Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Магнитные орбитали

    Квантовые числа. Орбиталь можно однозначно описать с помощью набора целых чисел, называемых квантовыми. Их обозначают п — главное квантовое число, I — орбитальное квантовое число, Ш1 — магнитное квантовое число. [c.14]

    Магнитное квантовое число. Пространственная ориентация орбиталей. Для характеристики пространственного расположения орбиталей (облаков) применяется третье квантовое число /П/, называемое магнитным. Оно имеет следующие значения О, 1, 2, 3, ..., / и определяет значение проекции орбитального момента количества движения на выделенное направление (например, на ось г)  [c.18]


    Число значений магнитного квантового числа зависит от орбитального квантового числа п указывает на число орбиталей с данным значением I. Число орбиталей с данным значением I равно (2/ + 1). [c.18]

    Орбитальное Магнитное квантовое Число орбиталей (облаков) [c.18]

    Магнитные свойства молекул. Характер распределения электронов по молекулярным орбиталям позволяет объяснить также магнитные свойства молекул. По магнитным свойствам различают парамагнитные и диамагнитные вещества (см. с. 155). П а р а м а г-н и т н ы м и являются вещества, у которых имеются непарные электроны, у диамагнитных веществ все электроны парные. [c.56]

    У Низко- и высокоспиновые комплексы. Теория кристаллического поля достаточно просто и наглядно объясняет магнитные свойства комплексов, их спектры и ряд других свойств. Для понимания этих свойств необходимо знать характер распределения электронов по -орбиталям иона, находящегося в поле лигандов. Последнее зависит от соотношения величины энергии расщепления А и энергии отталкивания электронов друг от друга. [c.507]

    Орбитали заполняются электронами в порядке возрастания энергии, На 5-орбитали может находиться максимально два электрона. На трех р-орбиталях в совокупности может размещаться до 6 электронов, на пяти -орбиталях-до 10 электронов, а на семи /-орбиталях-до 14 электронов. Прежде чем начать процесс заполнения орбиталей, необходимо выяснить последовательность возрастания их энергетических уровней. У многоэлектронных атомов в отсутствие внешних электрических и магнитных полей энергия электронов зависит от квантовых чисел п и I (эти квантовые числа определяют размеры и форму орбиталей), но не зависит от квантового числа т (определяющего ориентацию орбиталей). [c.387]

    Символ К К означает наличие четырех электронов на внутренних оболочках с п = 1, которые не оказывают влияния на химическую связь. Согласно экспериментальным данным, длина связи в В2 равна 1,59 А, т.е. меньще, чем в молекуле 2 (2,67 А). Энергия связи соответственно больше 274 кДж моль по сравнению с 110 кДж моль Оба эффекта обусловлены большим положительным зарядом ядра бора, который обусловливает более прочное взаимодействие с электронами. Веским аргументом в пользу теории молекулярных орбиталей явилось экспериментальное обнаружение (путем магнитных измерений) в молекуле В2 двух неспаренных электронов. Оно служит прямым подтверждением именно той последовательности орбитальных энергетических уровней и к , которая указана на рис. 12-8 если бы последовательность этих орбитальных уровней была обратной, оба электрона должны были располагаться со спаренными спинами на орбитали а , и в молекуле не было бы неспаренных спинов. (Исторически дело обстояло так неспаренные электроны в В2 не были предсказаны заранее экспериментальное обнаружение неспаренных электронов в В2 заставило пересмотреть прежние взгляды на последовательность орбитальных энергий в двухатомных молекулах и придать ей вид, иллюстрируемый рис. 12-8.) [c.526]


    Но если этот комплекс относится к внешнеорбитальному типу, все пять валентных электронов иона Мп" остаются неспаренными на пяти (/-орбиталях. И в том, и в другом случае комплекс должен быть парамагнитным, но с разной величиной магнитного момента. Экспериментальные данные указывают, что этот комплекс имеет пять неспаренных электронов, так что его следует отнести к внешнеорбитальному типу. Ион Ге" также имеет конфигурацию / , однако поскольку магнитные данные свидетель- [c.227]

