Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Хроматография ван Деемтера уравнение

    Эффективность хроматографической колонки выражают числом теоретических тарелок или высотой, эквивалентной теоретической тарелке . Ван Деемтер с сотрудниками предложил для газовой хроматографии следующее уравнение названное его именем  [c.238]

Рис. 19-4. Графическое изображение уравнения Ван-Деемтера для газовой хроматографии. На аналогичном графике для жидкостной хроматографии минимум (Мопт) был бы настолько левее, что его было бы почти невозможно отличить от вертикальной оси. Рис. 19-4. <a href="/info/10312">Графическое изображение</a> уравнения Ван-Деемтера для <a href="/info/5704">газовой хроматографии</a>. На аналогичном графике для <a href="/info/8549">жидкостной хроматографии</a> минимум (Мопт) был бы настолько левее, что его было бы почти невозможно отличить от вертикальной оси.

    В практике газовой хроматографии часто пользуются уравнением Ван-Деемтера, в котором Н выражается как функция линейной скорости газа-носителя а, а остальные величины представляются в виде постоянных коэффициентов. Кроме того, уравнение Ван-Деемтера не учитывает влияния а на эффективный коэффициент вихревой диффузии, вследствие чего член, определяющий действие вихревой диффузии, оказывается постоянным. Тогда уравнение Ван-Деемтера можно представить в следующем виде  [c.29]

    Гиошон и Сиоуффи [21-24] так же первоначально воспользовались основным J oбoм, рекомендованным Гиддингсом, но заменили уравнения, исходно сформулированные для газовой хроматографии, уравнениями, которые лучше подходят для описания значительно более медленных процессов в жидкостной хроматографии. Благодаря такому подходу появились более реалистичные уравнения и выводы, которые тоже могут подвергнуться доработке (поскольку больше информации начинает накапливаться об оптимизированных способах изготовления пластинок и о характеристиках слоев, получаемых с использованием сорбентов, размер частиц которых менее 5 мкм). Первоначально эти авторы заменили уравнение Ван-Деемтера (12) уравнениями Нокса [35], выведенными для локальной (местной) высоты тарелки в жидкостной хроматографии  [c.103]

    Уравнение ван-Деемтера (рис. 1), которое связывает большинство параметров хроматографии (для одного компонента) с величиной ВЭТТ, показывает, как часть характеристик заполнения колонки и других свойств колонки и детектора, не относящихся к растворителю, может быть отделена от [c.61]

    Настоящий раздел в основном посвящен математическому описанию фактора разделения в круговой ТСХ. Согласно Кайзеру (гл. 1), расширение зоны в ТСХ является в первом приближении функцией длины пути разделения (в противоположность колоночной жидкостной хроматографии, где длина пути разделения одинакова для всех веществ). В связи с тем, что в ТСХ время разделения всех веществ одинаково, влияние диффузии (член В в уравнении Ван Деемтера) одно и то же для всех веществ. В отличие от ТСХ в ЖКХ вещества характеризуются разными временами удерживания и пропорциональными длительностями диффузии или размывания пиков. [c.47]

    Удобство применения приведенных переменных /г и V заключается в том, что с их помощью можно сопоставлять различные системы, например газовую и жидкостную хроматографии. Более широко их применяют в последней. Основное отличие уравнения Ван-Деемтера от уравнения Гиддингса заключается в разной трактовке вихревой диффузии. Согласно первому из этих уравнений, член, описывающий вихревую диффузию, является постоянным и не зависит от скорости (рис. 1.16). Согласно теории сдваивания, при малых скоростях этот член пропорционален скорости преобладает диффузионный перенос молекул из одного [c.75]


    Уравнение Ван Деемтера дает адекватное описание работы стандартной хроматографической колонки. Препаративные же колонки, имеющие больший диаметр, описываются этим уравнением недостаточно точно. Это можно объяснить главным образом тем, что уравнение Ван Деемтера не учитывает всех факторов, которые обусловливают расширение хроматографических пиков и которые несущественны в обычной хроматографии. Подробное обсуждение десяти факторов, вызывающих увеличение величины ВЭТТ в колонках большого размера, приводит Гиддингс [6]. Наиболее значительный из этих факторов — неоднородность газового потока в плоскости поперечного сечения колонки. Причина этой неоднородности — неравномерное распределение в плоскости поперечного сечения колонки частиц насадки разного размера более крупные частицы располагаются ближе к стенкам колонки, и наоборот. [c.79]

