Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Церий определение в тории

    Титан можно осаждать в присутствии железа (II и III), алюминия, цинка, кобальта, никеля, бериллия, хрома (III), марганца (II), кальция, магния, таллия, церия (III), тория, натрия, калия, аммония, а также фосфатов, молибдатов, хроматов, ванадатов, перманганатов, уранила и ванадила. Мешают определению ионы циркония, церия (IV) и олова. Перекись водорода также должна отсутствовать. На осаждение циркония влияют церий (IV), олово, большие количества фосфата, а также титан при отсутствии в растворе перекиси водорода. [c.156]


    Предложено выделять из смеси гидроокисей сначала церий и торий. С этой целью окисляют церий, высушивая гидроокиси на воздухе или действуя хлором, пропускаемым во взмученную в воде смесь. Соляной кислотой при определенном pH переводят в раствор РЗЭ без церия и тория. Разделять торий и церий рекомендуется, восстанавливая церий метанолом и глюкозой, после перевода в раствор обоих элементов торий при этом выпадает в осадок, в растворе остается церий [35]. [c.101]

    Метод может с успехом применяться для определения тория и церия при их совместном присутствии в различных соотношениях [206], при условии предварительного восстановления Се до Се 3%-ной перекисью водорода. Относительная ошибка не превышает 3% при количестве тория от 4 до 16 мг и 6—7% для количеств тория, меньших 2 мг. В последнем случае для количественного разделения тория и церия необходимо двух- или трехкратное переосаждение осадка двойного иодата тория. [c.57]

    Косвенное титрование тория. При определении тория методом оксидиметрического титрования осаждают нормальный молибдат тория из уксуснокислого раствора, контролируя полноту осаждения дифенилкарбазидом. После растворения тщательно промытого осадка в соляной кислоте восстанавливают молибдат амальгамированным цинком до Мо + и титруют последний стандартным раствором сульфата четырехвалентного церия с ферроином в качестве индикатора [323]. [c.59]

    Дальнейшая обработка осадка от аммиака зависит от его состава. Если содержание алюминия и железа значительно превышает содержание редкоземельных элементов, осадок целесообразно обработать фтористоводородной кислотой, после чего поступают следующим образом. Раствор выпаривают на водяной бане почти досуха. Остаток смачивают 0,5 мл фтористоводородной кислоты, прибавляют 25 мл воды, 0,5 мл соляной кислоты и после непродолжительного нагревания фильтруют. Осадок промывают водой, содержащей 2 мл фтористоводородной кислоты и 2 мл соляной кислоты в 100 мл. Фториды смывают с фильтра в платиновую чашку, фильтр сжигают и золу присоединяют к осадку. Осадок смачивают серной кислотой, выпаривают и избыток кислоты удаляют нагреванием в радиаторе (см. рис. 5, стр, 48). Остаток сульфатов растворяют в холодной воде. Из раствора редкоземельные металлы осаждают в виде оксалатов, которые промывают 1 %-ным раствором щавелевой кислоты, прокаливают при 1200° С и взвешивают. По цвету окислов можно, получить некоторое представление об их составе. Осадок, если возможно, растворяют в соляной кислоте (если нет, то в серной), после чего производят соответствующую обработку для отделения и определения тория и церия. Фильтрат, после отделения фторидов редкоземельных металлов, выпаривают с серной кислотой до полного удаления фтора. Остаток растворяют в поляной кислоте, и затем железо, алюминий и другие элементы осаждают аммиаком (стр. 565). Осадок прокаливают, доводя температуру в конце прокаливания до 1200° С, и взвешивают. В этом осадке определяют железо (стр. 122), цирконий (стр. 122) и бериллий (стр. 121). В осадке можно определить также и титан, если содержание его не устанавливают в отдельной навеске пробы. Фосфор определяют в отдельной навеске. Содержание всех этих элементов вычитают из массы суммы смешанных окислов, а полученную разность считают за окись алюминия. [c.624]


    Оксалат аммония применяют в качестве реактива при количественном определении тория, редкоземельных металлов и главным образом кальция. Кальций количественно осаждается в виде оксалата кальция в аммиачных или слабокислых растворах. К выделению кальция в виде оксалата приступают обычно после соответствующего отделения остальных аналитических групп, так как практически все катионы мешают определению кальция вследствие образования нерастворимых гидроокисей или оксалатов. Применение комплексона здесь особенно выгодно, так как в слабо кислом растворе, содержащем уксусную кислоту, все катионы связываются в прочные комплексы, не гидролизуются и не осаждаются оксалатом, тогда как кальций выделяется в виде оксалата в пригодном для фильтрования виде [82]. Простым осаждением можно надежно определить кальций в присутствии ртути, свинца, висмута, меди, кадмия, мышьяка, сурьмы, железа, хрома, алюминия, титана, урана, бериллия, молибдена, вольфрама, церия, тория, никеля, кобальта, марганца, цинка, магния и фосфатов. [c.102]