    История развития этих теорий служит иллюстрацией утверждения, что неверную теорию всегда можно усовершенствовать, но никогда нельзя доказать, что она окончательно правильна. Успешное объяснение теорией валентных связей координационной геометрии и магнитных свойств комплексов не дает гарантии правильности этой теории или хотя бы правильности ее подхода. Каков, например, правильный ответ на вопрос-обусловлено ли расщепление уровней 2д и образованием молекулярных орбиталей (точка зрения теории поля лигандов), электростатическим отталкиванием (теория кристаллического поля) или выбором шести орбиталей для гибридизации (теория валентных связей) А может быть, неверны все три точки зрения, и когда-нибудь мы будем относиться к теории поля лигандов с тем же снисхождением, с каким сейчас относимся к теории валентных связей  [c.246]

    В этой главе мы рассмотрим некоторые аспекты магнетизма, которые имеют решающее значение для понимания спектров ЯМР и ЭПР комплексов ионов переходных металлов. Магнитные эффекты обусловлены электронами молекул, поскольку магнитный момент электрона в 10 раз превышает магнитный момент протона. В главе, посвященной ЯМР, мы рассматривали циркуляции спаренных электронов, которые вызывают диамагнитные эффекты. Неспаренные электроны также приводят к магнитным эффектам, которые зависят от числа неспаренных электронов и их размещения на орбиталях. Магнетизм исследуют, измеряя (см. далее) магнитную поляризацию соединения в магнитном поле. Различные типы поведения вещества в магнитном поле показаны на рис. 11.1. Чтобы описать поведение веществ в магнитном поле, удобно определить параметр, называемый магнитной индукцией В  [c.130]

    Однако особые электрические и магнитные свойства этих металлов исключают возможность простого представления о классических катионах (N1 Ре или Ре ), окруженных валентными электронами. Пока еще не достигнуто полное согласие по вопросу о распределении электронов в переходных металлах. По Полингу [12], связывающие орбитали образуются из орбиталей п 1) , (га 4- 1)р и некоторых из [c.31]

    О появятся две электронные пары и неспаренных электронов в молекуле О2 не будет. Однако исследование магнитных свойств кислорода свидетельствует о том, что в молекуле О2 имеются два неспаренных электрона. Ряд исследователей предприняли попытки усовершенствовать метод валентных связей и сделать его пригодным для истолкования этих ф актов. Однако более плодотворным оказался другой подход к объяснению и расчету ковалентной связи, получивший название метода молекулярных орбиталей (сокращенное обозначение метод МО). Значительный вклад в его [c.99]

    Как и в молекуле В2, в молекуле О2 два электрона с параллельными спинами занимают по одному две орбитали с одинаковой энергией и Лу. Таким образом, метод молекулярных орбиталей, естественно объясняет наличие в молекуле О2 двух неспаренных электронов, которые и обусловливают магнитные свойства кислорода. Избыток связывающих электронов в молекуле О2 равен четырем. [c.106]

    ПОЛЯ, создаваемого лигандами. Сверхтонкое расщепление в спектре позволяет определить заселенность 5- и р-орбиталей атома с магнитным ядром в радикале, а отсюда — электронное распределение и в известных случаях — валентные углы в молекулах. [c.149]

    Постройте энергетические уровни молекулярных орбиталей молекулы бора Ва. Определите порядок связи. Молекула бора обладает магнитными свойствами. [c.14]

    Решение. У каждого атома В атомные орбитали Ь, 2р . Магнитные свойства молекулы В указывают на то, что у молекулы есть неспаренные электроны. Заполнение молекулярных орбиталей электронами подчиняется правилу Хунда. Тогда электронную конфигурацию молекулы В2 можно записать так  [c.14]

    Достоинством теории валентных связей является то, что она позволяет качественно объяснить магнитные свойства комплексных соединений. Так, исходя из электронного строения комплексов железа, видно, что комплекс [РеР ] - содержит четыре неспаренных электрона и поэтому парамагнитен. В комплексе [Ре(СМ)б] все электроны спарены. Поэтому этот комплексный ион диамагнитен. При помощи теории валентных связей можно предсказать реакционную способность комплексных соединений. Последняя в значительной степени определяется скоростью обмена лигандов комплекса на другие ионы или молекулы, находящиеся в растворе. Условия, благоприятствующие обмену лигандов, — внешняя гибридизация и наличие у комплексообразователя свободных внутренних -орбиталей. [c.45]


