Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Микрогетерогенность полимерных

    Методом ЭСХА можно пользоваться для идентификации полимеров, сополимеров или смесей полимеров изучения структурной изомерии полимеров и сополимеров, например установления микрогетерогенности последних изучения валентных состояний в полимерах, полимерных пленочных покрытий исследования поверхностей, подвергнутых различной обработке, например плазменной изучения химической деструкции полимеров, окисления, нитрования их и т. п. изучения термо- и фотодеструкции полимеров, фотопроводимости полимеров, статики и динамики образования зарядов в полимерных образцах, трибоэлектрических явлений в полимерах. [c.142]


    Микрогетерогенный катализ занимает промежуточное место между гомогенным и гетерогенным. В нем катализатор - большие полимерные молекулы. Для взаимодействующих на них небольших молекул они подобны гетерогенным частицам, но образуют с реагентами одну физическую фазу. В эту группу входят ферментативные реакции, в которых катализатор (фермент) - крупные белковые молекулы сложного состава и строения. Потому микрогетерогенный катализ называют также ферментативным. [c.85]

    О ПРИМЕНИМОСТИ КОНЦЕПЦИИ СВОБОДНОГО ОБЪЕМА К ПРОЦЕССАМ СТЕКЛОВАНИЯ В МИКРОГЕТЕРОГЕННЫХ ПОЛИМЕРНЫХ СИСТЕМАХ [c.240]

    В связи с широким использованием микрогетерогенных полимерных систем проблема описания их свойств в терминах теории свободного объема стала особенно важной. Для таких микрогетерогенных систем следует ввести понятие о локализованном распределении свободного объема и о парциальном свободном объеме для отдельных участков полимерных цепей, принимающих участие в различных видах молекулярных движений. Эту концепцию удобно рассмотреть на примере блок-сополимеров или смесей полимеров. Наличие в таких системах двух точек перехода, относимых к двум областям стеклования, указывает на локализованное распределение свободного объема в системе, когда увеличение свободного объема в одной области не влияет на изменение подвижности участков цепей в другой области. Если цепь состоит из i сегментов, из которых жестких сегментов / и мягких / при условии t = / + /, и для каждого сегмента характерен свой парциальный свободный объем v , то суммарный свободный объем 1 г полимера определится в виде [c.241]

Таблица 2.47. Толщина межфазного слоя при взаимной диффузии различной продолжительности в бинарных микрогетерогенных полимерных смесях [413] Таблица 2.47. <a href="/info/1777806">Толщина межфазного</a> слоя при <a href="/info/215345">взаимной диффузии</a> различной продолжительности в бинарных микрогетерогенных полимерных смесях [413]
    Относительная роль термофлуктуационных явлений и работы внешних сил в процессе разрушения связана количественно с коэффициентом у в формуле (VI.5). Его величина в отличие от параметров То и и а, имеющих универсальное значение, зависит от предыстории образца и характеризует эффективность влияния напряжения на происходящие при разрушении молекулярные явления. Поэтому физический смысл этого коэффициента связывают [4] с локальными перенапряжениями, возникающими вследствие неоднородности структуры материала чем сильнее выражена гетерогенность, тем больше коэффициент концентрации напряжений q и тем большую роль играют одни и те же внешние напряжения, оцениваемые по их среднему значению. Связь между у и д устанавливается, исходя из допущения о том, что элементарный акт разрушения при д = 1, когда достигается теоретически предельная прочность идеально гомогенного тела, совершается в пределах активационного объема Va, близкого к объему, занимаемому в конденсированном теле одним атомом, т. е. Va 2-10 см . Отсюда следует, что у 2 10" д. Оценки значений q для реальных случаев показывают, что коэффициенты перенапряжений могут изменяться в довольно широких пределах, отражая существенное влияние термомеханической предыстории на микрогетерогенность полимерных материалов и, следовательно, возможности использования этого фактора для регулирования их прочностных свойств. [c.238]


