Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Микрогетерогенность полимерных систем

    О ПРИМЕНИМОСТИ КОНЦЕПЦИИ СВОБОДНОГО ОБЪЕМА К ПРОЦЕССАМ СТЕКЛОВАНИЯ В МИКРОГЕТЕРОГЕННЫХ ПОЛИМЕРНЫХ СИСТЕМАХ [c.240]

    Метод закалки можно применять не только к аморфно-кристаллическим гомополимерам, но и вообще к микрогетерогенным полимерным системам, таким, как блоксонолимеры, характеризующиеся доменной структурой, смеси полимер—полимер и полимер—пластификатор. Часто нагревание приводит к гомогенизации подобных систем, и закалка может зафиксировать достигнутое состояние. Однако такая гомогенность достигается не всегда ситуация определяется природой фазовых соотношений, следующих общим закономерностям физико-химического анализа. [c.215]


    В связи с широким использованием микрогетерогенных полимерных систем проблема описания их свойств в терминах теории свободного объема стала особенно важной. Для таких микрогетерогенных систем следует ввести понятие о локализованном распределении свободного объема и о парциальном свободном объеме для отдельных участков полимерных цепей, принимающих участие в различных видах молекулярных движений. Эту концепцию удобно рассмотреть на примере блок-сополимеров или смесей полимеров. Наличие в таких системах двух точек перехода, относимых к двум областям стеклования, указывает на локализованное распределение свободного объема в системе, когда увеличение свободного объема в одной области не влияет на изменение подвижности участков цепей в другой области. Если цепь состоит из i сегментов, из которых жестких сегментов / и мягких / при условии t = / + /, и для каждого сегмента характерен свой парциальный свободный объем v , то суммарный свободный объем 1 г полимера определится в виде [c.241]

    Известно, что всякие напряжения в наполненной системе, приводящие к возникновению неравновесных состояний, отрицательно сказываются на свойствах. Согласно распространенному в настоящее время мнению, любая наполненная система должна рассматриваться как микрогетерогенная трехкомпонентная система, состоящая из наполнителя, полимерной матрицы с неизменными свойствами и пограничного слоя [446, с. 149]. Уделяется большое значение наличию граничного слоя в композиции, который по свойствам существенно отличается от основного материала. Это отличие, каким бы способом компаундирования не создавалась композиция (из расплава, из раствора), связано с конформационной ограниченностью цепей, соприкасающихся с поверхностью. Заторможенность релаксационных процессов на поверхности, а также различие в коэффициентах термического расширения полимера и наполнителя может приводить к возникновению в наполненной системе внутренних напряжений. Следовательно, для физико-механических свойств наполненных полимеров небезразлично, каким образом формируется межфазный полимерный слой, созданы ли при этом условия для релаксации возникающих напряжений. В этом плане метод полимеризационного наполнения, при котором рост макромолекулы происходит на активных центрах поверхности наполнителя, создает более благоприятные условия для лучшей упаковки макромолекул на поверхности, для снижения вероятности возникновения неравновесных процессов на границе раздела фаз. [c.254]


    Щелочные силикатные связки — это концентрированные водные растворы кремнезема в щелочах, а также микрогетерогенные системы, содержащие кремнезем различной степени полимерности при pH > 7 и проявляющие способность к адгезионному отвердеванию при высыхании системы или при взаимодействии с отвердителями [10]. [c.294]

    По мере увеличения размеров надмолекулярных образований мы переходим к коллоидно-дисперсным и микрогетерогенным системам. Такой подход оправдан и термодинамически, если в полимерной системе происходит фазовое или микрофазовое разделение. В связи с этим предлагается выделить следующий уровень структурной организа- [c.39]

    Влияние поверхности твердого тела на свойства поверхностных слоев полимера в дисперсных полимерных системах - важный фактор, определяющий возникновение неоднородной или микрогетерогенной структуры [7, 19]. В дисперсных полимерных системах на гетерогенность структуры, обусловленную введением в фазу полимера дисперсных частиц, накладывается микрогетерогенность, обусловленная прежде всего возникновением поверхностного или межфазного слоя и различием структуры и свойств поверхностных слоев на молекулярном и надмолекулярном уровнях. [c.114]

    Анализ причин возникновения микрогетерогенности в наполненных полимерных системах дает возможность провести следующую их классификацию [19]  [c.115]