    В масс-спектрометре органическое соединение (или их смесь) переводится в газообразное состояние, затем подвергается действию электронного (фотонного) удара или сильного электриче-ческого поля, в результате чего удаляется электрон с одной из молекулярных орбиталей и образуется положительно заряженный молекулярный ион. Обладая избыточной энергией, полученной, например, от ударяющего электрона (имеющего, как правило, энергию 50—100.эВ), этот нон распадается на заряженные и нейтральные осколки, первые из которых далее в магнитном (или ином) анализаторе делятся в зависимости от их массы (точнее, в зависимости от отношения массы частицы к ее заряду, последний обычно равен единице) и далее регистрируются. Массовое число, соответствующее исходному (молекулярному) иону и осколочным ионам, является точной и однозначной характеристикой исходной молекулы и ее фрагментов. Образование набора тех или иных осколочных ионов с данной распространенностью (концентрацией) однозначно характеризует структуру исходной молекулы, так что даже очень близкие по структуре соединения (например, изомерные углеводороды) дают свои неповторимые масс-спектры. [c.131]

    Сверхтонкая структура (СТС) возникает в спектрах ЭПР вследствие взаимодействия магнитного момента неспаренного электрона с магнитными моментами ядер, которые охватываются орбитальЮ электрона. [c.238]

    При /-=0 I F(O) р= l/я/ о (Го — радиус первой боровской орбиты).. Молекулярные орбитали могут быть представлены в виде линейной, комбинации атомных орбиталей. Для неспаренного электрона, находящегося на молекулярной орбитали, величина контактного взаимодействия определяется вкладом атомных s-орбиталей. Контактное взаимодействие изотропно, т. е. не зависит от ориентации пара-магнитны.к частиц по отношению к внешнему магнитному полю. Константа a сверхтонкого взаимодействия в единицах напряженности магнитного поля может быть выражена в виде [c.243]

    Для характеристики пространственного расположения орбиталей применяется магнитное квантовое число Ш/. [c.21]

    Какие характеристики орбиталей определяются значениями а) главного квантового числа б) орбитального квантового числа в) магнитного квантового числа  [c.25]

    ЭПР свободных электронов связан с парамагнетизмом их спинов. По этой причине его также называют электронным спиновым резонансом (ЭСР). Электроны на полностью заполненных молекулярных орбиталях вообще ие вносят вклад в магнитный момент, поскольку, согласно принципу Паули, спаренные спины компенсируют друг друга. Если, однако, связь разорвана вследствие гомолитического разрыва, то образуются свободные радикалы с неспаренными электронными спинами, которые и детектируются. Свободный электрон обладает магнитным моментом ц, равным [c.157]

    Реакционная способность функциональных групп молекул с сопряженными связями не зависит от длины цепи сопряжения. Это явление, называемое винилогией, также очень характерно для систем сопряженных связей. Очень существенно то, что перекрывание р-орбиталей приводит к делокализации я-электронов остов молекулы с сопряженными связями становится для них волноводом, по которому они сравнительно свободно перемещаются, совершая непрерывное волновое движение. Магнитные измерения указывают, что действительно по бензольному кольцу, как в контуре сверхпроводника, циркулирует ток, создаваемый этим дви жением я-электронов. Магнитная восприимчивость в 2,5 раза ниже в плоскости кольца, чем в перпендикулярном направлении. Подобная анизотропия еще заметнее в конденсированных ароматических углеводородах, в которых система сопряженных связей образуется из большого количества бензольных колец, а также в некоторых других конденсированных системах, в частности таких, как фтало-цианины. Но особенно резко она проявляется в графите, что не [c.86]

