Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Азеотропные смеси давления

    Ароматические углеводороды образуют с парафиновыми и нафтеновыми углеводородами, содержащимися в продуктах риформинга и пиролиза, азеотропные смеси из таких смесей выделить ароматические углеводороды с высокой степенью чистоты обычной ректификацией не удается. Азеотропная смесь ароматических углеводородов Сб — Са с парафиновыми и нафтеновыми углеводородами характеризуется более низкой температурой кипения, т. е. большим давлением насыщенных паров, чем каждый из компонентов этой смеси. Температуры кипения и состав азеотропных смесей бензола, толуола и ароматических углеводородов С а с некоторыми парафиновыми и нафтеновыми углеводородами приведены в табл. 2.1, 2.2 и 2.3 [3— 15]. [c.37]


    Если разделяемая смесь образует при атмосферном давлении азеотроп, то с понижением давления азеотропная смесь обогащается низкокипящим компонентом и при некотором остаточном давлении азеотроп может исчезнуть . Например, смесь этанол— вода при 70 мм рт.ст. азеотропа не образует (см. разд. 6.2.1). Следовательно, вакуумной ректификацией при давлении ниже 70 мм рт. ст. можно получать абсолютно чистый спирт без примесей Следует обратить внимание на то, что при таком разрежении температура кипения спирта сравнительно низка (примерно [c.263]

    Влияние давления на свойства азеотропных смесей. При изменения давления, под которым ведется перегонка, состав азеотропной смеси обычно изменяется. Направление, в котором влияет увеличение или уменьшение давления, зависит от величины углового коэффициента кривых упругости пара компонентов азеотропной смеси. В некоторых случаях таким путем можно разделить азеотропную смесь. Например, на рис. 17 можно видеть, что имеется возможность избежать образования азеотропной смеси воды и этанола, если снизить давление перегонки ниже 70 мм рт. ст. [33]. Наоборот, как видно из рис. 18, азеотропная смесь метанола и метилэтилкетона (МЭК) уже не образуется, если давление перегонки выше 3000 мм рт. ст. [8]. В табл. 24 приведены данные, показывающие влияние давления на систему метанол — бензол. Следует отметить, что по мере роста давления увеличивается и разность А температур кипения чистых компонентов. Дальнейшее увеличение давления должно в конце концов [c.122]

    Классическим примером азеотропной смеси углеводородов с минимальной температурой кипения являются циклогексан и бензол [14]. Эти вещества, кипящие соответственно при 80,8 и 80,1°, образуют азеотропную смесь, кипящую при 77,7°. Кривая давления пара этой смеси подобна кривой показанной на рис. 13. На рис. 14 показана х — г/-диаграмма для этой смеси. Состав азеотропной смеси соответствует точке пересечения кривой у = х) и прямой, образующей с осями координат угол в 45° (у = х). Если производить фракционную перегонку смеси бензола с циклогексаном, содержащей 20%о мол. циклогексана, то первым погоном будет [c.120]

    Обычно вопрос о замене ректификации другим способом возникает в тех случаях, когда применение ее либо вообще невозможно, либо сопряжено со значительными дополнительными затратами. Например, обычная ректификация не позволяет выделить компоненты, входящие в азеотропную смесь. Нужно либо изменить давление в системе и тем самым сдвинуть азеотроп, либо применить азеотропную или экстрактивную ректификацию, подобрав соответствующий разделяющий агент. [c.85]


    Был предложен [324] метод получения безводного этанола путем азеотропной ректификации, с использованием в качестве разделяющего агента диэтилового эфира, дающего с водой азеотропную смесь с минимумом температуры кипения. Для того чтобы повысить содержание воды в азеотропе, процесс проводится под давлением 6—11 ати. Конденсат азеотропа эфир— вода расслаивается. Эфирный слой возвращается в колонну, а отбирается только водный слой, из которого затем отгоняется содержащийся в нем эфир. Абсолютный этиловый спирт получается в процессе азеотропной ректификации в виде кубовой жидкости. [c.283]