    ДИСПЁРСНЫЕ СИСТЕМЫ, гетерог. системы из двух или большего числа фаз с сильно развитой пов-стью раздела между ними. Обычно одна из фаз образует непрерывную дисперсионную среду, в объеме к-рой распределена дисперсная фаза (или неск. дисперсных фаз) в виде мелких кристаллов, твердых аморфных частиц, капель или пузырьков. Д.с. могут иметь и более сложное строение, напр, представлять собой двухфазное образование, каждая из фаз к-рого, будучи непрерывной, проникает в объем др. фазы. К таким системам относятся твердые тела, пронизанные разветвленной системой каналов-пор, заполненных газом или жидкостью, нек-рые микрогетерогенные полимерные композиции и др. Нередки случаи, когда дисперсионная среда вырождаете ) до тончайших слоев (плеиок), разделяющих частицы дисперсной фазы. [c.80]

    Микрогетерогенность не является препятствием для получения композиций с высоким комплексом физико-механических и эксплуатационных свойств. Полимер, находящийся в дисперсной фазе, может выполнять функции наполнителя. Образование переходного слоя на границе двух полимерных фаз способствует повышению физико-механических свойств системы. [c.28]

    В общем виде можно дать следующую классификацию типов микрогетерогенности в многокомпонентных полимерных системах 1) молекулярная микрогетерогенность, проявляющаяся в измене- НИИ в межфазном слое таких физических характеристик, которые определяются макромолекулярным строением полимерных цепей (термодинамические свойства, молекулярная подвижность, плотность упаковки, свободный объем, уровень межмолекулярных взаимодействий и др.) 2) структурная микрогетерогенность, определяемая изменениями во взаимном расположении макромолекул друг относительно друга в поверхностных и переходных слоях на разном удалении от межфазной границы и характеризующая ближний порядок в аморфных полимерах и степень кристалличности в кристаллических полимерах 3) микрогетерогенность на надмолекулярном уровне, определяемая различиями в типах и характере формирования и упаковки надмолекулярных структур в поверхностных слоях и в объеме 4) химическая мйкрогетероген-ность, обусловленная влиянием границы раздела на формирование полимерных молекул микрогетерогенность этого типа может быть также дополнительной причиной указанных выше трех типов микрогетерогенности. [c.285]

    Представление о локальном распределении свободного объема приводит к необходимости его учета при рассмотрении вязкоупругих свойств полимеров. Такие характеристики механических свойств, как модуль упругости, вязкость и пр., определяются общим свободным объемом системы, так как при измерении этих характеристик нельзя выделить вклад в них тех или иных областей различной структуры. Экспериментально же определяются свойства системы независимо, от того, связаны ли они с проявлением локальных свойств определенных областей системы или Нет. Изменение, например, вязкоупругих свойств наполненного полимера по сравнению с ненаполненным связано с заполнением части объема наполнителем, в то время как свободный объем определяется только полимерной фазой. Поэтому при 7 с доля свободного объема в системе окажется меньше, чем в ненаполненном полимере, так как величину свободного объема надо относить к общему занятому объему системы. В микрогетерогенных системах, таким образом, значения доли свободного объема при 7 с не будут соответствовать универсальному значению. Если свободный объем системы рассматривать как сумму парциальных свободных объемов компонентов а = у 4-у, то при 7 , [c.244]


    Таким образом, в микрогетерогенных системах доли свободного объема полимерных компонентов при Тс действительно, как предсказано выше, не равны друг другу и универсальному значению, что является следствием эффектов дополнительного расслоения при снятии кривых изотермического сжатия объема. [c.250]

    Оптическая микроскопия с фазовым контрастом, основанная на различиях в коэффициентах рефракции полимеров, широко используется для исследования бинарных полимерных смесей. Оптическая система микроскопа позволяет осуществить сдвиг по фазе между дифрагированным и пропускаемым светом, что приводит к получению интерференционной картины даже при очень небольших различиях в коэффициентах рефракции. Использование оптической микроскопии для исследования микрогетерогенности смеси каучуков первоначально было предложено для ненаполненных систем. При анализе срезов толщиной 1-4 мкм никакого тонирования фаз не требуется, так как контраст достигается вследствие различия в показателях преломления эластомеров. Метод успешно использован для широкого круга смесей каучуков. Оптическая микроскопия с фазовым контрастом требует исследования очень тонких образцов ( 1-4 мкм), которые могут быть получены с помощью криогенного среза по технологии, описанной в стандарте ASTM D 2663. Автоматизированный анализ реплик был впервые использован для определения совместимости в различных смесях полимеров. [c.575]