    Состояние электрона, а следовательно, характер его орбиталей выражается четырьмя квантовыми числами главным (п) и тремя побочными — орбитальным (I), магнитным (т) и спиновым (т ). [c.12]

    Магнитное квантовое число mi определяет пространственную ориентацию орбиталей. Оно изменяется в пределах от —I до [c.13]

    Третье квантовое число — магнитное (/п ) — определяет пространственную ориентацию и число орбиталей на соответствующем подуровне. Оно принимает целочисленные значения от — I до f/. Для 5-подуровня возможна одна орбиталь (т1—0), для р-подуровня — три 2р-орбитали 2рх, 2ру, 2рг (т = —I. 0,- -1), для -подуровня — пять орбиталей (т/=—2, —I, О, +1, +2) и т. д.  [c.11]

    Предсказания их магнитного характера основаны на уравнении (7-30) для разности энергий синглетного и триплетного состояний применительно к магнитным орбиталям (7-31) ионов металла, каждая из которых частично делокализована по окружающим ион лигандам. Важнейщими величинами являются перекрывание 5дв (7-32), двухэлектронный обменный интеграл А дв [c.231]

    В соединении (7-33) d 2 уорбитали атомов меди наполовину пустые. Они перекрываются с двумя различными орбиталями мостикового лиганда соответствующие молекулярные орбитали в фазе и в противофазе показаны на рис. 7.17. Если угол меди — кислород — медь равен 104°, соединение антиферромагнитно (Д з = 509 см ), а если угол равен 96°, то оно ферромагнитно (Д з , = -172 см ) [43]. Действительно, по мере того как угол уменьшается, перекрывание между 2 и мостиковой р-орбиталью увеличивается, что приводит к стабилизации по сравнению с (рис. 7.17). Энергетическая щель е - е ,. становится очень узкой, и ферромагнитный двухэлектронный член в (7-30) преобладает [44]. При еще меньших углах е - меняет знак, и это сопровождается одновременной сменой знака 5дв для двух магнитных орбиталей  [c.232]

    Магнитные свойства комплексных соединений хорошо описываются с позиций теории кристаллического поля. Эта теория основана на предположеиии, что между комплексообразователем и лигандами осуществляется чисто электростатическое взаимодействие. Однако, в отличие от классических электростатических представлений, в теории кристаллического поля учитывается пространственное распределение электронной плотности -орбиталей комплексообразователя. [c.205]

    Книга всесторонне и доходчиво, а самое главное методологически правильно знакомит с теорией химической связи и результатами ее применения к описанию строения и свойств соединений различных классов. Сначала изложены доквантовые идеи Дж. Льюиса о валентных (льюис овых) структурах и показано, что уже на основе представлений об обобществлении электронных пар и простого правила октета при помощи логических рассуждений о кратности связей и формальных зарядах на атомах удается без сложных математических выкладок, как говорится на пальцах , объяснить строение и свойства многих молекул. По существу, с этого начинается ознакомление с пронизывающими всю современную химию воззрениями и терминами одного из двух основных подходов в квантовой теории химического строения-метода валентных связей (ВС). К сожалению, несмотря на простоту и интуитивную привлекательность этих представлений, метод ВС очень сложен в вычислительном отношении и не позволяет на качественном уровне решать вопрос об энергетике электронных состояний молекул, без чего нельзя судить о их строении. Поэтому далее квантовая теория химической связи излагается, в основном, в рамках другого подхода-метода молекулярных орбиталей (МО). На примере двухатомных молекул вводятся важнейшие представления теории МО об орбитальном перекрывании и энергетических уровнях МО, их связывающем характере и узловых свойствах, а также о симметрии МО. Все это завершается построением обобщенных диаграмм МО для гомоядерных и гете-роядерных двухатомных молекул и обсуждением с их помощью строения и свойств многих конкретных систем попутно выясняется, что некоторые свойства молекул (например, магнитные) удается объяснить только на основе квантовой теории МО. Далее теория МО применяется к многоатомным молекулам, причем в одних случаях это делается в терминах локализованных МО (сходных с представлениями о направленных связях метода ВС) и для их конструирования вводится гибридизация атомных орбиталей, а в других-приходится обращаться к делокализованным МО. Обсуждение всех этих вопросов завершается интересно написанным разделом о возможностях молекулярной спектроскопии при установленни строения соединений здесь поясняются принципы колебательной спектро- [c.6]

