Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Резина восстановление деформаци

    Эластичность характеризуется не только способностью к восстановлению размеров и формы, но и легкостью деформации под действием силы, максимально возможной степенью деформируемости резины, скоростью эластического восстановления и способностью к обратимому поглощению энергии. Таким образом, эластичность резины может быть разносторонне характеризована только целым комплексом показателей. [c.92]


    Таким образом, наименее морозостойкой резина является при растяжении, более морозостойкой — при сжатии и наиболее морозостойкой — при сдвиге. Для получения показателя морозостойкости в наиболее жестких деформационных условиях следует проводить его определение при растяжении, что гарантирует значение этого показателя при других видах деформаций. Для более точной оценки морозостойкости необходимо определять ее при том виде деформации, который характерен для эксплуатации данных изделий. В частности, для оценки морозостойкости резиновых изделий, работающих при статическом сжатии (например, различных прокладок), представляет интерес метод эластического восстановления при сжатии по ГОСТ 13808—68. Этот метод дает результаты, хорошо коррелирующие-ся с эксплуатационными данными. Уплотнительные резиновые детали надежно работают, если коэффициент эластического восстановления не ниже 0,2. [c.88]

    Этому соответствует постепенно замедляющееся нарастание деформации (рис. XI—И) вплоть до предела Yma =тo/G, определяемого модулем упругости гуковского элемента. Такой процесс называется упругим последействием-, он обнаруживается в твердообразных системах с эластическим поведением. Эластическое поведение механически обратимо — снятие напряжения приводит за счет энергии, накопленной упругим элементом, к постепенному уменьшению деформации до нуля, т. е. к восстановлению исходной формы тела. Вместе с тем, в отличие от истинно упругого тела, процесс деформации эластического тела термодинамически необратим — в этом случае происходит диссипация энергии на вязком элементе. Такой модели отвечает, например, затухание механических колебаний в резине. [c.313]

    Закрытая петля имеет место при многократных деформациях и получила название упругого гистерезиса. При этом разница в ходе кривых деформации и восстановления вызывается в основном наличием внутреннего трения в резине, т. е. несоответствием между временем воздействия нагрузки и временем, потребным для установления равновесия между напряжением и деформацией. С явлением упругого гистерезиса приходится сталкиваться при оценке амортизационной способности резины в условиях быстрых циклических деформаций (стр. 328). [c.46]

    Динамический реометр (анализатор процессов переработки резин КРА 2000) разработан фирмой Монсанто для исследования резиновых смесей. Этот многофункциональный, управляемый компьютером прибор позволяет реализовать довольно сложные режимы испытаний. Соответствующим подбором частоты, деформации, температурных и временных условий можно создать методику, специально направленную на выяснение морфологии систем каучук-наполнитель [32]. Используются два метода первый включает постепенное разрушение структуры композиции, второй изучает её поведение при восстановлении предварительно разрушенной морфологии. [c.477]


    При растяжении определяется остаточная деформация 0 (в %) как отношение разности длин рабочей части образца после восстановления и до испытания к первоначальной длине рабочей части образца. 0 не является истинной остаточной деформацией, так как за время отдыха (1 мин) резина не успевает полностью обратимо деформироваться, однако в качестве сравнительной характеристики эта величина вполне пригодна. [c.116]

    Таким образом, механизм деформации наполненных полимеров выше температуры стеклования (в равной мере для пластмасс и резин) заключается в разрыве определенного числа связей между полимерными молекулами и поверхностью наполнителя с последующим их восстановлением в деформированном полимере после прекращения действия напряжений. В результате этого в полимере возникают неравновесные, напряженные структуры. Это, в свою очередь, приводит к изменению набора времен релаксации в наполненном полимере и, следовательно, к изменению скорости деформации по сравнению с ненаполненным полимером. [c.156]

    Если известно, что угол атаки абразивной струи близок к 90°, то поверхность детали можно предохранить от изнашивания покрытием из резины, способной амортизировать удар частиц в пределах упругих деформаций с последующим восстановлением формы. [c.45]