    Метод закалки можно применять не только к аморфно-кристаллическим гомополимерам, но и вообще к микрогетерогенным полимерным системам, таким, как блоксонолимеры, характеризующиеся доменной структурой, смеси полимер—полимер и полимер—пластификатор. Часто нагревание приводит к гомогенизации подобных систем, и закалка может зафиксировать достигнутое состояние. Однако такая гомогенность достигается не всегда ситуация определяется природой фазовых соотношений, следующих общим закономерностям физико-химического анализа. [c.215]

    Примером высокоселективного и наиболее эффективного катализа может служить ферментативный катализ. Ферменты катализируют почти все физиологически важные реакции, которые в присутствии ферментов быстро идут в мягких условиях при невысокой температуре. Многие ферменты выделены из природных соединений в индивидуальном состоянии, все они представляют сложные полимерные соединения - белки и комплексы белков с низкомолекулярными соединениями. Полимерные молекулы ферментов имеют размеры коллоидных частиц, поэтому их иногда относят к микрогетерогенным катализаторам, занимающим промежуточное положение между гомогенными и гетерогенными катализаторами. [c.158]

    Микрогетерогенный катализ занимает промежуточное место между гомогенным и гетерогенным, в котором в качестве катализатора используют больщие полимерные молекулы. Для взаимодействующих на них небольщих молекул они подобны гетерогенным частицам, но образуют с реагентами одну физическую фазу В эту группу входят фер- [c.134]

    Щелочные силикатные связки — это концентрированные водные растворы кремнезема в щелочах, а также микрогетерогенные системы, содержащие кремнезем различной степени полимерности при pH > 7 и проявляющие способность к адгезионному отвердеванию при высыхании системы или при взаимодействии с отвердителями [10]. [c.294]

    По одному из прорабатываемых направлений твердую фазу полностью исключают из бурового раствора, а надлежащие струк-турно-реологические свойства создают соответствующими полимерными реагентами. Однако высоковязкий тиксотропный полимерный раствор при превышении определенной величины репрессии все же проникает в коллектор [79], что несколько усложняет последующее расформирование зоны проникновения. Так как в пласт поступает не фильтрат, а раствор, то необходимо создание значительной депрессии при вызове притока из-за неустойчивости некоторых видов полимеров к минеральной агрессии. На последнем эффекте основаны некоторые технологии изоляции [80]. Однако это дает положительный результат только при формировании гидроизоляционного экрана небольшой толщины, а при значительном удалении в глубину пласта приводит к ухудшению качества вскрытия. Поэтому многие исследователи приходят к выводу о необходимости наличия в промывочной жидкости твердой фазы (в лучшем случае кислоторастворимой) и использования полимеров, устойчивых к пластовым минеральным солям [81, 82]. Другие исследователи идут дальше и предъявляют требования к составу твердой фазы с обязательным включением микрогетерогенной и коллоидной фракций [58]. [c.63]

    Микрогетерогенность не является препятствием для получения композиций с высоким комплексом физико-механических и эксплуатационных свойств. Полимер, находящийся в дисперсной фазе, может выполнять функции наполнителя. Образование переходного слоя на границе двух полимерных фаз способствует повышению физико-механических свойств системы. [c.28]

    ДИСПЁРСНЫЕ СИСТЕМЫ, гетерог. системы из двух или большего числа фаз с сильно развитой пов-стью раздела между ними. Обычно одна из фаз образует непрерывную дисперсионную среду, в объеме к-рой распределена дисперсная фаза (или неск. дисперсных фаз) в виде мелких кристаллов, твердых аморфных частиц, капель или пузырьков. Д.с. могут иметь и более сложное строение, напр, представлять собой двухфазное образование, каждая из фаз к-рого, будучи непрерывной, проникает в объем др. фазы. К таким системам относятся твердые тела, пронизанные разветвленной системой каналов-пор, заполненных газом или жидкостью, нек-рые микрогетерогенные полимерные композиции и др. Нередки случаи, когда дисперсионная среда вырождаете ) до тончайших слоев (плеиок), разделяющих частицы дисперсной фазы. [c.80]

