Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кинетика водой

    Если полимеризация проводится в воде, содержащей не просто небольшое количество диспергирующего вещества, а довольно большое количество мыла или другого поверхностно-активного вещества, то достигается гораздо более тонкое диспергирование продукта, и часто продукт реакции получается в форме стойкой эмульсии или латекса. Эти условия эмульсионной полимеризации, хотя и разработаны более или менее эмпирически, как доказано, сильно изменяют кинетику полимеризации и подробнее обсуждаются ниже. Они допускают образование полимеров высокого молекулярного веса из таких веществ, как бутадиен, радикальную полимеризацию которого не удается провести удовлетворительно в массе. Этот метод имеет очень большое техническое значение для производства синтетического каучука и нри промышленной полимеризации многих других мономеров. Однако он имеет тот недостаток, что трудно [c.119]


    Сульфирование. Сульфирование ароматических соединений сильно тормозится небольшими количествами воды, присутствующей первоначально в реакционной смеси или образующейся в ней во время реакции [211]. Эта сильная зависимость от концентрации воды значительно усложняет изучение кинетики реакции в водных растворах серной кислоты. [c.451]

    Была изучена кинетика полимеризации хлоропрена в эмульсии с образованием а- и 1-полимеров и применением инициаторов, реагирующих по свободнорадикальному механизму и выведено кинетическое уравнение этого процесса V = [Сэ] [Сии]° (для водо- [c.372]

    Кинетика полимеризации латексов SBR при 5 °С, постоянном количестве мономера в воде и различном количестве эмульгатора  [c.591]

    Коррозионная активность характеризует скорость химического взаимодействия бензинов и продуктов их сгорания с материалами, из которых изготовлены средства транспортирования, хранения и перекачки горючего, а также агрегаты топливной системы, детали камеры сгорания, впускной и выпускной тракты двигателя. Процессы, обусловленные коррозионной активностью бензинов, подчиняются законам химической кинетики гетерогенных реакций и не связаны с электрохимическими взаимодействиями в тройной системе топливо-вода-металл. [c.46]

    Т и б и л о в С. Г., Р а м м В. М., Б а р а н о в а А. Р1., ЖПХ, 43, 273 (1970). Исследование кинетики абсорбции серного ангидрида серной кислотой и олеумом и паров воды серной кислотой. [c.276]

    Как видно из сделанного обзора, свойства воды и кинетика ее переноса в пористых телах отличаются значительным разнообразием и зависят как от свойств твердых поверхностей, с которыми контактирует вода, так и от состава водного раствора. [c.30]

    Количество связанной воды зависит также от заряда поверхности твердой фазы и структуры материала. Интенсивность процессов переноса влаги и миграции ионов в торфяных системах определяется содержанием различных категорий связанной воды. Изучение связывания влаги торфом позволило обосновать физико-химические методы воздействия на торфяные системы с целью изменения кинетики процессов влагообмена и транспорта ионов в нужном для практики направлении. [c.83]

    Представления об особой, исключительной роли воды во множестве процессов, происходящих в природе, возникли еще в древности и затем часто высказывались на всех этапах развития естественных наук. В прошлом веке, когда геология оформилась как самостоятельная ветвь естествознания и начала брать на вооружение физико-химические и математические методы исследования, геологическую деятельность воды стали рассматривать как двоякую химическую и механическую. Условность такого разграничения была очевидна с самого начала тем не менее до сих пор продолжают появляться работы, в которых механические свойства горных пород анализируются без учета физико-химического влияния среды даже в тех случаях, когда это влияние давно обнаружено. Это связано с тем, что интеграция наук о Земле с различными разделами других естественных наук происходит неравномерно. Так, химическая термодинамика проникла в геологию намного раньше, чем кинетика механика идеализированных сплошных сред опередила физику реального, дефектного твердого тела и т. д. Однако такая очередность, в какой-то мере отражающая возраст отдельных областей фундаментальных наук, никоим образом не соответствует степени их важности для понимания природных процессов. К числу разделов науки, внедрение которых в геологию началось совсем недавно, относится физи-ко-химическая механика твердых тел и дисперсных систем, рассматривающая механические свойства в их взаимосвязи с физико-химическими процессами, протекающими на межфазных границах. [c.84]


    Для смесей следующего состава (вода) 3—60% О 3—15% А 10—60% В 0,25—1,55% и температуре 380—420° С кинетика реакций, ингибированных водой, задается уравнениями [62] [c.156]

    Опишите все факторы, влияющие на разложение промышленных отходов в воде. Предложите программу работы по изучению поведения промышленных отходов и способы защиты природных вод (не забудьте, вы должны воспользоваться представлениями о строении вещества, химической термодинамики и кинетики ). [c.160]