    Решение уравнения Шрёдингера для атома водорода позволяет определить волновые фун1сции у1>(х, у, г) и дискретные энергетические уровни электрона. Волновые функции VI (х, у, г) называются орбиталями. Под орбиталью часто понимают облако плотности вероятности, т.е. трехмерное изображение функции 11/(х, у, г) . При решении уравнения Шрёдингера вводятся три квантовых числа главное квантовое число и, принимающее произвольные положительные целочисленные значения (и = 1, 2, 3, 4,. ..) азимутальное (или орбитальное) квантовое число /, принимающее целочисленные значения от О до п — 1 магнитное квантовое число ш, принимающее целочисленные значения от — / до + /. Энергетические уровни одноэлектронного атома зависят только от главного квантового числа п. [c.376]

    Теория валентных связей не гюзволяет делать количественных предсказаний об энергетических уровнях комплексов, но все же дает возможность понять магнитные свойства октаэдрических комплексов. Полинг предположил-, что возможны комплексы двух типов внешнеорбитальные, в которых осуществляется гибридизация sp ", и внутриорбитальные с гибридизацией " р (рис. 20-9). Во внутриорбитальных комплексах для размещения остаюпдахся у иона металла -электронов имеется ограниченное число J-орбиталей. Эти электроны могут размещаться только на ,- и [c.225]

    Энергия расщепления кристаллическим полем, Д , оценивается путем измерения энергии, поглощаемой при возбуждении одного электрона с уровня на уровень (рис. 20-12). Величина этой энергии очень важна при объяснении магнитных свойств комплексов. Если энергия А невелика, как в комплексе СоР , щесть -электронов иона Со расселяются по всем пяти -орбиталям (рис. 20-13), потому что при минимальном спаривании электронов достигается выигрыщ в энергии. И наоборот, если энергия расщепления, Д , достаточно велика по сравнению с энергией спаривания двух электронов на одной орбитали, больщая устойчивость достигается, если на каждой из трех орбиталей нижнего энергетического уровня 3, располагается по два спаренных электрона, а две орбитали верхнего уровня остаются вакантными. Такая ситуация реализуется в комплексе Со(ЫНз)й . Из-за различного числа неспаренных электронов в двух рассмотренных структурах ион Со (N113) + называется низкоспиновым комплексом, а ион СоР -высокоспиновым комплексом. [c.231]

    Мы показали, что магнитные свойства и окраска комплексов переходных металлов зависят от природы лигандов и металла, которая влияет на энергию расщепления кристаллическим полем, А . Тем самым получен ответ на два вопроса из числа поставленных в начале данного раздела. Можно также объяснить необычную устойчивость 3 - и -конфигураций в комплексах с лигандами сильного поля. Эти конфигурации соответствуют полузаполненному и полностью заполненному Г2 ,-уровням. Они обладают повышенной устойчивостью при большом расщеплении уровней по той же причине, по которой устойчивы конфигурации 3 и 3 °, когда все пять -орбиталей имеют одинаковую энергию. Устойчивость 3 - и -конфигураций более заметна в комплексах с лигандами слабого поля, где расщепление кристаллическим полем невелико. [c.237]

    Терм основного состояния для любой "-конфигурации можно установить, разместив электроны на -орбиталях. При этом в первую очередь заполняются орбитали, имеющие большие величины т,, электроны размещаются по одному и не спариваются до тех пор, пока на каждой орбитали не будет находиться по одному электрону, т. е. все происходит согласно правилам Гунда. Величины т, для орбиталей, на которых находятся электроны, можно суммировать алгебраическим путем, чтобы получить величину L для каждого терма. В более законченной форме это звучит так квантовое число т, индивидуального электрона связано с вектором, имеющим компоненту т, к/2п , направленную вдоль приложенного поля. представляет собой сумму однозлектронных величин т[. Правила сложения векторов требуют, чтобы М1 принимало значения L, L—1,. .., — L, поэтому максимальное значение дается величиной Ь. Для обозначения величин L используются буквы 5, Р, О, Р, С, Н, I, соответствующие равному О, 1, 2, 3, 4, 5 и 6. Спиновую мультиплет-ность состояния определяют как 25 + 1 (5 по аналогии с Ь представляет собой максимально возможное Ms, где Ms = m ) Тт ) и указывают с помощью индекса вверху слева от символа терма. Мультиплетность отвечает за число возможных проекций 8 на направление магнитного поля, т.е. если 5=1, мультиплетность три говорит о том, что Ms = 1, О, [c.63]