    Перегонка при различных давлениях. Выше уже указывалось па изменение состава азеотропной смеси под влиянием изменения давления, под которым производится перегонка. В некоторых случаях этот принцип может быть использован для выделения разделяющего агента из гомогенной азеотропной смеси. Иа рис. 22 приведена идеализированная схема на трех последовательно соединенных колонн, иллюстрирующая этот метод. Смесь, содержащая по 50 частей компонентов А и В, разделяется путем непрерывной перегонки с добавлением 50 частей разделяющего агента Е. Чистый компонент В отбирается со дна колонны К-1, работающей при давлении Р . Азеотропная смесь из колонны К-1 содержит по 50 частей А и Е. Эта смесь перегоняется в колонне К-2 при давлении Р , где получается азеотропная смесь, содержащая 80% А и 20% Е. Эти величины, отнесенные к исходным продуктам, соответствуют 50 частям А и 12,5 частям Е. Со дна колонны К-2 отбираются 37,5 частей Е, которые поступают обратно в колонну К-1. Азеотропная смесь, выходящая из колонны К-2, поступает в колонну Я-<3, работающую при давлении Рд, где получаемая азеотропная смесь имеет тот же состав, что и азеотропная смесь из колонны К-1. По отношению к исходным продуктам эта смесь содержит 12,5 частей А и 12,5 частей Е. Она вводится обратно в виде сырья в колонну К-2. Са дна колонны К-3 отбираются 37,5 частей чистого компонента А. Берг с соавторами [5] описали подобный процесс с применением двух колонн, предназначенный для восстановления изобутанола из азеотропной смеси изобутанола с этилбензолом, образующейся при очистке стирола. [c.126]

    Обезвоживание пропана. Для обезвоживания жидкого пропана применяется одна из разновидностей азеотропной перегонки. В процессе получения и при последующем хранении жидкий пропан поглощает небольшое количество воды в растворенном виде. При полном насыщении и при температуре 27° в пропане содержится 0,092% мол. воды. Активность воды, растворенной в пропане, очень высока, однако эту воду можно отогнать в виде азеотропной смеси [12]. Схема этого процесса изображена на рис. 24. Влажный пропан непрерывно поступает в колонну для обезвоживания. Сухой пропан (температура кипения при атмосферном давлении —42°) получается в виде остатков, а отогнанный продукт представляет собой азеотропную смесь воды и пропана. После конденсации отогнанный продукт расслаивается на две фазы. Верхняя — углеводородная — фаза возвращается в колонну, а нижняя — водная — фаза сливается. Данные по равновесию системы жидкость — пар для пропана, насыщенного водой, приведены в табл. 26. При низких давлениях константа равновесия для испарения воды из раствора в пропане значительно превышает единицу. Это означает, что в данных условиях вода является более летучим компонентом. [c.129]

    Характер изменения парциального давления компонентов и общего давления смеси показан на рис. 2. 14 для смеси ацетон и сероуглерод, образующей азеотропную смесь с минимальной температурой кипения, а иа рис. 2. 15 — для смеси хлороформа с ацетоном с максимальной температурой кипения. [c.64]

    Азеотропную смесь, давление пара над которой выше давления пара обоих чистых компонентов (положительное отклонение от идеальности), принято называть положительным азеотропом. [c.12]

    Системы с минимумом давления паров имеют максимум температуры кипения на изобарной кривой, причем эта температура выше температуры кипенпя высококипящего компопепта, а кривые испарения и кондеш ации сходятся в этой точке. Такпе системы также образуют азеотропную смесь. В таких системах до точки максимума [c.195]

    Химический состав и свойства ВОТ. Дифенильной смесью (ВОТ) называется эвтектическая азеотропная смесь дифенила (26,5%) и дифенилоксида (73,5%). Температура насыщения этой смеси при атмосферном давлении равна 258° С. По сравнению с дифенилом и дифенилокспдом дифенильная смесь обладает тем преимущество.м, что имеет более низкую температуру плавления (12° С). Дифенильная смесь — прозрачная жидкость янтарного цвета. Она неядовита, при вдыхании вызывает небольшое раздражение слизистых оболочек, но для организма человека она не вредна. ВОТ горит сильно коптящим пламенем, которое можно погасить струей водяного пара. Смесь не оказывает корродирующего действия на сталь, так что вопрос выбора конструкционных материалов не представляет трудностей. На поверхности нагрева при применении ВОТ В качестве теплоносителя не образуется пленки или осадка, что весьма важно для теплопередачи. [c.302]