    Отверждение (вулканизация), протекающее в матрице на поверхности частиц наполнителя, может существенно отличаться от того же процесса в объеме полимера. Это различие обусловлено тем, что на поверхности наполнителя изменяются соотношения скоростей элементарных реакций, происходит избирательная адсорбция компонентов полимерной фазы, участвующих в отверждении, а с другой стороны, в эту реакцию вступают функциональные группы на поверхности наполнителя и др. Изменение свойств полимера в граничном слое (увеличение структурной и физич. микрогетерогенности и даже химич. неоднородности) м. б. столь существенным, что вклад наполнителя в свойства композиции окажется нивелированным. Поэтому наполненный полимер целесообразно рассматривать как трехкомпонентную систему, состоящую из наполнителя, граничного слоя с измененными свойствами и полимера, свойства к-рого аналогичны свойствам ненаполненного. Однако определить объемную долю граничного слоя в наполненном полимере практически невозможно, поскольку понятие толщина граничного слоя условно, и ее эффективное значение для того или иного свойства системы может изменяться в широких пределах. [c.162]

    Из изложенного следует, что наполнение полимеров наполнителями различной природы нельзя сводить только к тому, что это способ модификации свойств полимера. Скорее это универсальный принцип создания полимерных композиционных материалов с особым, только им присущим комплексом физических и механических свойств, определяемым макро- и микрогетерогенностью системы (см. гл. 6) и фазовыми взаимодействиями на границе раздела фаз полимер-наполнитель. [c.11]

    Для полимерных систем свойственны различные уровни микрогетерогенности. Первый уровень обусловлен тем, что толщина поверхностного слоя зависит от определяемого свойства. По одним характеристикам свойства системы могут отличаться от свойств полимера в объеме, по другим - они аналогичны. [c.114]

    Предлагаются математические модели, описывающие течение и взаимодействие фаз в порах. В этих моделях пористая среда представляется в виде правильных сеток из отрезков капилляров, пересекающихся в узлах сетки. Диаметры и длины капилляров предполагаются случайными величинами, подчиненными некоторому заданному закону распределения. На основе этих моделей В.М. Битов, А.Я. Фельдман, Э. Чен-Син [96] разработали численные схемы, позволяющие рассчитывать фазовые проницаемости и предельные значения насыщенностей для пористых сред различной структуры. В результате расчетов ими получены кривые фазовых проницаемостей и капиллярного давления, разумным образом согласующиеся с экспериментальными данными. Позже были учтены дополнительные физические факторы и смоделированы процессы двухфазной фильтрации при наличии у одной из фаз вязкопластических свойств [93], двухфазной фильтрации в средах с микрогетерогенной смачиваемостью [95], двухфазное течение системы нефть - водный раствор полимера с учетом недоступной для полимерного вещества части норового простран- [c.49]

    Появление линии ЯМР сложной формы является следствием микрогетерогенности полимерной системы. В работах, посвященных использованию широкополосного ЯМР для характеристики полимерных систем, предлагается оценивать степень изомеризации по соотношению соответствующих составляющих резонансной пинии. Поскольку это соотношение в случае тер-моциклизованного полибутадиена зависит от темпера- [c.24]

    Это типично для волокон, в которых при формовании не возникает микрогетерогенная структура, т. е. для волокон, полученных по сухому методу, где от исходного раствора до волокна полимерная система сохраняет од-иофазность. При изгибе таких волокон повышенные на-прял<ения в периферийных областях, концентрируясь у случайных дефектов, вызывают распространение исходного дефекта на все поперечное сечение волокна. [c.280]