    Каждой клеточке (называемой квантовой ячейкой) соответствует определенная орбиталь . В первой схеме все р-электроны имеют разные значения во второй — у двух р-электронов они одинаковы. Квантовая механика и анализ спектров показывают, что заполнение квантовых ячеек, отвечающее низшему энергетическому состоянию атома, происходит следующим образом. При заполнении оболочки электроны сначала располагаются по ячейкам, отвечающим различным значениям магнитного квантового числа, и только после того как все ячейки в оболочке заполнены при дальнейшем прибавлении электронов в ячейках появляется по два электрона с противоположно направленными спинами. Иными словами, заполнение электрон ныу пбоппир - происходит таким образом, ч то о ы суммарный спин О ы л КТ с1 к с и м о л и п ы-м" . Эт [c.29]

    Решение, У каждого атома В атомные орбитали Ь, 25 , 2р . Магнитные свойст)за молекулы Вз указывают на то, что у молекулы есть неспаренные Электрэны. При заполнении молекулярных орбиталей электронами используем правило Хунда. Тогда электронную конфигурацию молекулы Вг можно записать  [c.17]

    Еще одно важное свойство бензола находит себе объяснение — это анизотропия диамагнитной восприимчивости. В очень грубом приближении делокализация я-орбиталей означает свободное движение л-электроков по всему периметру бензольного кольца. При внесении бензола в магнитное поле движение электронов по кольцу становится направленным, подобным круговому току, не испытывающему сопротивления. С этим движением электронов связано возникновение в поле индуцированного магнитного момента, перпендикулярного плоскости бензольного кольца. В этом направлении диамагнитная восприимчивость максимальна. Расчет ее на основе представления о круговом токе дает значение, близкое к наблюдаемому. [c.118]

    Иа основании изложенного выше определяют, сколько электронов находится на каждом энергетическом уровне и подуровне в любом атоме. На х-подуровне (/ = 0) может быть только одна орбиталь, которая характеризуется магнитным квантовым числом 0 так как на одной орбитали не может быть больше двух электронов, то, следовательно, на 5-подуровне имеется не больше двух электронов. На р-нодуровне (/ = 1) могут быть три орбитали (магн1ггные квантовые числа — 1, О и -f 1), на каждой из которых находится не более двух электронов следовательно, максимальное [c.29]

    Лекция 7. Основные положения метода молекулярных орбиталей (МО). Энергетические диаграммы распределения электронной плотности в молекулах. Применение метода МО к молекулам, образованным из атомов элементов первого и второго периодов. Объяснение магнитных свойств и возможности существования двухатомных частиц с помощью метода МО. Лекция 6. Межмолекулярное взаимодействие. Природа межмолекулярных сил. Ориентационное, индуктивное, дисперсионное взаимодействие. Водородная связь. Влияние водородной связи на свойства вешества. Конденсированное состояние вещества. Кристаллическое состояние. Кристаллографические классы и втя системы.. Ьоморфизм и полимор( )Изм. Ионная, атомная и молеклярная, металлическая и кристаллическая рещетки. [c.179]


Смотреть страницы где упоминается термин Магнитные орбитали: [c.62]    [c.156]    [c.83]    [c.374]    [c.523]    [c.148]    [c.293]    [c.32]    [c.29]   
Электроны в химических реакциях (1985) -- [ c.230 , c.233 ]




ПОИСК







© 2025 chem21.info Реклама на сайте