    При разделении азеотропной смеси с максиму юм температуры кипения исходная смесь состава Хр подается в ректификационную колонну I, работающую под давлением л,. Здесь смесь разделяется на компонент выводимый в виде дистиллята, и смесь близкого к азеотропному состава Хд , отбираемую в виде нижнего продукта. Последний поступает на разделение в колонну 2, работающую под давлением 2, в которой получают компонент а в виде верхнего продукта и смесь близкого к азеотропному состава х в виде нижнего продукта. Эту азеотропную смесь смешивают [c.191]

    Азеотропные смеси не являются химическими соединениями. Это подтверждается тем, что состав азеотропной смеси зависит от давления, а следовательно, не соблюдается обязательный для каждого химического соединения закон постоянства состава. Так, например, смесь этиловый спирт - вода при давлении 101,3 кПа образует азеотроп, содержащий 88,4 мол.% спирта. При понижении давления концентрация спирта в азеотропе увеличивается, а при абсолютном давлении ниже 12 кПа азеотропная смесь вовсе не образуется. [c.17]

    При регенерации таких растворителей из водных растворов и отгоне воды из них следует иметь в виду, что при ректификации растворителя, в котором растворено небольшое количество воды, низкокипящим компонентом является азеотропная смесь, а высококипящим— растворитель при ректификации воды с небольшим количеством растворителя (водного слоя) низкокипящим компонентом при атмосферном давлении является та же азеотропная смесь, а высококипящим — вода. [c.108]

    Один путь — это изменение внешнего давления, при этом азеотропная точка С перемещается в область, где состав смеси Ус, соответствующей этой точке, близок либо к нулю, либо к единице, т. е. азеотропную смесь можно принять за практически чистый продукт. [c.360]

    Близость температур кипения, о которой можно судить на основании табл. 50, не является единственной причиной трудности выделения индивидуальных нафтенов. В смеси с другими углеводородами нафтены склонны образовывать азеотропные и другие смеси, давление паров которых не подчиняется законам, действительным для обычных смесей даже простейшие компоненты, а именно бензол и циклогексан, образуют азеотропную смесь. Простой ректификации недостаточно, чтобы выделить в чистом состоянии какой-нибудь нафтен, присутствующий в сырой нефти. Нафтены можно отделить от ароматических углеводородов с помощью экстракции растворителями. Относительно легко осуществляется такое разделение методами [c.235]

    Способность ограниченно смешивающихся жидкостей образовывать гетероазеотропы используется для разделения азеотропных смесей в системах с неограниченной взаимной растворимостью компонентов. Так, азеотропная-смесь в системе пиридин — вода, содержащая 57% пиридина и кипящая при 365 К, методом перегонки не может быть разделена на чистые компоненты. Однако если к такой азеотропной смеси добавить бензол, который образует с водой гетероазеотроп, кипящий при более низкой температуре (342 К), то при перегонке водных растворов пиридина в присутствии бензола можно получить чистый пиридин, а вода вместе с бензолом в виде гетероазе-отропа перейдет в дистиллят. Диаграмма на рис. 139 отвечает системе, в которой гетероазеотроп не образуется. В такой системе во всем интервале концентраций пар богаче жидкости компонентом Б, имеющим более низкую температуру кипения при заданном давлении. Такие системы характеризуются тем, что состав пара (точка О), равновесного с жидкими растворами (точки С и D), не является промежуточным между составами жидких растворов. Кроме того, температура равновесной трехфазной системы не будет самой низкой температурой, при которой существует равновесие пар—жидкость. Систему с ограниченной взаимной растворимостью компонентов второго типа перегонкой можно разделить на два чистых компонента. Примерами систем данного типа могут служить системы вода — фенол, гексан — анилин, вода — никотин, бензол — ацетамид, метанол — тетраэтил-силан и др. [c.398]