    Представление о локальном распределении свободного объема приводит к необходимости его учета при рассмотрении вязкоупругих свойств полимеров. Такие характеристики механических свойств, как модуль упругости, вязкость и пр., определяются общим свободным объемом системы, так как при измерении этих характеристик нельзя выделить вклад в них тех или иных областей различной структуры. Экспериментально же определяются свойства системы независимо, от того, связаны ли они с проявлением локальных свойств определенных областей системы или Нет. Изменение, например, вязкоупругих свойств наполненного полимера по сравнению с ненаполненным связано с заполнением части объема наполнителем, в то время как свободный объем определяется только полимерной фазой. Поэтому при 7 с доля свободного объема в системе окажется меньше, чем в ненаполненном полимере, так как величину свободного объема надо относить к общему занятому объему системы. В микрогетерогенных системах, таким образом, значения доли свободного объема при 7 с не будут соответствовать универсальному значению. Если свободный объем системы рассматривать как сумму парциальных свободных объемов компонентов а = у 4-у, то при 7 , [c.244]


    Таким образом, в микрогетерогенных системах доли свободного объема полимерных компонентов при Тс действительно, как предсказано выше, не равны друг другу и универсальному значению, что является следствием эффектов дополнительного расслоения при снятии кривых изотермического сжатия объема. [c.250]

    Перечисленные четыре типа микрогетерогенности характерны для полимерных систем, наполненных минеральными наполнителями и для полимерных смесей — двухфазных систем с непрерывным распределением обоих компонентов или систем с полимерными наполнителями. Однако если в первом случае указанные типы микрогетерогенности возникают вследствие межфазных явлений только в полимере-матрице, то во втором случае они типичны и для полимера-наполнителя, и для переходного слоя между двумя полимерными, компонентами. [c.285]

    Оптическая микроскопия с фазовым контрастом, основанная на различиях в коэффициентах рефракции полимеров, широко используется для исследования бинарных полимерных смесей. Оптическая система микроскопа позволяет осуществить сдвиг по фазе между дифрагированным и пропускаемым светом, что приводит к получению интерференционной картины даже при очень небольших различиях в коэффициентах рефракции. Использование оптической микроскопии для исследования микрогетерогенности смеси каучуков первоначально было предложено для ненаполненных систем. При анализе срезов толщиной 1-4 мкм никакого тонирования фаз не требуется, так как контраст достигается вследствие различия в показателях преломления эластомеров. Метод успешно использован для широкого круга смесей каучуков. Оптическая микроскопия с фазовым контрастом требует исследования очень тонких образцов ( 1-4 мкм), которые могут быть получены с помощью криогенного среза по технологии, описанной в стандарте ASTM D 2663. Автоматизированный анализ реплик был впервые использован для определения совместимости в различных смесях полимеров. [c.575]

    Таким образом, дискретность (микрогетерогенность) структуры полимерных волокон приводит к дискретному распределению трещин по длинам, а это, в свою очередь, приводит к наблюдаемому на капроновом волокне дискретному спектру прочности. Как следует из анализа экспериментальных данных, между дискретным спектром длин трещин, определенным по данным малоуглового рентгеновского метода, и дискретным спектром прочности наблюдается корреляция. [c.257]