    Кинетика эмульгирования дибутилфталата в воде выражается зависимостью кинетических коэффициентов и предельной концентрации от интенсивности I в виде полуэмпирических уравнений  [c.125]

    На рис. 6.8 показана кинетика пропитки никелевой металлокерамики с пористостью 0,26 и средним диаметром пор 10 мкм дистиллированной водой в естественных условиях (кривая 1), наложении ультразвука на частоте 15 кГц с интенсивностью 2 Вт/см (кривая 2) и импульсов с энергией 400 Дж и частотой следования 0,25 имп./с (кривая 3). На рис. 6.9 показана кинетика пропитки графитовых анодов хлорного производства антраценовым маслом. [c.131]

Рис. 6.8. Кинетика импульсной пропитки никелевой металлокерамики водой Рис. 6.8. Кинетика импульсной пропитки никелевой металлокерамики водой
    С помощью описанной техники можно установить присутствие связанной воды в образце или, как на примере гашеной извести, убедиться в ее отсутствии. Больший интерес представляет кинетика воды, например, в процессе гипсования . Если образец безводного порошкообразного гипса (так называемого гамма-ангидрита) залить небольшим количеством воды и размешать, он приобретает тестообразную консистенцию, и ему можно придавать любую форму, делать слепки и т. д. Но через короткое (3—10 мин) время гипс схватывается — превращается в сравнительно прочный монолит, сохраняющий приданную ему форму. Существенная роль воды в процессе схватывания в данном сй гчае интуитивно-очевидна, хотя не очень ясно, что же там, внутри теста, произошло. Если посмот- [c.114]

    Можно предположить поэтому, что кинетика всего процесса определяется скоростью чисто электрохимических стадий разрядом молекул воды в кислых растворах и разрядом ндроксид-иопов в щелочных. С теорией замедленного разряда А. Н. Фрумкина согласуется также и характер влияния состава расгвора на перенапряжение кислорода в рассматриваемых двух случаях. [c.426]

    Поскольку кинетика системы достаточно сложна, то результаты многочисленных исследований реакций в сосудах, покрытых разными веществами, такими, как КСЛ, КОН, Н3ВО3, IVa2W04, Ba l2 и Ag, нельзя интерпретировать однозначно. На практике многие из веществ, использовавшихся для покрытия поверхности, являются заметно летучими при температурах опыта, а это могло способствовать возможным газофазным реакциям, особенно с участием воды. Наконец, почти все поверхности имеют склонность к старению . [c.391]

    В работе [274] подробно исследованы механизм и кинетика деалкилирования толуола с водяным паром на алюмородиевом катализаторе. Авторы пришли к выводу, что толуол и вода адсорбируются на разных центрах углеводород, вероятно, адсорбируется на ЯЬ-центрах, а вода — на А12О3. Второй важный вывод заключается в том, что при выборе кинетической модели деалкилирования толуола с водяным паром необходимо учитывать роль продуктов реакции, в частности СО. Полагают, что образование СО сильнее тормозит реакцию расщепления ароматического ядра, чем процесс деалкилирования. Квантовохимическое рассмотрение механизма деметилирования толуола на нанесенных металлах УП1 группы проведено в работе [275]. [c.178]

    Конечными продуктами окисления углеводородов топлив и сернистых соединений, растворимыми в воде, являются в основном карбоновые и сульфоновые кислоты [299, 300, 301]. На рис. 6.6 приведены результаты исследований кинетики электродных процессов в водных растворах бензолсульфокислоты. Последняя существенно влияет на развитие катодного процесса коррозии бронзы ВБ-23НЦ, причем предельный диффузионный ток с увеличением концентрации сульфокислоты возрастает, что можно объяснить деполяризующим действием кислоты. [c.287]

    Окисление до любого из возможных промежуточных соединений является сильно экзотермической реакцией, поэтому не вполне ясно, почему окисление должно остановиться на какой-либо определенной стадии или почему полное окисление до двуокиси углерода и воды не протекает в качестве единственной реакции, как при несколько более высоких температурах. Баргойн и другие [1] изучали медленное некаталитическое окисление о-ксилола воздухом при несколько менее высоких температурах и при давлении 4,6 апг. Из их данных видно (табл. 2), что избирательность реакции чрезвычайно мала. Не опубликовано ни одного исследования по механизму или кинетике реакции окисления о-ксилола в условиях, применяемых для производства фталевого ангидрида. Такое исследование представляло бы очень большие трудности вследствие гетерогенности реакции, чрезвычайно малого времени реакции и высокой температуры. Однако, изучая основные и побочные продукты этой и подобных ей реакций, можно получить некоторое представление о ходе реакции. [c.11]