    Реакцию между низшими спиртами и аммиаком обычно проводят при 350—450° и давлениях до 100 ат. В Германии метиламины получали, пропуская при 370° и 60—200 ат смесь 1 моля метанола и 4—5 молей аммиака над окисью алюминия на каолине. Реактор был выложен внутри медью [33]. Смесь метиламинов разделяли ректификацией под давлением, используя высокие давления насыщенного пара метиламинов и образование азеотропной смеси триметиламина с аммиаком. Вначале отгоняли воду, а затем азеотропную смесь триметиламина с аммиаком и избыток аммиака. В заключение моно- и диметиламин разделяли в перегонном кубе периодического действия, работавшим под давлением 5—15 ата. В отдельном небольшом реакторе азеотропную смесь триметиламина и аммиака подвергали частичному превращению в моно- и диметиламин и смесь продуктов реакции присоединяли к общему продуктовому потоку. [c.386]

    Этот закон указывает принципиальную возможность разделения азеотропных смесей путем изменения давления при перегонке. С изменением давления азеотропная точка перемещается на равновесной кривой. Прн совпадении этой точки с правым верхним углом квадранта диаграммы у—х в большинстве случаев удается разделить азеотропную смесь перегонкой. [c.477]

    Предложен аналитический метод определения азеотропного сдвига по данным о температурной зависимости давления насыщенных паров чистых компонентов, образующих азеотропную смесь. [c.104]

    При значительных отклонениях на кривой зависимости давления пара над раствором от состава появляется максимум (при положительных отклонениях) или минимум (при отрицательных), т. е. давление пара смеси становится большим, чем р° каждого из компонентов (или соответственно меньшим) (рис. 3.6, а). В точках, соответствующих максимуму или минимуму, состав пара совпадает с составом жидкости второй закон Коновалова). Такие смеси называются азеотропными. Азеотропную смесь путем перегонки разделить нельзя. Возьмем, например, смесь, отвечающую точке а на рис. 3.6,6. При кипении пар в соответствии с первым законом Коновалова должен обогащаться компонентом В. Фракционная перегонка раствора такого состава приводит к концентрированию в остатке компонента А, а в конденсате — азеотропной смеси. [c.118]

    Мэйр, Глазго и Россини [84], исследовав свойства азеотропных смесей различных углеводородов, пришли к выводу, что в азеотропах, образованных каким-нибудь веществом и парафиновыми, циклическими, олефиновыми, диолефиновыми и ароматическими углеводородами с одинаковыми температурами кипения, отклонение парциальных и общего давлений от значений, соответствующих идеальным смесям, уменьшается для этих углеводородов в приведенной последовательности. Наинизшую температуру кипения имеет азеотропная смесь, образованная парафиновым углеводородом, и наивысшую — ароматическим углеводородом. Для иллюстрации этого положения в табл. 10 приводятся данные о температурах кипения азеотропных смесей этилового спирта и некоторых углеводородов. [c.78]

    Некоторые растворы, сильно отличающиеся от идеальных, характеризуются кривыми особой формы. Такими растворами являются, например, бинарные смеси веществ, которые при определенном молярном соотнощении имеют максимум или минимум упругости паров. В первом случае при перегонке отгоняется сначала смесь постоянного состава (при данном давлении) — так называемая азеотропная смесь, [c.44]

    Он имеет экстремальную температуру кипения наименьшую — при положительных отклонениях, наибольшую — при отрицательных отклонениях от закона Рауля. Азеотропный раствор кипит при постоянной температуре (при условии постоянства внешнего давления) без изменения своего состава. Однако при изменении внешнего давления меняется не только его температура кипения, но и состав. Это указывает на то, что азеотропная смесь не является химическим соединением. Чаще всего встречаются системы с минимальной температурой кипения азеотропных смесей. К ним относятся вода — этиловый спирт метиловый спирт — ацетон бензол — уксусная кислота и др. [c.99]

    Как указывалось выше, обычными средствами нельзя разделить гомогенные в жидкой фазе бинарные азеотроиы на два практически чистых компонента, ибо одним из концевых продуктов колонны всегда оказывалась бы кипяш,ая при постоянной температуре азеотропная смесь. Однако если при изменении Бнешпего давления состав азеотропной смеси сдвигается в достаточной степени, то использование двухколонной схемы ректификации позволяет сравнительно просто осуш,ествить разделение гомоазеотропа на два практически чистых компонента. [c.325]