    Отверждение (вулканизация), протекающее в матрице на поверхности частиц наполнителя, может существенно отличаться от того же процесса в объеме полимера. Это различие обусловлено тем, что на поверхности наполнителя изменяются соотношения скоростей элементарных реакций, происходит избирате.1ть-ная адсорбция компонентов полимерной фазы, участвующих в отверждении, а с другой стороны, в эту реакцию вступают функциональные группы на поверхности наполнителя и др. Изменение свойств полимера в граничном слое (увеличение структурной и физич. микрогетерогенности и даже химич. неоднородности) м. б. столь существенным, что вклад наполнителя в свойства композиции окажется нивелированным. Поэтому наполненный полимер целесообразно расс.мат-ривать как трехкомпонентную систему, состоящую из наполнителя, граничного слоя с измененными свойствами и полимера, свойства к-рого аналогичны свойствам ненаполненного. Однако определить объемную долю граничного слоя в наполненном полимере практически невозможно, поскольку понятие толщина граничного слоя условно, и ее эффективное значение для того или иного свойства систе.мы может из.меняться в широких пределах. [c.164]

    Известно, что всякие напряжения в наполненной системе, приводящие к возникновению неравновесных состояний, отрицательно сказываются на свойствах. Согласно распространенному в настоящее время мнению, любая наполненная система должна рассматриваться как микрогетерогенная трехкомпонентная система, состоящая из наполнителя, полимерной матрицы с неизменными свойствами и пограничного слоя [446, с. 149]. Уделяется большое значение наличию граничного слоя в композиции, который по свойствам существенно отличается от основного материала. Это отличие, каким бы способом компаундирования не создавалась композиция (из расплава, из раствора), связано с конформационной ограниченностью цепей, соприкасающихся с поверхностью. Заторможенность релаксационных процессов на поверхности, а также различие в коэффициентах термического расширения полимера и наполнителя может приводить к возникновению в наполненной системе внутренних напряжений. Следовательно, для физико-механических свойств наполненных полимеров небезразлично, каким образом формируется межфазный полимерный слой, созданы ли при этом условия для релаксации возникающих напряжений. В этом плане метод полимеризационного наполнения, при котором рост макромолекулы происходит на активных центрах поверхности наполнителя, создает более благоприятные условия для лучшей упаковки макромолекул на поверхности, для снижения вероятности возникновения неравновесных процессов на границе раздела фаз. [c.254]

    Технология полимеров, как и других материалов, уже давно идет по пути создания композиционных материалов, в которых за счет направленного сочетания компонентов стремятся получить требуемый комплекс свойств. Возможности для этого в полимерах поистине огромны. Стеклопластики, усиленные эластомеры, ударопрочные пластики, пластики, армированные неорганическими и органическими волокнами и наполненные порошкообразными наполнителями, многокомпонентные полимерные смеси, термоэластопласты, полимербетоны — вот далеко не полный перечень композиционных полимерных материалов, широко применяемых в различных областях современной техники. Однако несмотря на достаточно широкое использование композиционных полимерных материалов, научно обоснованные принципы создания таких материалов с заданным комплексом свойств все еще отсутствуют. Это особенно относится к материалам, содержащим лишь полимерные компоненты, таким как смеси полимеров, блок- и привитые сополимеры и др. В связи с этим необходимо отметить, что в последние годы чрезвычайно активно проводятся работы, направленные на выяснение физико-химических факторов, обусловливающих совместимость и сегрегацию компонентов и формирование характерной микрогетерогенной структуры и морфологии, особенностей сопряжения микро- и макрофаз и их устойчивости при воздействии температур, механических напряжений и других факторов. Это позволяет надеяться, что такие принципы будут в ближайшее время разработаны. [c.13]

    Гелеобразование (желатинирование, желатинизация, желирование, студнеоб-разование, застудневание) - физический или химический процесс перехода жидких гомогенных и (или) микрогетерогенных полимерных систем в твердообразное состояние геля (студня). [c.397]