    Определению тория, как и висмута, не мешает большинство двухвалентных катионов, неодим, празеодим, трехвалентный церий и лантан. Мешают трехвалентное железо, висмут, ртуть, сурьма, сульфаты и анионы комплексообразующих кислот. [c.331]

    ИСПОЛЬЗОВАНИЕ КУПФЕРОНА ДЛЯ ПОТЕНЦИОМЕТРИЧЕСКОГО ОПРЕДЕЛЕНИЯ ТОРИЯ И ЦЕРИЯ [c.381]

    Себациновая кислота — белые кристаллы в виде листочков пл= 134,5 °С кип = 352,3°С (кипит с разложением при 250 °С и 2,7 кПа). Хорошо растворима в этдноле и эфире. Мало растворима в воде 0,1 г на холоду, 2 г при нагревании в 100 мл. Применяют для гравиметрического определения тория (IV) с одновременным отделением от церия (IV) и других РЗЭ. [c.201]

    В настоящей работе предложен метод потенциометрического определения тория и трехвалентного церия купфероном, с которым они дают труднорастворимые внутрикомплексные соединения. Титрование проводилось по компенсационной схеме. Индикаторным электродом служила металлическая ртуть, электродом сравнения — каломельный полуэлемент. [c.381]

    Для получения точных и надежных результатов при потенциометрическом титровании важно не только возникновение в эквивалентной точке резкого и значительного скачка потенциала, но и необходимо, чтобы индикаторный электрод достаточно быстро принимал постоянные значения потенциала. Для выяснения пригодности ртутного электрода в качестве индикаторного при определении тория и церия нами исследовалось изменение потенциала ртутного электрода во времени при титровании указанных элементов. Установлено, что в начале титрования необходимо выждать 2—3 мин., в течение которых потенциал ртутного электрода примет постоянное значение, а затем в процессе титрования приливать раствор купферона через 1 мин. [c.381]

    Особый интерес представляла возможность определения тория и церия при их совместном присутствии. Это определение осно- [c.382]

    Потенциометрическое определение тория и церия [c.383]

    Результаты потенциометрического определения тория и церия при их совместном присутствии [c.383]

    Сущность метода. Торий образует с арсеназо П1 (структурную формулу см. на стр. 140) прочное внутрикомплексное соединение, не разрушающееся в сильнокислой среде. Определение тория может быть выполнено в присутствии сульфатов, фосфатов и даже ионов щавелевой кислоты, которую обычно применяют для связывания циркония. Вредное влияние железа (П1) и церия (IV) устраняют, восстанавливая их гидроксиламином. [c.249]

    Конечной стадией определения редкоземельных элементов является осаждение их в виде смешанных оксалатов с последующим прокаливанием до смешанных окислов и взвешиванием в этой форме. Основная часть церия будет присутствовать в этих окислах в высшей степени окисления — в виде СеОг в то же время взвешенный остаток будет содержать также торий, присутствующий в породе в виде ТЬОг, и иттрий в виде УгОз. В случае необходимости церий и торий могут быть отделены от остальных редкоземельных элементов химическими методами и определены самостоятельно. [c.354]

    Для маскировки мешающих ионов железа, ванадия, циркония, меди используется комплексон Ш /147/ или его смесь с хлористым магнием Д48/, Определению титана в этих условиях не мешают уран /У1/, церий ДУ/, торий, алюминий, хром /Ш/, кобальт, никель, цинк, марганец. [c.29]

    Одним из наиболее выдающихся химиков-аналитиков первой половины XIX в. был шведский ученый И. Я. Берцелиус. Он проанализировал большинство известных в то время химических соединений и определил соединительные веса всех известных тогда химических элементов. Следует отметить высокую точность этих определений, многие из которых, вьшол-иенные в 1818 г., весьма близки к современным. Так, для углерода Берцелиус нашел атомный вес 12,12, для кислорода 16,0 (приатомном весе водорода, равном 1), для серы — 32,3. Некоторые атомные веса были опре-дтлены менее точно и, кроме того, были кратными величинами истинных атомных весов так, для железа Берцелиус принял атомный вес 109,1, так как окислам железа в то время приписывали состав РеОг и РеОз. Берцелиус ввел современные знаки химических элементов, открыл ряд новых элементов (церий, селен, торий). [c.11]