    Современное развитие полимерной науки и технологии подтвердило справедливость коллоидно-химического подхода к полимерным системам, основанного на определении, данном П. А. Ребиндером [1] согласно которому коллоидная химия — раздел физической химии в котором рассматриваются процессы образования дисперсных систем а также их характерные свойства, связанные в основном с поверх ностными явлениями на границах раздела фаз в этих системах. Учиты вая всевозможные типы коллоидных систем в высокомолекулярных соединениях, П. А. Ребиндер отмечал, что коллоидная химия как учение о дисперсных, т. е. микрогетерогенных двух- или многофазных системах тесно соприкасается с физикохимией высокомолекулярных соединений [2]. Проблемы, решаемые в настоящ,ее время коллоидной химией полимеров, весьма разнообразны [3]. Исходя из общих позиций, к коллоидной химии полимеров следует отнести все проблемы физической химии полимеров, при описании которых вклад, определяемый поверхностными эффектами и поверхностными свойствами, существенно преобладает над вкладом объемных свойств. Это — проблемы межфазных и поверхностных явлений в полимерах [4,5], оказывающих [c.180]

    Полученное выражение содержит только определяемые непосредственно из эксперимента коэффициенты расширения и требует знания состава системы. Оно отличается от обычного уравнения тем, что в него входят величины суммарных коэффициентов расширения и объемные доли компонентов. Это делает удобной экспериментальную проверку уравнения. Оно может быть также использовано в качестве критерия образования истинной микрогетерогенности в смеси или в блок-сополимере. Действительно, это уравнение должно соблюдаться только при микрорасслоении системы на две фазы. Если обе фазы или жесткие блоки в системе распределены равномерно и их функция сводится только к образованию нелокализованных узлов пространственной структуры (в соответствии с представлениями, развиваемыми для полимерных гелей [372]), то систему нельзя рассматривать как микрорасслоившуюся [c.243]

    Проведенный в данной монографии анализ структурных изменений, происходящих при взаимодействии полимеров и наполнителей, показывает возможность возникновения в многокомпонентных системах различных уровней микрогетерогенности. В настоящее время еще не установлена роль дополпительной гетерогенности, связанной с присутствием наполнителя, и не исследовано ее влияние на ряд характеристик наполненных полимеров. Можно допустить, например, что уменьшение плотности сетки в граничном слое повышает его эластичность и способствует снижению внутренних напряжений на границе раздела, создавая промежуточный слой между поверхностью и полимерной матрицей. Но гетерогенность может ухудшать другие свойства композиции, например водостойкость. Увеличение дефектности структуры ухудшает механические свойства. Следовательно, задача состоит в более подробном исследовании структурных изменений в граничных слоях и путей их регулирования, что открывает перспективу для устранения слабых граничных слоев, определяющих условия адгезионного разрушения связи полимер — наполнитель. Структурная неоднородность приводит также и к изменению релаксационного спектра. [c.281]

    Образцы, подвергавшиеся ацеталированию в течение небольших промежутков времени (например, 6 часов), как было указано выше, после высушивания представляют собой криптоконденсационные структуры, т. е. квазигомогенные полимерные материалы, информация о микрогетерогенной природе которых хранится лишь в форме системы сложным образом распределенных внутренних напряжений. Наличие напряжений, видимо, приводит к повышенной хрупкости этих образцов. Так как при комнатной температуре поливинилформаль находится в стеклообразном состоянии, то внутренние напряжения практически не релаксируют. [c.111]

    Второй весьма важной особенностью микрогетерогенных образований ПВС является одновременное сосуществование целого набора морфологических структур. На рис. 5 приведено сосуществование утолщенных дендритных образований и глобул. По-видимому, всякое состояние полимерных растворов с микрогетерогенными образованиями характеризуется своим распределением по типам и количеству морфологических структур. Концентрация этих структур в каждый момент времени определяется соотношениями величин констант скоростей взаимных переходов и степенью приближения к равновесному состоянию. Вполне вероятно, что различные морфологические структуры являются псевдо-равновесными и их образование в первую очередь определяется перестройкой системы водородных связей, связанной с электростатическим отталкиванием ионогенных групп полимерных цепей. Поэтому естественно, что pH и другие условия приготовления растворов ПВС определяют возможность возникновения тех или иных псевдоравновес-ных морфологических структур. [c.123]

    Микрогетерогенная структура полученной таким образом системы характеризуется весьма интересным комплексом физико-химических и механич. свойств, в основном обусловленных наличием связанных с полимерными цепями сетчатых образований заданной химич. структуры, играющих роль активного наполнителя-модификатора. Так, взаимодействие каучуков с олиго-эфиракрилатами позволяет получать высокопрочные резины без применения наполнителей. Такие резины превосходят стандартные по стойкости к тепловому старению, динамич. выносливости, диэлектрическим и ряду др. свойств и характеризуются меньшими гистере-зисными потерями. Кроме того, введение в каучуки 10—50% (от массы эластомера) жидкого термореактивного олигоэфиракрилата в 5—7 раз снижает вязкость смеси, что резко облегчает переработку и позволяет создать более рациональные методы формования резиновых изделий. [c.135]