    В общем виде можно дать следующую классификацию типов микрогетерогенности в многокомпонентных полимерных системах 1) молекулярная микрогетерогенность, проявляющаяся в измене- НИИ в межфазном слое таких физических характеристик, которые определяются макромолекулярным строением полимерных цепей (термодинамические свойства, молекулярная подвижность, плотность упаковки, свободный объем, уровень межмолекулярных взаимодействий и др.) 2) структурная микрогетерогенность, определяемая изменениями во взаимном расположении макромолекул друг относительно друга в поверхностных и переходных слоях на разном удалении от межфазной границы и характеризующая ближний порядок в аморфных полимерах и степень кристалличности в кристаллических полимерах 3) микрогетерогенность на надмолекулярном уровне, определяемая различиями в типах и характере формирования и упаковки надмолекулярных структур в поверхностных слоях и в объеме 4) химическая мйкрогетероген-ность, обусловленная влиянием границы раздела на формирование полимерных молекул микрогетерогенность этого типа может быть также дополнительной причиной указанных выше трех типов микрогетерогенности. [c.285]

    Компоненты поверхностного натяжения некоторых низкомолекулярных жидкостей (263). Поверхностное натяжение некоторых сополимеров этилена с винилацетатом (263). Поверхностная энергия смесей сополимеров этилен — малеиновый ангидрид и этилен-К- -октаде-цилмалеиновая кислота (264). Поверхностное натяжение смесей и сополимеров этилен — малеиновый ангидрид и этилен-Ы- -октадецилмалеиниминовая кислота (264). Меж азное натяжение некоторых полимерных пар (264). Коэффициенты диффузии блок-сополимеров стирол — диметилсилоксан в полистироле (М = 9290) (265). Толщина межфазного слоя при взаимной диффузии различной продолжительности в бинарных микрогетерогенных полимерных смесях (266). [c.9]

    Появление линии ЯМР сложной формы является следствием микрогетерогенности полимерной системы. В работах, посвященных использованию широкополосного ЯМР для характеристики полимерных систем, предлагается оценивать степень изомеризации по соотношению соответствующих составляющих резонансной пинии. Поскольку это соотношение в случае тер-моциклизованного полибутадиена зависит от темпера- [c.24]

    Пластицирующимися являются, как правило, полимеры со сложным молекулярным составом они обычно имеют широкое ММР, высокую среднюю молекулярную массу и содержат значительное количество разветвленных макромолекул с длинными боковыми ветвями или рыхлых микрогетерогенных структур (полимерных частиц)—микрогелей, микрокристаллитов и др. [10]. [c.77]

    Обобщив имеющийся в литературе материал и использовав известные закономерности физики и химии полимеров, Эриньш предложил модель лигнин-гемицеллюлозной матрицы как полимерной композиции типа взаимопроникающих сеток. Лигнин-гемицеллюлозная матрица образуется взаимоналожением трех сетчатых структур сетчатой структуры самого лигнина сетки, образованной ковалентными связями лигнина с гемицеллюлозами сетки, образованной межмолекулярными водородными связями и силами физического взаимодействия в лигнине, в гемицеллюлозах и между ними. Матрица микрогетерогенна и состоит из областей разного состава с различной плотностью сетки. Лигнин в ней находится в виде глобулярных микроблоков со сравнительно плотной сеткой поперечных связей, которые, в свою очередь, включены в менее плотную сетчатую структуру. Считают, что ковалентные связи лигнина с гемицеллюлозами образуются в ходе его биосинтеза (см. 12.5.2). Изучение типов ковалентных связей лигнина с гемицеллюлозами проводят по двум направлениям исследование образования связей лигнина с углеводами в ходе биосинтеза исследование состава и строения ЛУК, выделенных из древесины, с привлечением методов деструкции, химического анализа, ЯМР-спектроскопии и др. [c.408]

    Рельеф, полученный в результате фотореакции, можно дополнительно упрочнить. Для термоотверждения фоторельефа пытались использовать обычные ускорители вулканизации каучуков (тиурам, каптакс, пероксиды бензоила и дикумила, а также 2,4-днхлор-бензоилпероксид). Их введение позволяет после соответствующей термообработки повысить прочность слоя в 2—4 раза, однако приводит к микрогетерогенности в пленках толщиной 3—6 мкм. Удобным оказался диазид терефталевой кислоты, не нарушающий гомогенности полимерной матрицы и прозрачный в области поглощения [c.210]