    При анализе монацита тории и р. з. э. отделяются сначала щавелевой кислотой и таким образом освобождаются от фос форной кислоты и циркония. Промытые оксалаты переводят едким кали в гидроокиси, которые после отмывания от щелочи растворяют в разбавленной HNO3 (1 5), и полученный раствор упаривают досуха для полного удаления HNO3. Перед осаждением тория м-нитробензойной кислотой восстанавливают церий двуокисью серы для предотвращения соосаждения его с торием. Несмотря на довольно продолжительное время выполнения метод дает прекрасные результаты [1232, 1436] и используется для определения тория в минералах [282, 889]. [c.44]

    Определение содержания урана в горных породах и рудах [116, 122, 125]. 0,1—2 г пробы прокаливают для удаления сульфидов и органических веществ, обрабатывают смесью азотной и плавиковой кислот, к остатку для удаления плавиковой кислоты прибавляют азотную кислоту и выпаривают досуха. Операцию повторяют трижды. Остаток растворяют в 15 мл разбавленной (1 1) азотной кислоты, разбавляют водой до 50 мл и центрифугируют для отделения от нерастворимых примесей. К 10 лл полученного раствора прибавляют 19 г МН4ЫОз, нагревают до полного растворения, охлаждают и экстрагируют 20 мл этилацетата, 15 мл экстракта помещают в фарфоровый тигель, осторожно сжигают этилацетат, прокаленный остаток смешивают с 2 г фторидной смеси (45,5 г ЫзгСОз, 45,5 г К2СО3 и 9 г ЫаР) и сплавляют 5 мин при 605° С. Содержание урана в плаве определяют по интенсивности желто-зеленой люминесценции, используя шкалу стандартов, приготовленную сплавлением 2 г фторидной смеси с определенными количествами соединений урана. Метод позволяет определять от 0,002% и выше урана в присутствии меди, свивца, кобальта, никеля и марганца. Большие количества церия и тория мешают определению урана описанным способом. [c.329]

    При непосредственном титровании раствора нитрата тория оксалатами калия или аммония установление эквивалентно точки возможно также потенциометрическим методом [290]. Индикаторным электродом служит платиновая проволочка, а электродом сравнения — 0,1 А/ каломельный электрод, Для титрования используют 0,1 М раствор оксалата аммония или калия в нейтральном или слабокислом растворе (pH 6,8—6,9) при 25 или 60—70°. Оксалат натрия для этой цели не применяют вследствие сильного отклонения конечной точки титрования от эквивалентной. Раствор. Н2С2О4 для титрования также неприемлем, так как при этом индикаторный электрод ведет себя как водородный и маскирует эквивалентную точку [290]. Следует добавить, что ион натрия также маскирует конечную точку, если содержание его в исследуемом растворе более 1% концентрация ионов аммония не должна превышать 3% ионы же калия вообще не мешают определению тория [ 288]. Титрование проводят лишь в водном растворе, так как в растворах, содержащих спирт или ацетон, эквивалентная точка неотчетлива. При титровании 0,1 М раствором оксалата калия или аммония скачок потенциала в эквивалентной точке при 25° составляет 25 мв, а при 60—70°— 70 мв. В присутствии р. з. э. метод не применим, так как, например, для смеси тория с лантаном и церием на кривой получается только один перегиб, соответствующий суммарному содержанию всех трех элементов [288—290.  [c.53]

    Аммиак и едкие щелочи [405, 406, 1865] почти не имеют практического значения для отделения тория от р. з. э. При их использовании получается высокая концентрация гидроксильных ионов даже в разбавленных растворах, что приводит к образованию очень нежелательного местного избытка реагента, вызывающего одновременное осаждение и гидроокисей р. з. э. Более пригодным для этой цели оказалось применение окислов и карбонатов некоторых металлов, например, 2пО, СиО, РЬО, 2пСОз и РЬСОз, создающих значительные концентрации гид- роксильных ионов. Использование перечисленных окислов и, карбонатов [410, 412, 763, 778, 864, 1487, 1543], а также закиси Меди и карбоната марганца [1543] обеспечивает количественное отделение тория от р. з. э. Применению любого из этих оса-дителей должно предшествовать отделение циркония и восстановление четырехвалентного церия. Определение обычно заканчивается осаждением тория в виде гидроокиси или оксалата. Однако этот метод не нашел широкого использования вследствие продолжительности и необходимости дополнительного отделения введенных ионов металла. [c.95]

