивалентный процессу диффузии с эффективным коэффициентом диффузии, равным сумме эффективных коэффициентов диффузии отдельных его стадий. После этого для нахождения формы хроматографической полосы можно воспользоваться известным уравнением молекулярной диффузии, введя в него этот суммарный эффективный коэффициент. [c.544]

    В изложенной выше теории равновесной хроматографии были рассмотрены только те искажения хроматографической полосы (обострение фронта и растягивание тыла или наоборот), которые вызывались отклонениями изотермы распределения (адсорбции или растворения) от закона Генри. Но даже и при соблюдении закона Генри хроматографическая полоса при движении вдоль колонки должна размываться. Это происходит вследствие продольной диффузии (вдоль и навстречу потока газа) молекул компонентов газовой смеси, переноса и диффузии их вокруг зерен насадки, а также диффузии в поры (так называемой внутренней диффузии). Кроме этого, молекулы компонента смеси, попав-, шие в неподвижную фазу, должны отставать от его молекул, переносимых в потоке газа, вследствие конечной скорости адсорбции и десорбции на твердой или жидкой поверхности, наличия поверхностной диффузии (вдоль поверхности) а в случае газо-жидкостной хроматографии еще и вследствие диффузии (поперечной и продольной) внутри неподвижной жидкой пленки, а также ввиду адсорбции и десорбции на носителе неподвижной жидкости. Все эти разнообразные диффузионные и кинетические явления приводят к тому, что в отношении элементарных процессов удерживания в неподвижной фазе и возвращения в [c.539]

    В изложенной выше теории равновесной хроматографии были рассмотрг-ны только те искажения хроматографической полосы (обострение фронта и растягивание тыла или наоборот), которые вызывались отклонениями изотермы распределения (адсорбции или растворения, от закона Генри. Но даже и при соблюдении закона Генри хроматографическая полоса при движении вдоль колонки должна размываться. Это происходит вследствие продольной диффузии (вдоль и навстречу потока газа) молекул компонентов газовой смеси, переноса и диффузии их вокруг зерен насадки, а также диффузии в поры (так называемой внутренней диффузии). Кроме этого, молекулы компонента смеси, попап-шие в неподвижную фазу, должны отставать от его молекул, переносимых в потоке газа, вследствие конечной скорости адсорбции и десорбции на твердой или жидкой иоверхности, наличия поверхностной диффузии (вдоль поверхности), а в случае газо-жидкостной хроматографии еще и вследствие диффузии (поперечной и продольной) внутри неподвижной жидкой пленки, а также ввиду адсорбции и десорбции на носителе неподвижной жидкости. Все эти разнообразные диффузионные и кинетические явления приводят к тому, что в отношении элементарных процессов удерживания в неподвижной фазе и возвращения в движущийся газ-носитель разные молекулы данного компонента окажутся п разных условиях и, следовательно, будут перемещаться вдоль колонки с разными скоростями, что неизбежно приведет к размыванию хроматографической полосы—к снижению и расширению пика. Уже одно перечисление причин размывания хроматографической полосы показывает, насколько сложны диффузионные и кинетические процессы в колонке. Учитывая некоторую неопределенность геометрии колонок, по крайней мере колонок с набивкой (колебания в форме и размерах зерен, в их пористости и упаковке, в толщине пленки неподвижной жидкости, в доступности ее поверхности или поверхности адсорбента в порах, можно оценить влияние диффузионных и кинетических факторов на форму хроматографической полосы лишь весьма приближенно. Однако даже такая приближенная теория очень полезна, так как она позволяет выяснить хотя бы относительную роль различных диффузионных и кинетических факторов, влияющих на размывание, и указать тем самым пути ослабления этого влияния. [c.575]

    В теории тарелок хроматографическая колонка по аналогии с дестилля-ционной колонкой разбивается на ряд последовательных ступеней тарелок , через которые газ проходит периодическими толчками . Тарелка содержит газовую и неподвижную фазы. За время каждого такого толчка на тарелках успевает установиться равновесие между газом и неподвижной фазой для всех компонентов. Очевидно, что введение пробы, например, одного компонента в газ, поступающий на первую тарелку, приведет к распределению зтого компонента между газом и неподвижной фазой. При следующем толчке газа на вторую тарелку вместе с газом-носителем поступает меньшее количество компонента, так как часть его останется в неподвижной фазе и частично десорбируется в чистый газ-носитель, поступивший на первую тарелку. По мере повторения [c.576]