    Влияние геометрических размеров зерен. Размеры зерна входят в константу А уравнения Ван-Деемтера и в состав третьего члена уравнения (IV.61) в первой степени и в степени %. Поэтому практически ВЭТТ прямо пропорциональна эффективному диаметру частиц, а также величинам к и Ь) уравнения (1У.61), которые зависят от формы частиц и равномерности их распределения по размерам. Таким образом, насадочные колонки с более мелким сорбентом работают более эффективно, чем колонки с более крупным сорбентом. Однако нельзя уменьшать размер частиц до пылевидного состояния, так как при этом динамическое сопротивление колонки станет слишком большим и трудно обеспечить в этих условиях нормальную скорость потока газа-носителя. Оптимальное значение ВЭТТ в аналитической газовой хроматографии получается в минимуме кривой Н (а) и составляет около 0,2 см при среднем диаметре зерен сорбента около 0,2— [c.134]

    Известно, что в уравнении ван Деемтера при некоторой линейной скорости газа-носителя для данной колонки имеется максимум числа теоретических тарелок п. Оптимальная величина или мало изменяется в зависимости от температуры п поэтому может выбираться так же, как при изотермической хроматографии. Не рекомендуется сокращать время анализа, увеличивая Ug, поскольку вследствие логарифмической зависимости в уравнении (23) при существенном уменьшении числа теоретических тарелок достигается лишь небольшой эффект из-за отклонения значения Р" пли от оптимального. [c.406]

    В отличие от хроматографии жидкостей при газовой хроматографии подвижная фаза легко сжимаема. Поскольку хроматографическая колонка оказывает сопротивление течению газа, на входе наблюдается большее давление, чем на выходе из колонки. Давление вдоль колонки постепенно падает, медленно в начале и резко в конце . В результате, линейная скорость газа оказывается непостоянной на входе колонки скорость меньше, чем на выходе. Линейная скорость оказывает существенное влияние на эффективность разделения (см. уравнение Ван Деемтера), поэтому на участках колонки, где скорость сильно отличается от оптимальной, разделение смеси может быть недостаточным. Следовательно, расход газа-носителя необходимо подбирать таким образом, чтобы [c.29]

    Кинетическая теория хроматографии основное внимание уделяет кинетике процесса, связывая высоту, эквивалентную теоретической тарелке, с процессами диффузии, медленным установлением равновесия и неравномерностью процесса. Высота, эквивалентная теоретической тарелке, связана со скоростью потока уравнением Ван-Деемтера  [c.324]

    В настоящее время аналитик располагает достаточно большим числом твердых неподвижных фаз для того, чтобы систематически использовать наиболее важные преимущества ГАХ. Прежде всего разработанные для ГАХ адсорбенты отличаются пренебрежимо малым давлением паров, что особенно важно при применении температурного программирования, при применении высокочувствительных детекторов для анализа микроколичеств, а также при объединении метода газовой хроматографии с масс-спектрометрией. Одно из важных достоинств ГАХ состоит в том, что при правильно выбранной температуре равновесие адсорбция — десорбция устанавливается быстрее, чем равновесие растворение — испарение при распределительной газовой хроматографии [5]. Поэтому член уравнения Ван-Деемтера, характеризующий массообмен, для ГАХ меньше, чем для ГЖХ, так что, с одной стороны, эффективность адсорбционных колонок на единицу ее длины выше, чем для распределительных, а с другой —с адсорбционными колонками можно работать при более высокой скорости газа-носителя, не снижая существенно эффективности разделения. [c.301]

    Успешное развитие теории хроматографии в значительной степени обязано работам Ван Деемтера, предложившего ставшее уже классическим выражение для ВЭТТ заполненных колонок. Вместе с тем неудачный выбор термина вихревая диффузия для члена А в уравнении Ван Деемтера вызвал некоторую путаницу и даже в настоящее время вызывает представление [c.188]