    В этой связи важно, во-первых, экспериментальное установление обратимого и необратимого снижения адгезии в сэндвичевых системах выше и ниже температуры стеклования полимеров и вывод авторов [398, 399] о динамическом абсорбцион-но-десорбционном характере адгезии указанных полимеров выше Гг,. Это, по-видимому, общая особенность всех полимерных элементов многослойных систем, связанная с их физическим состоянием и подвижностью звеньев макромолекул выше и ниже Гс [400—402]. Во-вторых, экспериментальные исследования совместной адсорбции дибутилфталата и воды на силикагеле и летучих ингибиторов коррозии (бензоаты амина) и воды на железе. Авторы работ [403, 404] приходят к выводу о частичном снижении заполнения поверхности субстрата водой в присутствии низкомолекулярных органических соединений, подавлении поли-молекулярной конденсации и образованию на поверхности субстрата микрогетерогенной системы, состоящей из островков воды и органического вещества. В системах с полимерным адгезивом процессы обмена протекают, вероятно, более сложным образом, однако эти различия имеют скорее количественный, чем качественный характер. Об этом косвенно свидетельствует сходство форм изотерм конкурентной адсорбции и изотерм изменения Лоо, оо. Количественные различия проявляются в степени сдвига участков интенсивного изменения параметров в область средних и высоких относительных влажностей. Отметим, что в [398] изменение прочности адгезионной связи при р/рз) р/рв)кр связывалось с адсорбционным замещением макромолекул молекулами воды на поверхности металла при заполнении второго и следующих адсорбционных слоев. В свете этих работ становятся более понятными результаты исследований по кинетике коррозии. Так, вывод о том, что скорость коррозии металла под покрытием в начальный период эксплуатации является функцией прочности связи элементов сэндвичевой системы означает, что увеличение адгезии уменьшает концентрацию коррозионноактивных центров на поверхности металла, доступных агрессивным компонентам среды, и, по-видимому, концентрацию молекул агрессивного компонента около этих центров. Об этом же свидетельствует предварительное модифицирование границы раздела или полимерного слоя, которое приводит к общему увеличению А и значительному возрастанию промежутков времени, [c.270]

    Работы посвящены хим. модифицированию полимеров, теории реакционной способности функциональных групп и звеньев макромолекул, химии медико-биол. полимеров, физ. химии жидкокристаллических полимеров, применению ЭВМ в химии полимеров. Сформулировал понятие о принципиальной химически фиксированной микрогетерогенности и ее роли в системах, состоящих из привитых или блоксо-полимеров (1966). Создал ряд методов хим. и структурной модификации полимеров, в частности ме-ханохимическую прививку на неорг. системы, управление структурой полимеров с помощью прививочной полимеризации, синтез полимеров с оловоорганическими группами в цепи (1970). Развил статистическую теорию реакционной способности звеньев полимерной цепи с учетом эффекта соседних групп (1977). Разработал (совм. с В. П. Шибаевым) принцип создания термотропных жидкокристаллических полимеров на основе гребнеобразных полимеров с мезогенными группами 0982). Разработал химию макромономеров на основе физиологически активных в-в и пред ю-жил методы синтеза широкой гаммы модифицированных полимеров мед. назначения (1984). [c.350]

    Эмульсионные системы, широко распространенные в производстве каучуков, характеризуются высокими коццентрациями эмульгирующих агентов. Конечный продукт эмульсионной полимеризации— латекс представляет собой микрогетерогенную термодинамически устойчивую систему, состоящую из двух фаз — вод ной и полимерной. Размер частиц полимера не превышает 5 мк. [c.366]


Смотреть страницы где упоминается термин Микрогетерогенность полимерных систем: [c.183]    [c.271]    [c.269]    [c.371]    [c.91]    [c.371]    [c.143]    [c.82]   
Термомеханический анализ полимеров (1979) -- [ c.19 , c.169 , c.175 , c.181 ]




ПОИСК





Смотрите так же термины и статьи:

Микрогетерогенность

Система микрогетерогенные



© 2025 chem21.info Реклама на сайте