    Полученное выражение содержит только определяемые непосредственно из эксперимента коэффициенты расширения и требует знания состава системы. Оно отличается от обычного уравнения тем, что в него входят величины суммарных коэффициентов расширения и объемные доли компонентов. Это делает удобной экспериментальную проверку уравнения. Оно может быть также использовано в качестве критерия образования истинной микрогетерогенности в смеси или в блок-сополимере. Действительно, это уравнение должно соблюдаться только при микрорасслоении системы на две фазы. Если обе фазы или жесткие блоки в системе распределены равномерно и их функция сводится только к образованию нелокализованных узлов пространственной структуры (в соответствии с представлениями, развиваемыми для полимерных гелей [372]), то систему нельзя рассматривать как микрорасслоившуюся [c.243]

    Проведенный в данной монографии анализ структурных изменений, происходящих при взаимодействии полимеров и наполнителей, показывает возможность возникновения в многокомпонентных системах различных уровней микрогетерогенности. В настоящее время еще не установлена роль дополпительной гетерогенности, связанной с присутствием наполнителя, и не исследовано ее влияние на ряд характеристик наполненных полимеров. Можно допустить, например, что уменьшение плотности сетки в граничном слое повышает его эластичность и способствует снижению внутренних напряжений на границе раздела, создавая промежуточный слой между поверхностью и полимерной матрицей. Но гетерогенность может ухудшать другие свойства композиции, например водостойкость. Увеличение дефектности структуры ухудшает механические свойства. Следовательно, задача состоит в более подробном исследовании структурных изменений в граничных слоях и путей их регулирования, что открывает перспективу для устранения слабых граничных слоев, определяющих условия адгезионного разрушения связи полимер — наполнитель. Структурная неоднородность приводит также и к изменению релаксационного спектра. [c.281]

    Это типично для волокон, в которых при формовании не возникает микрогетерогенная структура, т. е. для волокон, полученных по сухому методу, где от исходного раствора до волокна полимерная система сохраняет од-иофазность. При изгибе таких волокон повышенные на-прял<ения в периферийных областях, концентрируясь у случайных дефектов, вызывают распространение исходного дефекта на все поперечное сечение волокна. [c.280]

    Испарение дисперсионной среды часто приводит к необратимому исчезновению нористости и дисперсности. Многие латексные дисперсные структуры, пористые, микрогетерогенные во влажном состоянии, при высушивании необратимо теряют гетерогенный характер и превращаются в гомогенную полимерную пленку [58]. [c.34]

    Образцы, подвергавшиеся ацеталированию в течение небольших промежутков времени (например, 6 часов), как было указано выше, после высушивания представляют собой криптоконденсационные структуры, т. е. квазигомогенные полимерные материалы, информация о микрогетерогенной природе которых хранится лишь в форме системы сложным образом распределенных внутренних напряжений. Наличие напряжений, видимо, приводит к повышенной хрупкости этих образцов. Так как при комнатной температуре поливинилформаль находится в стеклообразном состоянии, то внутренние напряжения практически не релаксируют. [c.111]

    Второй весьма важной особенностью микрогетерогенных образований ПВС является одновременное сосуществование целого набора морфологических структур. На рис. 5 приведено сосуществование утолщенных дендритных образований и глобул. По-видимому, всякое состояние полимерных растворов с микрогетерогенными образованиями характеризуется своим распределением по типам и количеству морфологических структур. Концентрация этих структур в каждый момент времени определяется соотношениями величин констант скоростей взаимных переходов и степенью приближения к равновесному состоянию. Вполне вероятно, что различные морфологические структуры являются псевдо-равновесными и их образование в первую очередь определяется перестройкой системы водородных связей, связанной с электростатическим отталкиванием ионогенных групп полимерных цепей. Поэтому естественно, что pH и другие условия приготовления растворов ПВС определяют возможность возникновения тех или иных псевдоравновес-ных морфологических структур. [c.123]