    Теория, которая избегает допущения установления мгновенного равновесия и других недостатков концепции теоретических тарелок, должна основываться на скорости, с которой может в действительности установиться равновесие в обычных условиях хроматографии. К тому же должны быть рассмотрены скорости диффузии в подвижной и стационарной фазах. Хроматографические теории, основное внимание в которых акцентировано на кинетике, называют кинетическими теориями , хотя было бы более точно использовать термин линейная неидеальная теория . Первое подробное изложение такой теории было дано датскими химиками ван Деемтером, Клинкенбергом и Зюйдервегом в 1956 г. общее уравнение для расчета величины тарелки как функции скорости движения подвижной фазы иногда называют уравнением ван Деемте-ра. Дальнейшее развитие эта теория получила главным образом благодаря работам американского химика Дж. Калвина Гиддингса. Интересующиеся читатели найдут обширное и доступное изложение основ современной хроматографической теории в его книге, ссылка на которую приведена в списке литературы, помещенном в конце главы. [c.535]

    ПРЕОБРАЗОВАНИЕ УРАВНЕНИЯ ВАН ДЕЕМТЕРА ДЛЯ ВЭТТ В ГАЗОВОЙ ХРОМАТОГРАФИИ  [c.5]

    Новый этап в развитии КНК начался в последние годы, когда были разработаны методы получения длинных колонок с общей эффективностью 30—50 тыс. теоретических тарелок [39]. Изучены особенности процесса разделения в КНК в газо-жидкостной и газо-адсорбционной хроматографии, исследовано влияние условий разделения (природа и давление газа-носителя, зернение сорбента, диаметр колонки) на эффективность колонок, разработаны методы изготовления КНК и предложены новые области практического применения колонок этого типа [40—45]. В ходе этих исследований были получены следующие результаты. Минимальное значение ВЭТТ для колонок диаметром от 0,5 до 2 мм мало зависит от диаметра колонки и составляет 0,4—0,8 мм. Значительно более существенно изменяется коэффициент сопротивления массопередаче в уравнении Ван-Деемтера, который снижается с уменьшением диаметра колонки, причем эта зависимость справедлива для всех исследованных веществ, неподвижных фаз и газов-носителей [41]. Полу- [c.57]

    Относительный вклад каждого из отдельных факторов размывания пика зависит от природы хроматографической системы сравните уравнения Ван-Деемтера для газовой и жидкостной хроматографии. На практике следует учитывать, что в лучших конструкциях фоматографов внеколоночное размывание сводится к минимуму, например за счет уменьшения мертвого объема системы, а условия хроматографирования выб(фают так, чтобы Я была связана, главным образом, с одним или двумя основными факторами размывания полосы, в последнем случае они должны вносить примерно равный вклад. [c.281]

    В газовой хроматографии подвижную фазу рассматривают как инертную считается, что она не вступает во взаимодействие ни с веществом, ни с неподвижной фазой. Следовательно, природа подвижной фазы — газа не оказывает влияния на процессы распределения или адсорбции — десорбции и газ-носитель не влияет на селективность. Его влияние на хроматографический процесс сказывается через эффективность колонки, котофая зависит от разницы в скоростях диффузии веществ в газах [член В уравнения Ван-Деемтера (1.53)]. Природа газа-носителя влияет на продолжительность анализа, поскольку оптимум скорости потока различен для разных газов и время удерживания уменьшается с уменьшением коэффициентов диффузии, вещества. Оказывает влияние также и определенное ограничение давления, обусловленное разницей вязкости газов. Принимаются во внимание и такие обстоятельства, как стоимость газа, его чистота, безопасность и обеспечение максимальной чувствительности используемых детекторов. Исходя из этого в газовой хроматографии используют ограниченный набор газов азот, водород, аргон и гелий. [c.114]

    Прежде чем перейти к рассмотрению этих теорий, следует проанализировать выражение, известное в газовой хроматографии как уравнение ван Деемтера, также являющееся важной вехой в развитии теории хроматографии. Это уравнение было развито ван Деемте-ром и др. /4/ для того, чтобы связать ВЭТТ со скоростью потока, [c.28]