    Явление упругого последействия состоит в постепенном восстановлении резины после прекращения механического воздействия или, другими словами, в уменьшении со временем величины остаточной деформации. Величина остаточной деформации резины зависит также от продолжительности ее деформации с увеличением продолжительности деформации увеличивается и величина остаточной деформации, это увеличение может происходить в десятки раз . [c.99]

    На рис. 125 приведены кривые сжатия резиновых цилиндров из трех типов производственных резин, полученные при деформации между параллельными плитами (пунктиром показаны кривые восстановления при первом цикле деформации). [c.185]

    Упругостью называется способность тел противодействовать-внешним деформирующим силам, обусловливающая восстановление первоначальной формы после прекращения внешних воздействий. Если восстановление формы тела полное, то такое тело называют упругим. Если же первоначальная форма Тела восстанавливается лишь частично, то такое тело называют упруго-пластическим или упруго-вязким, а деформацию тела разделяют на две части — обратимую, называемую упругой, и необратимую, называемую остаточной или пластической. Когда величина деформации тела зависит не только от величины приложенных сил, но и от времени, то говорят о релаксационном характере деформации. В этом случае восстановление формы упругого тела может происходить в течение весьма длительного времени. Релаксационные явления играют весьма значительную роль в процессах деформации таких тел, как резина, и поэтому они подробно разобраны в конце этой главы. [c.185]

    Упругая деформация имеет место при кратковременном действии деформирующей силы или при многократных знакопеременных деформациях, происходящих с большой частотой при небольшой амплитуде. Чаще всего приходится иметь дело с высокоэластической деформацией резины, величина которой увеличивается при увеличении продолжительности действия деформирующей силы. Пластические деформации характерны для невулканизованного каучука, они возникают в результате взаимного скольжения молекул под действием внещней деформирующей силы. Скольжение молекул у вулканизованного каучука сильно затруднено наличием прочных связей между молекулами, и поэтому вулканизаты, не содержащие наполнителей, почти полностью восстанавливаются после прекращения действия внешней силы. Наблюдаемые при испытании наполненных резин неисчезающие деформации являются следствием нарушения межмолекулярных связей, а также следствием нарушения связей между каучуком и компонентами, введенными в него, например, вследствие отрыва частиц ингредиентов от каучука. Неисчезающие остаточные деформации часто являются кажущимися вследствие малой скорости эластического восстановления, т, е. оказываются практически исчезающими в течение некоторого достаточно продолжительного времени. [c.90]

    Жидкие прослойки, оказывая пластифицирующее действие, облегчают процессы пластической деформации и тиксотропного восстановления. Вместе с тем, они могут обладать структурно-механическими свойствами, что в большей или меньшей степени определяет прочность таких систем, как желатинированные эмульсии, пены, многие лакокрасочные композиции, битумы, наполненные резины и др. [411]. [c.98]

    Можно определенно утверждать, что наблюдаемое явление смягчения не является следствие.м остаточной деформации или медленного вязко-упругого возвращения в состояние равновесия. Набухание и практически полное продольное восстановление исключают такую возможность. Следовательно, при растяжении резины разрушаются некоторые элементы сетки, которые не участвуют в процессе противодействия прилагаемой нагрузке в течение второго и третьего циклов растяжения. Различными исследователями высказывались разные предположения о природе этих разрушенных элементов. [c.23]


    Поскольку релаксационные процессы значительно ускоряются при повышенных температурах, хотя и не завершаются полностью при непродолжительном испытании, состояние материала может считаться условноравновесным. Испытание проводится на специальном приборе при 70 °С. Образец в течение 15—30 с растягивают на определенную величину, и по истечении 1 ч замеряют усилие, обеспечивающее заданную деформацию. За счет вязко-упругих свойств в вулканизованной резине общая деформация может быть не полностью обратимой, поэтому определение остаточной деформации, наряду с общей, дает более полную картину упругоэластических свойств резин. Остаточная деформация определяется после самопроизвольного восстановления формы и размеров образца в течение определенного времени после снятия нагрузки (по ГОСТ 270—75). [c.116]