    В теории тарелок реальный непрерывный хроматографический процесс был заменен эквивалентным по результатам идеальным равновесным периодическим процессом, при котором размывание полосы компонента в газе-носителе вызывалось последовательной серией равновесных распределений этого ком-аонента между подвижной газовой и неподвижной твердой или жидкой фазалш на отдельных ступенях колонки. В начале предыдущего параграфа (см. стр. 575) было отмечено, что физические причины размывания хроматографической полосы различны они связаны как с процессами диффузии в движущемся газе [c.580]

    Распределительная хроматография основана на разделении веществ за счет различия в коэффициентах распределения между двумя или более несмешиваю-щимися жидкими фазами или неподвижной жидкой и газовой фазами. Неподвижной фазой служит твердый носитель, пропитанный специальной жидкостью, подвижной — растворитель (жидкостная распределительная хроматография) или газ (газожидкостная хроматография, ГЖХ). Распределительная хроматография обычно осуществляется на бумаге нли колонках. [c.496]

    Для хроматографического разделения веществ выбор величины удельной поверхности и размеров пор зависит от свойств разделяемых молекул для низших углеводородов нужна большая поверхность и более узкие поры, для высших—низкая поверхность и широкие поры. Хорошее разделение неполярных газов, которые адсорбируются в основном благодаря неспецифическим дитер-сионным взаимодействиям, достигается в случае тонкопористых силикагелей со средним диаметром пор не более 20А. Для разделения легких углеводородов пригодны силикагели диаметром пор от 50 до 200А. Силикагели, у которых средний размер пор больше 500А, можно использовать для газохроматографического разделения жидких смесей, в частности углеводородов. Макропористые силикагели с низкой удельной поверхностью -могут найти широкое применение как носители неподвижных жидких и твердых фаз в газовой хроматографии, в катализе, при адсорбции высокомолекулярных соединений и полимеров из растворов [16]. [c.7]

    X. открыл М. С. Цвет в 1903. вРогинский С. 3., Яновский М. И.. Берман А. Д., Основы применения хроматографии в катализе, М., 1972 Гольберт К. А., Вигдергауз М. С., Курс газовой хроматографии, 2 изд.. М., 1974. В. Г. Березкин. ХРОМАТОГРАФИЯ НА БУМАГЕ (бумажная хроматография, БХ), основана на различии в скорости перемещения компонентов анализируемой смеси по бумаге в потоке р-рителя соответств. состава. Хроматограммой в этом случае наз. картину расположения хроматографич. зон на бумаге после завершения разделения. Каплю анализируемого р-ра (1—10 мкл) наносят на спец. бумагу, по к-рой под действием капиллярных и гравитац. сил перемещается р-ритель. Эксперимент проводят обычно в герметичных сосудах, как правило стеклянных. Бумага м. о. инертным носителем неподвижной фазы (напр., в распределит, и осадочной БХ) либо активной неподвижной фазой (в адсорбц. и ионообменной БХ). [c.668]

    Рассмотренные в этой статье нути улучшения твердых тел для газовой хроматографии — адсорбентов, инертных носителей, стенок капиллярных колонок, а также рассмотренные возможности использования твердых дисперсных тел с однородной поверхностью в качестве вводимых в поры инертных носителей неподвижных фаз показывают, что наряду с усовершенствованием хроматографической аппаратуры и расширением ассортимента жидкостей для дальнейшего развития газовой хроматографии большое значение имеет усовершенствование применяемых в ней твердых тел. Особое внимание надо обратить на создание модифицируюш их слоев с равномерно химически привитыми функциональными группами, а также на создание специфических адсорбентов с однородной поверхностью. [c.25]

    Вещества, отвечающие этим требованиям, тщательно изучены, так как они используются в газовой хроматографии, и хорошо известна их структура /9/ и степень взаимодействия с разделяемыми веществами /10/ в газовой хроматографии. В качестве носителей неподвижной жидкой фазы в распределительной хроматографии могут быть использованы диатомитовая земля, кизельгур, пористое стекло пористые полимеры и такие адсорбенты, как силикагель и окись алюминия, а также целлюлоза. Принципиально практическая разница между носителями для жидкостной и газовой хроматографии заключается в том, что для жидкостной Зфоматографии предпочтительнее использовать носители, частицы которых намного меньше (1-50 мкм). [c.104]