    По достижении равновесия записывают температуру кипения жидкости, барометрическое давление и слегка открывают кран 10 для отбора дистиллята. При отборе дистиллята нужно не только поддерживать в колонке рен<им, близкий к только что установленному, но и следить за соотношением орошения, возвращаемого в кoJ[oнкy, и дистиллята, отбираемого в приемник, за один и тот же промежуток времени. Для хорошего погоноразделения важно, чтоб)л это сэотношение (флегмовое число) было высоким, но чтобы количество флегмы не достигало величины, прп которой колонка начинает захлебываться . Для описываемой колонки флегмовое число долйсно быть равно 20 1—45 1. Оно определяется по числу капе.ть и регулируется нри помощи крана 10 конденсатора. Пока температура пара остается постоянной (отгоняется индивидуальное вещество или азеотропная смесь), флегмовое число [c.151]

    Так же распадается HNOз и при нагреоанни. Азотную кислоту можно перегонять (без- разложения) только при пониженном давлении (указанная выше т. кил. при атмосферном давлении найдена экстраполяцией). С водой ННОз образует азеотропную смесь, содержащую 68,4% HNOз и кипящую при 121,9 °С (прн 101 кПа). [c.409]

    В общем случае понижение давления сказывается таким образом, что азеотропная смесь обогащается легкокипящим компонентом. Во многих случаях в конце концов при некотором вакууме, азеотропный состав исчезает. В качестве примера можно указать на разделение смесей этанол—вода и вода—фенол (рис. 226). Вакуумной перегонкой при 70 мм рт. ст. получают абсолютный спирт и без разделяющего агента. Азеотропная точка на кривой равновесия смеси вода—фенол исчезает при остаточном давлении 32 мм рт. ст. Шнайнкер и Пересслени [45] установили, что азеотропная точка смещается следующим образом азеотроп смеси муравьиная кислота—вода при 55 мм рт. ст. содержит 66% (масс.) муравьиной кислоты, а при 200 мм рт. ст. — 72% (масс.) кислоты азеотроп смеси бутанол—бутилацетат при 50 мм рт. ст. содержит 37% (мол.) бутанола, а при 760 мм рт. ст. — 79% (мол.) спирта. [c.306]

    Азеотроцпыми называют жидкие смеси, состав пара над которыми такой же, как состав жидкости (при определенном давлении пара). Азеотропную смесь нслыя разделить перегонкой — опа перегоняется как индивидуальное вещество. Это свойство не сохраняется при изменении давления (а, следовательно, и температуры перегонки.). [c.409]

    Разделение смеси на компоненты путем ректификации затрудняется в системах, в которых компоненты в чистом состоянии обладз7от близкими давлениями насыщенного пара или в которых образуется азеотропная смесь. В таких случаях нередко применяют методы, называемые азеотропной перегонкой и экстракционной (экстрактивной) перегонкой. Они основаны на добавлении к системе из двух компонентов третьего, который обладает различной растворяющей способностью по отношению к основным компонентам системы и в соответствии с этим неодинаково изменяет летучесть последних. В качестве примера азеотропной перегонки можно привести обезвоживание этилового спирта путем перегонки при добавлении бензола, а в качестве экстракционной — разделение бутан-бутиленовой смеси путем перегонкн при добавлении водного раствора ацетона. [c.324]