    Реакция с олеумом идет значительно быстрее и кинетически проще — вода не образуется, чтобы усложнять кинетику. Изучение реакции л-нит-ротолуола с олеумом [88] показало, что реакция подчиняется простому кинетическому выражению  [c.451]

    Из этих двух схем вторая предпочтительнее [2], хотя, по-видимому, нет никакого физического различия между ними в водном растворе серной кислоты, так как было показано наличие SO3 в концентрированной серной кислоте. Тем не менее увеличение скорости сульфирования с повышением концентрации серной кислоты до 100 % и с увеличением содержания олеума хорошо объясняется при помощи этих двух механизмов. Однако Лоер и Ода на основании изучения кинетики сульфирования антрахинона олеумом пришли к выводу, что моногидрат кислоты является активным сульфирующим агентом, а SO3 просто связывает реакционную воду в виде моногидрата кислоты. [c.528]

    Кинетика взаимодействия алканов с SOj в присутствии кислорода и промоторов (с промежуточным образованием надсульфоновых кислот) или в присутствии кислорода, промоторов и воды изучена недостаточно. Более подробно изучена кинетика сульфирования ароматических соединений. [c.320]

    Технологическое оформление процесса сополимеризации бутадиена со стиролом подробно описано в литературе [19, 21, 22]. Водные растворы компонентов рецептуры готовят в нержавеющих или гуммированных аппаратах, снабженных перемещивающим устройством и змеевиками для обогрева. Раствор эмульгатора концентрацией около 10% получают путем омыления карбоновых кислот щелочью. Растворы других исходных продуктов имеют, как правило, меньшую концентрацию трилонового комплекса железа— 1—2%, ронгалита — около 2%, диметилдитиокарбамата натрия — около 1%-. Гидроперекись можно подавать в реакционную смесь непосредственно или в виде 3—5%-ной водной эмульсии. Растворы регуляторов — дипроксида или трег-додецилмеркап-тана готовят в стироле или а-метилстироле с концентрацией, определяемой условиями производства. При приготовлении смеси мономеров (часто называемой шихтой ) бутадиен и стирол предварительно освобождают от ингибиторов. Водную фазу получают при перемешивании и последовательной подаче в аппарат деминерализованной воды, растворов эмульгатора, диспергатора и электролита. Водная фаза имеет pH около 10—11. Для лучшей воспроизводимости кинетики сополимеризации и свойств каучука растворы всех исходных продуктов и смесь мономеров готовят и хранят под азотом, так как кислород воздуха, как указано выше, является ингибитором полимеризации. [c.251]

    Высококонцентрированный (до 09—99,5%) газообразный формальдегид можно получить путем быстрой парциальной конденсации смеси паров формальдегида и воды, например паров обезме-танолениого формалина. Детальное исследование кинетики этого процесса позволило найти несколько аппаратурно-технических решений узла парциальной конденсации, достаточно экономичных и надежных с эксплуатационной точки зрения. В результате газообразный формальдегид с содержанием чистого продукта не ниже 90% может быть получен в одной ступени парциальной конденсации с выходом 70% и более, считая на количество подаваемого в виде смеси паров с водой исходного формальдегида. [c.709]

    Отравление катализатора в большинстве случаев происходит в результате адсорбции яда на иоверхности. Таким образом, механизм отравления- аадинег, чается в блокировке, активных участков катализатора. Посколь-, ку адсорбция может быть как обратимой, так и необратимой,-различают обратимое и необратимое отравление. Так, платиновый катализатор Отравляется СО и СЗг, однако при внесении его в чистую смесь исходных веществ (газообразных) происходит десорбция яда, и активность восстанавливается. При отравлении же НгЗ и РНз платина полностью дезактивируется. На рис. ХП, 6 показана кинетика обратимого отравления парами воды железного катализатора нри синтезе аммиака. При про-нускагши влажного газа активность катализатора снижается примерно в 6 раз, а нри пропускании сухой смеси азота с водородом активность в течение часа восстанавливается до исходной величииы. [c.300]

    В данной работе нужно определить среднюю константу скорости реакции и ее энергию активас и колориметрическим методом. Скорость взаимодействия уксусного ангидрида с водой велика и титрометрические методы для кинетических исследований в этом случае иснригодны. Поэтому для изучения этой реакции применяют физико-химические методы анализа. Одну из возможностей изучения кинетики этой реакции дают колориметрические исследования (см. работу 7). [c.385]

    Исследование кинетики растворения углекислоты (и других газов) в воде иитерферометрическнм мето ,ом. [c.466]