    Упругое восстановление формы эластичных жидкостей происходит во многом аналогично упругому восстановлению резин после снятия внепшей нагрузки. Но в отличие от резин высокоэластические деформации, накопленные при течении полимерных систем, способны релаксировать. Это означает, что если между моментом прекращения принудительного деформирования и началом упругого восстановления проходит некоторое время, то конечное значение измеряемой высокоэластической деформации оказывается тем меньше, чем бЬльше период времени релаксации запасенной высокоэластической деформации. В отличие от этого в резинах равновесная высокоэластическая деформация (за исключением особых случаев) не зависит от длительности выдержки образца в нагруженном состоянии. Такая разница в поведении резин и текучих полимерных систем носит тот же характер, что и различие в равновесном напряжении в резинах оно сохраняется (теоретичес1(и) неограниченно долго, в текучих системах напряжения всегда релаксируют до нуля. [c.375]

    Пластичность и эластичность у каучука проявляются одновременно в зависимости от предшествующей обработки каучука каждое из этих свойств проявляется в большей или в меньшей степени. Для невулканизованных каучуков более характерным свойством является пластичность, а вулканизованные каучуки отличаются высокой эластичностью. Но при деформациях невулканизованного каучука наблюдается также частичное восстановление первоначальных размеров и формы, т. е. наблюдается некоторая эластичность, с другой стороны, при деформациях резины можно наблюдать некоторые неисчезающие остаточные деформации. [c.90]

    В эластичной резине молекулы каучука в отдельных местах связаны посредством атомов серы или кислорода или непосредственными валентными связями с другими молекулами. Такая пространственная сетчатая структура, характеризуемая наличием поперечных связей, несколько усложняет общую картину деформации молекул каучука при растяжении тем, что растяжение одной молекулярной цепи вызывает напряжения в соседних молекулярных цепях. Поэтому способность к упругому восстановлению деформированного вулканизованного каучука значительно выше и эластические свойства его более высоки, чем у невулканизованного. [c.101]

    Заслуживают внимание и две других особенности поведения рассматриваемых блоксонолимеров. Одну из них можно наблюдать на рис. 11 для образцов с 40 %-ным содержанием полистирола. Для них оказывается характерным появление необычного для резин предела текучести при очень низких деформациях в остальном же образцы ведут себя как обычные эластомеры. Этот предел текучести наблюдается только при первичном растяжении. Для его воспроизведения образец необходцмо переплавить или нагреть до высоких температур. Такое поведение связывают с наличием в образцах непрерывной нолпстирольной фазы, которая, действительно, наблюдается в электронном микроскопе [1, 6]. Естественно, что меж-доменные контакты нарушаются при растяжении образца. Их восстановление возможно лишь при нагревании. [c.106]

    Вторая модель основана на рассмотрении свойств эластичной жидкости как аналога каучукоподобного материала, поведение которого описывается теорией высокоэластичности. При таком подходе, который также является основанием третьей модели, предлагавшейся в литературе, используются результаты теории высокоэластичности резин, изложенной, например, в монографии [16]. Соответствующие расчеты были выполнены в работе Бэгли и Даффи [13]. Предполагается, что упругая энергия запасается вследствие деформации растяжения, испытываемой полимером при течении, и возвращается при высокоэластическом восстановлении размеров — сжатии, как это показано на рис. 1. Запасенная упругая энергия выражается через первый и второй инварианты тензора деформаций с помощью соотношения [c.181]

    Свойства резиновых смесей. Для стереорегулярных Б. к характерно более интенсивное взаимодействие с активными наполнителями, чем для изопреновых, бутадиен-стирольных и нестереорегулярных Б. к. Это проявляется 1) в более высокой вязкости наполненных смесей при 120—140° С (при равной вязкости исходных каучуков) 2) в более высоком эластич. восста-новленпи наполненных смесей нри высоких темп-рах при этом в ряде случаев (при узком молекулярно-массовом распределении) эластич. восстановление повышается с ростом темп-ры, что указывает на образование сетчатых каучуко-сажевых структур с высокой термомеханич. устойчивостью, 3) в ограниченном набухании наполненных смесей из стереорегулярных Б. к. в сильных растворителях (толуол, хлороформ) 4) в меньшем падении модуля упругости в результате многократных деформаций и более высоких значениях дпнамич. модуля наполненных резин, в особенности при высоких скоростях деформации (при равных значениях модуля ненаполненных резин) 5) в меньшей, чем, напр,, у бутадиен-стирольных каучуков, склонности стереорегулярных Б. к. к отрыву от частиц наполнителя при больших деформациях с образованием вакуолей . [c.162]