    Между п и высотой теоретической тарелки Н пмеется простая связь L = Нп, где L — длина колонки. Ввиду того что коэффициент распределения и коэффициент диффузии вещества, распределяющегося в неподвижной фазе и газе-носителе, завпсят от температуры п связаны в соответствии с уравнением вап Деемтера с Н, уравнение (19) нельзя непосредственно применять для определения Н пли п в условиях программирования температуры. С повышением температуры Н возрастает, а следовательно, падает эффективность во всех областях, за исключением области очень низких температур, где вследствие экстремально малых значений коэффициентов диффузии в жидкой фазе член С уравнения ван Деемтера может стать определяющим для величины Н. Таким образом, в случае хроматографии с программированием температуры высота теоретической тарелки является сложной функцией температуры, а следовательно, и времени. Однако для компонента, проходящего через колонку, можно предположить некоторую среднюю высоту теоретической тарелки. Ввиду того что зона вещества проходит через всю колонку при температурах, близких к температуре удерживания Тг, величина этой средней высоты теоретической тарелки близка к получаемой в изотермических условиях при температуре удерживания. Исходя из этих соображений, Хэбгуд и Харрис (1960) привели ирпб.тшженное уравнение для числа теоретических тарелок [c.403]

    В хроматографических процессах, согласно уравнению Ван-Деемтера, существует оптимальная скорость потока, при которой колонка имеет наиболее высокую эффективность. Для большинства экскпюзионных колонок с размером частиц Юмкм она составляет около 1 мл/мин. При повышении скорости потока ВЭТТ возрастает, главным образом, за счет удшения масообмена. В эксклюзионной хроматографии этот процесс выражен наиболее резко, так как коэффициенты диффузии сильно снижаются при повышении молекулярной массы. Отсюда также следует, что снижение эффективности в наибольшей степени наблюдается для высокомолекулярных фракций. [c.50]

    Кроме среднего диаметра зерна сорбента йр большое значение имеет узость гранулометрического состава. Любые хроматографические сорбенты после их получения и измельчения рассеивают на ситах, сорбенты мелкого зернения, используемые для жидкостной хроматографии, разделяют на фракции седиментацией или на специальных рассеивающих машинах. При выводе уравнения Ван-Деемтера предполагалось, что все зерна сорбента имеют одинаковый диаметр йр. Такие монодисперсные сорбенты получить практически невозможно, поэтому под (1р понимают обычно средний диаметр зерна. Распределение зерен по диаметрам простейшей теорией, каковой является теория Ван-Деемтера, не учитывается. Большинство экспериментов показывает, однако, что чем уже гранулометрический состав сорбента, тем выше эффективность. Чрезмерному сужению используемой фракции сорбента препятствуют два обстоятельства. Во-первых, сетки, из которых изготавливают сита, выпускаются промышленностью только дискретных размеров. Во-вторых, операция рассева довольно дорогая и при чрезмерном сужении гран-состава стоимость сорбентов возрастает. В настоящее время выработался определенный компромисс между достижением высокой эффективности и практическими возможностями рассева сорбентов. Для газовой хроматографии диатомито-вые носители и сорбенты обычно выпускают следующих зернений 0,11—0,16 мм 0,16—0,2 мм 0,2—0,25 мм 0,25—0,315 мм. [c.70]

    К сожалению, такое уравнение (выведенное Ван-Деемтером) мало пригодно для подсчета величины Н в системах ТСХ. Уравнение было выведено для газовой хроматографии и Е1е учитывало анизотропный коэффициент жидкости, в результате чего член А (2Х.с1р) оказывался [c.99]

    В адсорбционной хроматографии вместо третьего члена уравнения Ван-Деемтера (1.53) следует подставить величину 2DJu [см. уравнение (1.49)], в результате получим третий член в виде ud p/8D. Он также резко уменьшается с уменьшением dp из-за [c.69]

    Хубер с сотр. [60], напротив, ориентировались на сравнительно короткие колонки ( =1,5 м) с внутренним диаметром 1 мм, наполненные хромосорбом О AW-DM. S или сферосилом ХОС-005, пропитанные скваланом, в которых за счет применения ультразвука и протока газа-носителя при набивке колонки обеспечивается очень плотное заполнение. На примере разделения криптона, пентана и гексана был исследован ход кривой ван Деемтера для различных размеров частиц 0,063—0,071, 0,12—0,14 и 0,20—0,25 мм. На основе экспериментов, проводившихся как при нормальном давлении на выходе 0,1 МПа, так и при давлении 1 МПа при одинаковой средней скорости газа-носителя и, было установлено влияние давления и градиента давления на высоту, эквивалентную теоретической тарелке. В отдельных случаях кт1п оказалась меньше 0,2 мм. Это согласуется также с данными для колонок длиной 6 м и давлением на входе до 6 МПа [49]. Ввиду высокой эффективности разделения эти авторы рекомендовали такую хроматографию при высоком давлении на колонках с внутренним диаметром до 1 мм и диаметром частиц 0,055 мм для решения особенно сложных задач разделения. Вследствие значительной допустимой нагрузки пробой этот метод они рекомендовали также для анализа следовых количеств и хроматографического анализа, комбинируемого с масс-спектрометрией. Примеры анализа природного газа и бензина, а также смесей низших спиртов, кетонов, эфиров и углеводородов приведены на рис. И.25 и П.26. При уменьшении размера частиц достигается эффективность разделения (выраженная через /г), сравнимая с капиллярными колонками. Кроме того, коэффициент С в уравнении ван Деемтера становится очень малым, и повышение скорости газа-носителя вызывает лишь незначительное понижение эффективности разделения. [c.107]