    Молдабеков Ш., Чертков Б. А., Труды НИУИФ им. Я. В. Самойлова, вып. 210, 1969, стр. 71, 93. Исследование кинетики поглощения двуокиси серы из малоконцентрированных газовых смесей различными растворами в дисковой колонне. I Абсорбция щелочными растворами. И Абсорбция водой. [c.273]

    Иллюстрацией данного положения может послужить исследование, проведенное автором и его коллегами [21] в годы войны. Речь идет о разработке метода нитрования гексаметилентетра-мина (гексамина) с целью получения взрывчатого вещества цик-лонита (R. О. X.). Мелкие кристаллы гексамина добавляли к 97—100%-ной азотной кислоте при соответствующей температуре. Кинетика реакции была неизвестна, но было обнаружено, что суммарный выход, полученный в лабораторном реакторе периодического действия, весьма чувствителен к соотношению гексамина и азотной кислоты в реакционной смеси. По-видимому, это связано с влиянием эффективной концентрации нитрующей среды. По мерс протекания реакции расходуется азотная кислота и выделяется вода. При этом происходит постепенное растворение и взаимодействие все новых и новых количеств твердого гексамина при непрерывном разбавлении кислоты. Логичное объяснение экспериментальных наблюдений дает гипотеза, согласно которой мгновенный выход, т. е. выход на каждую вновь добавляемую порцию гексамина, почти полностью определяется мгновенной концентрацией кислоты. [c.124]

    В Институте коллоидной химии и химии воды АН УССР разработан прибор с автоматической записью кинетики набухания при различных внешних нагрузках на образец и реализована методика изучения набухания дисперсных материалов, не осложненного явлениями усадки [122, 123]. С помощью новых прибора и методики в работе [124] было изучено набухание структурно совершенного каолинита Глуховецкого месторождения (УССР), частицы которого ориентированы базальными (001) гранями преимущественно параллельно друг другу. [c.41]

    Эти результаты прямо указывают на то, что иммобилизация воды в дисперсиях гидрофильных веществ и структурообразо-вание тесно связаны между собой. Тиксотропная коагуляционная структура, по-видимому, формируется при взаимном влиянии поверхности гидрофильных частиц на структуру полислоев воды и их свойства, а структура гидратных оболочек — на характер ориентации и силы сцепления частиц твердой фазы друг с другом. Связанная вода во многом обусловливает те свойства, которые присущи коагуляционным структурам пониженную механическую прочность, способность к замедленной упругости и т. д. [135]. Вместе с тем в результате формирования коагуляционной сетки в дисперсии заметно снижается молекулярная подвижность иммобилизованной воды [136], изменяется также кинетика ее удаления из дисперсии [137]. Уже отмечалось, что в процессе структурообразования дисперсий монтмориллонита (перехода золь — гель) наблюдается обратимое увеличение объема дисперсии. Это указывает не только на понижение плотности граничных слоев воды при структуриро- [c.44]

    Специальными опытами, проведенными в МИХМе, по импульсному акустическому воздействию выявили кинетику проникновения воды в тупиковый стеклянный капилляр диаметром 0,17 мм (рис. 6.7). Устье капилляра помещалось в воду над мембраной импульсного электродинамического излучателя (см. рис. 3.18). Энергия в одном импульсе составляла 500 Дж. Разрывное движение столба жидкости способствует выводу газа через устье и удержанию жидкости в капилляре в отсутствие воздействия. Скоростная киносъемка позволила установить наличие кумулятивной струи на поверхности мениска, что подтвердило выдвинутую Г. А. Кардашевым и А. С. Першиным гипотезу кумулятивной пропитки. Аналогичные эффекты были отмечены в ультразвуковом кавитационном пояе. Позже эти представления были перенесены рядом авторов, как отмечалось вьппе, на ультразвуковой капиллярный эффект. [c.131]

    Ниже мы рассмотрим закономерности биохимической кинетики применительно к моделированию процессов биологической очистки сточных вод и разработке моделей трансформации органических веществ в водных экосистемах. Принципы моделирования и расчета биохимических реакторов изложены в [54]. Биохимический процесс окисления кислородом органических веществ в сточных водах осуществляется сообществом микроорганизмов (биоценозом), включающим множество различных бактерий, связанных между собой в единый комплекс сложными взаимоотношениями (метабиоза, симбиоза и антогонизма). [c.146]


Смотреть страницы где упоминается термин Кинетика водой: [c.396]    [c.424]    [c.15]    [c.209]    [c.221]    [c.413]    [c.471]    [c.137]    [c.369]    [c.255]    [c.45]    [c.7]    [c.174]    [c.267]    [c.93]   
Очистка технических газов (1969) -- [ c.67 ]




ПОИСК







© 2025 chem21.info Реклама на сайте