    При длительном хранении регенерата могут ровы-шаться его жесткость и эластическое восстановление, однако при пластикации первоначальные свойства продукта полностью восстанавливаются. Физико-механич. свойства вулканизатов резино-регенератных смесей во многом зависят от применяемого способа смешения. Использование традиционного одностадийного способа, при к-ром регенерат сначала совмещают с каучуком, а затем вводят остальные ингредиенты, приводит к получению неоднородных смесей с пониженными физико-механич. свойствами. Более однородные резино-регенератные смеси получают при использовании двухстадийного способа сначала готовят жесткую каучуко-сажевую матку, в к-рую затем вводят регенерат и др. ингредиенты. Общая продолжительность процесса при этом не изменяется, а вулканизаты характеризуются значительно лучшими физико-ме-ханич. свойствами, в том числе и более высокой выносливостью при многократных деформациях. [c.150]

    Очень важна также гибкость цепей сетки, поскольку н полярных фторкаучуках из-за сильных межмолекулярных взаимодействий задерживается восстановление исходной формы образца (особенно при охлаждении образца после старения в сжатом состоянии). В связи с этим резины на основе фторкаучуков с повышенной морозостойкостью (например, сополимеры ВФ с ПФМВЭ) оказывают более высокое сопротивление накоплению остаточной деформации сжатия при термическом старении. [c.200]

    Влияние серы на величину остаточного сжатия и прочностные свойства резин в процессе теплового старения можно объяснить тем, что наряду с деструкцией происходит одновременное восстановление части поперечных связей при участии серы иными словами, остаточная деформация, возникающая в сжатых образцах в результате собственно реверсии, невелика, но под дeй твиevI серы возникают новые связи, фиксирующие новое равновесие в сжатом каучуке. [c.336]

    Испытания при больших деформациях показали, что уменьшение долговечности после размягчения при предварительной деформации наблюдается у большинства наполненных резин, а также у енаполненной резины из кристаллизующегося наирита (табл. 2.2). Восстановление после отдыха разрушенной при тренировке [c.51]

    Разница между результатами двух последовательных заме ров обусловлена восстановлением резины после того, как нагрузка полностью снята (сто=0). Наблюдаемая зависимость деформации от времени достаточно хорошо описывается соотношением, представляющим собой частное решение уравнения модели, характеризующей поведение резины в температурновременном интервале физической релаксации [2] [c.304]

    Все реальные тела имеют конечные толщины. Этот фактор, а также неподвижность окружающей среды могут обусловить медленную передачу тепла вследствие уменьшения градиента температуры. Это в особенности относится к полимерным телам, которые обычно являются хорошими теплоизоляторами Помимо нагрева в результате внутреннего или поверхностного трения (см. Явление разрушения при резании , А. Кобаяши и К. Саито) даже классические твердые тела обратимо поглощают или выделяют тепло вследствие изменения внутренней энергии в процессе деформации. Твердые тела поглощают тепло при расширении и выделяют при сжатии Идеальная резина, хотя и является несжимаемой и не обладает внутренним трением, выделяет тепло при деформации и поглощает его при упругом восстановлении. Это соответствует термодинамическому поведению тела при упругом последействии. [c.47]

    Простейшим видом эластических деформаций является обратимое изменение длины образца. Если к образцу каучука приложить некоторое растягивающее усилие, то наблюдается увеличение длиньи при одновременном уменьшении поперечного сечения. Это удлинение будет тем больше, чем больше приложенное усилие. При уменьшении деформирующей силы образец сокращается, а после полного устранения усилия практически возвращается в первоначальное состояние. Этот вид деформации каучука и резины, однако, не является единственным. В технике широко используется деформация сжатия (работа автомобильной шины и других амортизаторов), деформация изгиба и кручения. Чаще всего при эксплоатации резиновых изделий имеет место периодическая деформация, когда вследствие изменения величины деформирующей силы происходит последовательное изменение и восстановление формы образца. [c.207]