    Обогатился также ассортимент химических реактивов, применяемых в аналитической практике. Появились новые высокочувствительные реактивы на катионы, анионы и функциональные группы химических соединений внедрены в производство методы получения ряда комплексонов и индикаторов для комплексометрического титрования организован выпуск редких и рассеянных металлов, их окислов, гидроокисей и солей создан ассортимент сорбентов, инертных носителей, неподвижных фаз, растворителей, хроматографически чистых эталонов для газовой, газо-жидкостной, ионообменной и бумажной хроматографии резко расширилась номенклатура специальных реактивов и препаратов для научных исследований в области биологической химии, молекулярной биологии и смежных с ними наук значительно пополнился ассортимент реактивов для медицинских анализов и диагностики. [c.9]

    Книга является непосредственным продолжением ранее изданного на русском языке Справочника по газовой хроматографии , составленного одним из авторов — Н. Коцевым (М. Мир, 1976). Данное издание включает обширную подборку расчетных формул, используемых в практике газовой хроматографии, и другой материал, связанный с расчетами условий работы газа-носителя, неподвижной жидкой фазы, твердых носителей и адсорбентов. [c.120]

    Содержание воды в веществах различного агрегатного состояния можно определять методами газо-жидкостной, газо-адсорбционной и реакционной газовой хроматографии. Самым быстрым и часто наиболее удобным способом определения воды в неорганических и органических материалах является метод газо-адсорбционной хроматографии на колонках с пористыми полимерными сорбентами или углеродными молекулярными ситами. Метод газо-жидкостной хроматографии для определения воды менее пригоден. При использовании как полярных, так и неполярных жидких фаз, нанесенных на диатомитовые носители, пики воды получаются несимметричными, в первом случае — из-за сильного взаимодействия воды с гидроксильными группами поверхности носителя, а во втором — из-за образования прочных водородных связей между молекулами полярной неподвижной фазы и молекулами воды. Наиболее симметричные пики воды были получены на насадке, состоящей из тефлона и различных лолиэтиленгликолей, т. е. при использовании совершенно инертного носителя неподвижной жидкой фазы. [c.70]

    Уравнения (1.12) и (1.14) —уравнения изотермы адсорбции хроматографируемого соединения на поверхности газ — НЖФ и НЖФ — ТН. (1.13) —уравнение изотермы абсорбции (растворения) в НЖФ. Уравнение (I. 11) отличается от традиционно используемого в хроматографии уравнения наличием двух дополнительных членов — третьего и пятого. Введение этих членов позволило учесть адсорбцию на границах раздела НЖФ с газом-носителем и ТН. Уравнение (1.11) справедливо для равновесной хроматографии, т. е. в условиях мгновенного установления равновесия хроматографируемого соединения между подвижной газовой и неподвижной фазой. [c.20]

    В теории тарелок хроматографическая колонка по аналогии с дестилля-ционной колонкой разбивается на ряд последовательных ступеней тарелок . через которые газ проходит периодическими толчками . Тарелка содержит газовую и неподвижную фазы. За время каждого такого толчка на тарелках успевает установиться равновесие между газом и неподвижной фазой для всех компонентов. Очевидно, что введение пробы, например, одного компонента в газ, поступающий на первую тарелку, приведет к распределению этого компонента между газом и неподвижной фазой. При следующем толчке газа на вторую тарелку вместе с газом-носителем поступает меньшее количество компонента, так как часть его останется в неподвижной фазе и частично десорбируется в чистый газ-носитель, поступивший на первую тарелку. По мере повторения толчков газа-носителя на первой тарелке концентрация данного компонента будет уменьшаться, на следующих она будет нарастать и потом снова уменьшаться, так как свежие порции газа-носителя будут встречать на первых тарелках все меньшие концентрации данного компонента в неподвижной фазе. В результате компонент окажется на нескольких тарелках с максимальной концентрацией на некоторых средних из них. Вследствие размывания компонента по нескольким тарелкам максимальная его концентрация на соответствующих средней или средних тарелках окажется меньшей начальной концентрации на первой тарелке, т. е. произойдет размывание. [c.540]


Смотреть страницы где упоминается термин Газовая носители неподвижных фаз: [c.471]    [c.46]    [c.62]    [c.34]    [c.557]    [c.387]    [c.154]   
Хроматография неорганических веществ (1986) -- [ c.131 ]




ПОИСК







© 2025 chem21.info Реклама на сайте