    Экстракция нитрата тория окисью мезитила (изопропили-динацетон) из смесей других нитратов в присутствии высали-вателя A1(N03)3, рекомендованная Левиным и Гримальди [1344], рассматривается как прекрасный аналитический метод отделения тория от радиоактивных осколков р. з. э. и церия в обоих валентных состояниях, а также от большинства катионов даже в присутствии фосфат- и сульфат-ионов [1044, 1344, 1408]. Недостатки метода U, Zr и V не отделяются от тория экстракт загрязнен А1, который необходимо удалять перед определением тория как весовым, так и колориметрическим методами. Подробно метод описан на стр. 187—190. [c.123]

    N -Бензоилфенилгидроксиламин количественно осаждает ионы тория при pH 2 в виде кристаллического осадка белого цвета. Осадок устойчив при нагревании до 220 °С. Реагент применяется для гравиметрического определения тория и его отделения от лантанидов (pH 4,5) и урана (в присутствии карбоната аммония при pH 7—8,5). Соединение тория с N -бензоилфенилгидр-оксиламином хорошо экстрагируется органическими растворителями (бензолом, хлороформом, изоамиловым спиртом и др.). Экстракционный метод отделения тория от лантанидов основан на экстракции его изоамиловым спиртом при pH 4,5. С помощью этого реагента возможно также отделение тория от церия, который осаждается и экстрагируется только при pH 6,5—7,5. [c.96]

    См. также качественное определение церия в тории [128] определение циркония в тории [1850] определение железа в тории [1852] определение кремния в окиси тория [1353, 1453] определение сульфата в нитрате тория [571] определение бора в боргидрндах металлов [1419] определение газов в металлическом тории [419а, 1710, 1796а, 1859а]. [c.227]

    Более пригодным для этой цели оказалось применение окислов и карбонатов некоторых металлов, например, 2пО, СиО, РЬО, 2пСОз и РЬСОз, создающих значительные концентрации гид- роксильных ионов. Использование перечисленных окислов и дарбонатов [410, 412, 763, 778, 864, 1487, 1543], а также закиси 1 еди и карбоната марганца [1543] обеспечивает количественное отделение тория от р. з. э. Применению любого из этих оса-дителей должно предшествовать отделение циркония и восстановление четырехвалентного церия. Определение обычно заканчивается осаждением тория в виде гидроокиси или оксалата. Однако этот метод не нашел широкого использования вследствие продолжительности и необходимости дополнительного отделения введенных ионов металла. [c.95]

    За последние годы метод амперометрического титрования с двумя индикаторными электродами нашёл широкое практическое применение, например, для титрования аскорбиновой кислотой церия, железа, урана, кобальта, вольфрама [52], для определения тория при помощи комплексона [53], а также в анализе органических соединений (оксимов, дифенилдиметилпира-зона, гексилрезорцина, сульфодиазона) [54] и др. и имеет ряд преимуществ перед другими электрохимическими методами. Метод позволяет анализировать растворы, содержащие малые количества (10 —10 г л) вещества не требует сложной электроизмерительной аппаратуры непродолжителен во времени посторонние вещества не мешают проведению анализа, если [c.145]

    При использовании этой реакции для количественного спектрофотометрического определения тория бцло установлено что церий (IV) ослабляет образующуюся окраску и должен быть восстановлен до церия [c.610]

    Чернихов Ю. А. и Успенская Т. А. Непосредственное определение церия и тория по податному методу объемным и весовым путем. Сб. науч. работ (Гос. н-и. ин-т редких и малых металлов), 1941, вын. 1, с, 91—133. Библ. 56 назв. 6133 Черницкая Р. Е. Спектральное определение примесей натрия в сернокислых солях никеля и кобальта. Зав. лаб., 1951, 17, № 4, с. 441—443. 6134 [c.233]