    Одной из главных особенностей механических свойств эластомеров является способность их существенно изменяться под воздействием внешних факторов механического и немеханического характера. Эти изменения могут носить обратимый и необратимый характер, они связаны с соответствующими изменениями структуры. При деформации резин, особенно наполненных, наблюдаются так называемые тиксотропные явления уменьшение твердости и модуля вулканизатов и последующее восстановление свойств в процессе длительного отдыха. Скорость и степень восстановления зависят от условий деформации и отдыха и увеличиваются при повышении температуры. Явление снижения модуля при повторных растяжениях, так называемое смягчение , или эффект Патрикеева — Маллинса, наблюдается только при деформациях, меньших первоначальной. Почти [c.9]

    Резина является высокоэластичным материалом, которому свойственны обратимые деформации, приво- дящие к восстановлению первоначальной формы и размеров образца после снятия нагрузки. Вследствие особенностей строения (наличия совокупности несшитых участков макромолекул, присутствия добавок сыпучих ингредиентов и мягчителей, разрыва связей, протекания термоокислительных процессов, разрушения сетки при длительной релаксации и др.) наблюдаются остаточные деформации. Поэтому у реальных резин после снятия нагрузки размеры образцов полностью не восстанавливаются. Остаточные деформации необходимо определять после полного завершения медленных процессов восстановления структуры при самопроизвольном восстановлении прежних формы и размеров образцов. Остаточные деформации проявляются в разнашиваемости изделий, эксплуатирующихся в условиях нагружения. Это — отрицательное явление, особенно для цельнорезиновых деталей типа амортизаторов или уплотнителей. Значения остаточных деформаций зависят от состава, строения резины и условий испытания температуры, относительных деформаций, продолжительности выдержки в деформированном состоянии. Чем больше деформация, тем выше остаточное удлинение. Вследствие влияния продолжительности выдержки образцов в деформированном состоянии на значения остаточной деформации применяются методы определения накопления остаточных деформаций при длительном испытании образцов в сжатом и растянутом состоянии. Методом измерения остаточных удлинений можно [c.123]

    Рассматриваемая здесь кажущаяся остаточная деформация не является неизменной по крайней мере в той степени, в какой это часто предполагается. Если эластомеру дать набухнуть в парах растворителя, а затем высушить, то образец примет свою первоначальную длину в пределах доли процента. Это заставляет предполагать отсутствие истинно вязкого течения. Для слабовулканизо-ванной резины на основе бутадиен-стирольного каучука наблюдалось почти полное восстановление первоначальной длины после набухания. Совершенно очевидно, что наблюдаемая кажущаяся остаточная деформация есть не что иное, как вязкое запаздывание при возвращении сетки в состояние равновесия. По общему мнению, высокие напряжения, применяемые для достижения очень больших неравновесных удлинений, приводят к перемещениям точек зацеплений, узлов сетки и частиц наполнителя, которые медленно возвращаются в первоначальное положение под действием малых внутренних напряжений, являющихся причиной упругого восстановления. Естественно, что набухание, облегчающее упругое восстановление сетки, ограничивает подобные эффекты. [c.22]

    Во-вторых, сетка резины принимает существенное участие в процессе смягчения. Если смягченный вулканизат бутадиен-стирольного каучука нагреть на воздухе при температуре около 100° С, то через 15 ч начальное значение модуля практически восстановится. Восстановление модуля тесно связано с процессом, приводящим к так называемой химической остаточной деформации резины. Поскольку последняя является результатом разрыва сетки и рекомбинации ее элементов, можно сделать вывод, что причиной восстановления модуля после эффекта смягчения Маллинса являются процессы рекомбинации сетки. А это возможно в том случае, если смягчение является следствием разрыва сильно растянутых цепей сетки (или отрыва их от частиц наполнителя). [c.24]


Смотреть страницы где упоминается термин Резина восстановление деформаци: [c.19]    [c.90]    [c.144]    [c.134]    [c.139]    [c.34]    [c.150]    [c.191]    [c.148]    [c.275]    [c.34]    [c.10]    [c.76]   
Резиновые технические изделия Издание 2 (1965) -- [ c.270 ]




ПОИСК





Смотрите так же термины и статьи:

Резина деформации



© 2025 chem21.info Реклама на сайте