    Закон Рауля, являющийся одним из основных в теории перегонки и ректификации, приложим далеко не ко всем растворам. Существуют так называемые азеотропные смеси, образующие при известном составе нераздельно кипящую фракцию, перегоняющуюся при постоянной температуре, которая мо-жет быть или более высокой или более низкой, чем температура кипения компонентов. Например, бензол <т. кип. 80,2° С) и циклогексан (т. кип. 80,75° С) образуют азеотропную смесь с содержанием 55 /о бензола и температурой кипения 77,5° С. Разделить азеотропные смеси перегонкой и ректификацией невозможно, так как при известной температуре будет кипеть нераздельно кипящая смесь. Чтобы разделить азеотропную смесь, приходится прибегать или к изменению температуры перегонки путем изменения внешнего давления или прибавлением третьего компонента (при изменении давления паров меняется состав азеотропной смеси), или использовать различную растворимость или различие температур застывания компонентов, входящих в азеотропную смесь. При обычной перегонке нефти, когда получаются фракции, кипящие в широких интервалах температур, наличием азеотропных смесей можно пренебречь и считать, что нефть представляет идеальный раствор, следующий закону Рауля. С особенностями азеотропных растворов приходится сталкиваться при выделении из легких фракций нефти отдельных индивидуальных углеводородов, особенно ароматических. Например для правильного распределения метановых углеводородов по двухградусньш фракциям при тщательной ректификации бензина оказалось необходимым удалить предварительно из бензмна ароматические углеводороды. При перего нке бензинов бензол (т. кип. 80,2° С) концентрируется во фракциях, кипящих. при 71—75° С, а толуол (т. кип. 110,6° С) концентрируется во фракции с температурой кипения ЮГ С. [c.173]

    Пример VIII. 9. Система ацетон — хлороформ при давлении 760 мм рт. ст. образует азеотропную смесь состава у = х = = 0,335 мол. доли с максимумом температуры кипения / = 64,5° С. При этой температуре давление паров ацетона Р] = 100() ммрт. ст., а хлороформа Р2 = 858 мм рт. ст. [c.280]

    Задача VIII. 7. Система этиловый спирт — вода при давлении 760 мм рт. ст. образует азеотропную смесь состава у = х = 0,8943, кипящую при i = 78,17° . Давление паров чистых компонентов при этой температуре составляет pi = 753 мм рт. ст. и рг = = 330 мм рт. ст. С помощью уравнения ван-Лаара определить состав жидкости и пара при температуре i = 80,7° , при которой давления паров чистых компонентов составляют pi = 835 мм рт. ст. W Рг = 366 мм рт. ст. [c.304]

    Из рис. 1.10 сдедует, что линии парциальных давлений, линия кипения и равновесная линия не зависят от состава (параллельны оси абсцисс). Система образует азеотропную смесь в точке А с минимальной температурой кипения. Кривая MAN изображает линию конденсации. [c.19]

    Технический спирт, представляющий азеотропную смесь с 4,43% воды можно обезводить различными способами, а именно нагреванием под давлением с окисью кальция или с гипсом, азеотропной перегонкой с бензолом (тройная азеотропная смесь состоит из 18,5% вес. спирта, 74,1% вес. бензола и 7,4% вес. воды киппт при 64,9°) или с трихлорэтиленом (тройная азеотропная смесь состоит из 23,8% объемн. сшгрта, 69,4% объемн. трихлор-этилена и 6,8% объемн. воды кппит при 67,2°) [46]. [c.460]

    Пусть компоненты А и В образуют азеотропную смесь, состав которой известен лишь при давлении Ри Содержание компонента А при этом давлении составляет ш вес. %. Обозначим через Рд давление, при котором температуры кипения компонентов А. и В становятся равными между собой. При этом содерноние компонента А, согласно предыдущему, составляет 50 мол. % или Пд вес. %. Исходя из линейного характера зависимости состава азеотропной смеси от логарифма давления, имеел  [c.102]


Смотреть страницы где упоминается термин Азеотропные смеси давления: [c.148]    [c.21]    [c.392]    [c.311]    [c.294]    [c.191]    [c.365]    [c.389]    [c.174]    [c.201]    [c.392]   
Химическая термодинамика Издание 2 (1953) -- [ c.310 ]




ПОИСК





Смотрите так же термины и статьи:

Азеотропная смесь

Азеотропная смесь максимальным давлением паров

Азеотропная смесь минимальным давлением паров

Азеотропные смеси влияние давления

Азеотропные смеси влияние температуры и давления на состав

Влияние давления на состав и температуру кипения азеотропных смесей

Диаграмма давление пара—состав для азеотропных смесей

Нераздельно кипящие (азеотропные) смеси при общем давлении . Токсичность

Системы с максимумом и минимумом давления пара Азеотропные смеси

Системы с максимумом или минимумом давления паров Азеотропные смеси

Системы с максимумом или минимумом давления пэров. Азеотропные смеси

Смесь азеотропная Азеотропные рас



© 2022 chem21.info Реклама на сайте