    Это определение было одновременно исследовано несколькими авторами. Согласно Фрицу и Форду [130], торий можно непосредственно титровать комплексонсм, если pH испытуемого раствора поддерживать в интервалах 2,3—3,4. Наиболее четкий переход окраски индикатора наблюдается при pH 2,8. В более кислых растворах (pH ниже 2,1) окраска раствора тория с индикатором слабее, в более щелочных растворах (pH выше 3,5) происходит гидролиз соли тория. Поэтому авторы рекомендуют следующий ход определения к 100 мл раствора, содержаи],его 120—240 мг тория, прибавляют 4 капли 0,05%-ного водного раствора индикатора и добавлением аммиака уменьшают кислотность анализируемого раствора до появления розовой окраски (pH 2,5). Титруют 0,025 М раствором комплексона почти до исчезновения окраски раствора. Затем pH раствора доводят до 3 (при потенциометрическом контроле) и дотитровывают раствором комплексона. Полученный раствор имеет чисто желтый цвет. Целесообразно проводить перемешивание при помощи электромагнитной мешалки. Аналогичным способом определяют и меньшие количества тория (6—50 мг в 25 мл раствора). Определению мешает присутствие железа, висмута, циркония, церия, олова, ванадия, свинца, меди и никеля. Как отмечают авторы, комплексометрическое определение тория приобрело большое значение вследствие возможности удовлетворительного отделения тория от мешающих элементов экстракцией его окисью мезитила (метод разработан Левеном и Гримальди [131]). Экстракцию проводят следующим образом к 1,2 Ж раствору соли тория прибавляют на каждые 10 мл 19 г нитрата алюминия в качестве высаливающего агента и одной экстракцией окисью мезитила отделяют торий от редкоземельных катионов, фторидов и фосфатов. Вместе с торием извлекаются ванадий, уран, цирконий и небольшое количество алюминия. Титрованию тория раствором комплексона не мешают алюминий и уран перед экстракцией тория следует предварительно отделить цирконий и ванадий. [c.363]

    Разработан метод потенциометрического определения тория и церия с использованием купферона, дающего с этими элементами труднорастворимые соединенич. Показана возможность определения тория и церия при совместном присутствии. [c.400]

    Изменение цвета раствора наступает очень резко от 1—2 капель 0,025-м. раствора трилона. Точность определения 0,05%, Метод рекомбнд /ется для определения тория в количестве 0,25% И более. Магний, цинк, кадмий, марганец, алюминий, кальций, церий (Hi), железо (II) и небольшие количества меди и никеля (до 1 % каждого) определению не мешают. Мешает же лезо (III) и церий (IV), поэтому их до титрования тория восстанавливают гидроксиламином. [c.248]

    Для отделения тория предложены методы ионного обмена, хроматография на колонках, жидкостная экстракция и осаждение. Ни один из этих методов не обеспечивает полного отделения тория за одну операцию, и многие авторы рекомендуют сочетание двух и более методов. Аниониты применяются для отделения тех элементов, которые в хлоридных растворах образуют анионные комплексы, от тория и других элементов, не образующих их [8]. Таким путем можно отделить уран и цирконий — элементы, мешающие фотометрическому определению тория с арсеназо III. Редкоземельные элементы, которые также мешают определению тория, проходят вместе с торием в элюат. Калкин и Райли [9] применили метод жидкостной экстракции трибутилфосфатом для выделения тория, циркония (-f гафния) и церия из силикатных пород и отделения этих элементов на колонке С катионитом. Для вымывания циркония (-Ьгафния) и тория применялись растворы щавелевой кислоты, а для вымывания церия — соляная кислота. [c.405]

    С помощью п-оксифенипарсоновой кислоты можно осадить титан и отделить его от железа (П,Ш), алюминия, цинка, вобальта, никеля, бериллия.хрома (Ш), марганца (П), церия (Ш), тория, фосфатов, молибдатов, хроыатов, ванадатов, уранила мешают определению ионы циркония, церия (1У), олова / 8/. [c.8]

    Реактив осаждает титан из минеральвокислых растворов (0,6 н. по соляной кислоте или 1,8 н. по серной кислоте). Определению титана не мешают алюминий, цинк, кобальт, никель, бериллий, хром (Ш), марганец, таллий, церий (Ш), торий, фосфаты, молибдаты, хроматы, ванадаты, уранил. Мешают определению цирконий, церий (1У), олово. Железо не мешает в присутствии роданида. [c.32]

    Метод определения фтора с ализариновым красным С основан на разрушении фторидаш комплекса реактива с торием, цирконием или церием. Определение проводят в кислой среде (pH 2-4). Чувствительность метода около 1 мкг/мл. Разработаны методы определения фторидов в различных объектах (вода, уголь, удобрения и др.). В водах фтор можно определить без предварительной дистилляции. [c.33]


Смотреть страницы где упоминается термин Церий определение в тории: [c.87]    [c.87]    [c.139]    [c.227]    [c.149]    [c.299]    [c.295]    [c.16]   
Эмиссионный спектральный анализ атомных материалов (1960) -- [ c.489 , c.492 ]




ПОИСК





Смотрите так же термины и статьи:

Торий определение

Церий

Церит



© 2025 chem21.info Реклама на сайте