    Уже неоднократно обсуждалась эффективность колонок, применяемых в газовой хроматографии. Наиболее полные исследования по этому вопросу проведены Кейлемансом, Клинкенбергом, ван-Деемтером и др. [1—3]. Их работы имеют громадную ценность. Однако, но собственному признанию авторов, еще многое остается сделать, чтобы заполнить пропасть, существующую между теорией и повседневной практикой. В настоящей работе предлагается экспериментальный метод для оценки неподвижных фаз. В этом методе используется видоизмененное уравнение теоретических тарелок ван-Деемтера. Такое видоизменение позволяет одновременно определить эффективность и разделительную способность колонки и выяснить, какая из неподвижных фаз дает лучшее разделение компонентов. [c.61]

    Возможно, что снижение эффективности очистки при уменьшении объемной скорости с 1200 до 300 л л в час объясняется спецификой движения газов через слой пористого адсорбента. Эта специфика в общем учитывается уравнением Ван-Деемтера для БЭТТ в теории газо-жидкостной хроматографии [12]. [c.89]

    Уравнение Ван-Деемтера было выведено для газовой хроматографии. В жидкостной хроматографии это соотношение сложнее, чем описываемое уравнением (19-6) в слагаемое С входит несколько дополнительных членов. Минимум на кривой дает величину Ыопт, приблизительно в 10 раз меньшую, чем в газовой хроматографии, и, следовательно, слишком низкую для практической работы. [c.392]

    Как уже упоминалось при обсуждении уравнения Ван Деемтера, на эффективность колонки может влиять большое число параметров. Вполне очевидным было влияние размера частиц насадки, эффективной толщины слоя неподвижной фазы и скорости потока газа-носителя. Также ясной была и роль диаметра препаративной колонки. Менее очевидным, но тем не менее важным является значение длины колонки, объема пробы и способа ее ввода в колонку, природы твердого носителя и газа-носителя, а также температурного режима колонки. В аналитической ГХ эти факторы выбирают так, чтобы получить минимальное значение величины ВЭТТ. Часто подобную минимизацию можно осуществлять и в препаративной хроматографии, однако существует и другой подход, связанный с максимизацией полного количества вещества, проходящего через колонку в единицу времени. Ниже обсуждается выбор параметров в этих двух случаях оптимизации. [c.81]

    Лефлер [59] применил газовую хроматографию для определения диффузионных характеристик катализаторов. При этом пробу азота вводили в поток гелия (газ-носитель), который пропускали через колонку с катализатором, имеющим температуру —78°С, и при различных скоростях потока измеряли увеличение ширины азотного пика. По результатам измерений вычисляли значение постоянной для того члена уравнения ван Деемтера [60], который описывает перенос массы. Используя уравнения Хэбгуда и Хэнла- [c.62]


Смотреть страницы где упоминается термин Хроматография ван Деемтера уравнение: [c.297]    [c.76]    [c.57]    [c.20]    [c.188]    [c.163]    [c.191]    [c.188]    [c.4]    [c.57]    [c.149]   
Экспериментальные методы в химии полимеров - часть 2 (1983) -- [ c.2 , c.7 ]

Экспериментальные методы в химии полимеров Ч.2 (1983) -- [ c.2 , c.7 ]




ПОИСК





Смотрите так же термины и статьи:

Ван-Деемтера уравнение

ТЕОРИЯ ГАЗОВОЙ ХРОМАТОГРАФИИ Джонс. Преобразование уравнения ван Деемтера для ВЭТТ в газовой хроматографии



© 2025 chem21.info Реклама на сайте