    Современное развитие полимерной науки и технологии подтвердило справедливость коллоидно-химического подхода к полимерным системам, основанного на определении, данном П. А. Ребиндером [1] согласно которому коллоидная химия — раздел физической химии в котором рассматриваются процессы образования дисперсных систем а также их характерные свойства, связанные в основном с поверх ностными явлениями на границах раздела фаз в этих системах. Учиты вая всевозможные типы коллоидных систем в высокомолекулярных соединениях, П. А. Ребиндер отмечал, что коллоидная химия как учение о дисперсных, т. е. микрогетерогенных двух- или многофазных системах тесно соприкасается с физикохимией высокомолекулярных соединений [2]. Проблемы, решаемые в настоящ,ее время коллоидной химией полимеров, весьма разнообразны [3]. Исходя из общих позиций, к коллоидной химии полимеров следует отнести все проблемы физической химии полимеров, при описании которых вклад, определяемый поверхностными эффектами и поверхностными свойствами, существенно преобладает над вкладом объемных свойств. Это — проблемы межфазных и поверхностных явлений в полимерах [4,5], оказывающих [c.180]

    Во многих случаях сополимеризации возникающая композиционная неоднородность на межмолекулярном или внутримолекулярном (или обоих) уровнях является следствием особенностей кинетики сополимеризации. Частным случаем является анионная сополимери-зация стирола и бутадиена, при которой можно получить образцы почти с любой степенью распределения компонентов [3]. По механическим характеристикам блоксополимеры легко отличить от статистических сополимеров [1, 4, 5]. Однако небольшие различия в поведении должны, вероятно, возникать и из-за композиционной це-однородности статистических сополимеров, у которых отсутствуют длинные последовательности любого из мономеров, но тем не менее состав изменяется по цепй. В связи с этим было бы желательно установить некоторые пределы совместимости макромолекул одинакового состава, но различающихся распределением мономеров, по цепи. Были исследованы смеси полимеров, приготовленные из однородных статистических сополимеров бутадиена и стирола. (Термин однородные статистические используется для обозначения сополимеров, состав которых не зависит от степени конверсии композиционная неоднородность таких сополимеров не выходит за пределы, большие, чем несколько мономерных звеньев.) В настоящем сообщении обсуждаются результаты измерений механических динамических характеристик и зависимостей между напряжением и двойным лучепреломлением смесей. У бинарных смесей указанных выЬае компонентов, различающихся по составу более, чем на 20%, явно проявляется микрогетерогенность, которая иногда наблюдается даже и у полимерных смесей, менее различающихся по составу. Полученные результаты анализируются с позиций однопараметрических моделей, одна из которых сравнительно успешно объясняет динамические и оптические характеристики смесей при известных свойствах входящих в них компонентов. [c.83]

    В данной работе прежде всего будут рассмотрены доказТательства сущ ествования и характеристика степени агрегации однотипных блоков. Далее будут сопоставлены значения критических концентраций разделения фаз в блоксополимерах и в полимерных смесях аналогичного состава. В зависимости от кинетики агрегации можно получить микрогетерогенные структуры, совершенно различные по степени упорядоченности. Авторами на основе рассмотрения изменения свободной энергии при плотной упаковке агрегатов получены общие количественные соотношения между формой и размерами агрегатов, с одной стороны, и молекулярной структурой, с другой. Полученные расчетные результаты согласуются с экспериментальными данными. [c.181]

    Интересно отметить, что если закрепление стабилизирующей цепи на поверхности частицы хорошее и механические свойства освобожденных от растворителя полимерных цепей подходящие, то оптические и механические свойства таких пленок (несмотря на их микрогетерогенность) чрезвычайно хороши [29]. Действительно, такие структуры обнаруживают отчетливое сходство с современными гетерофазными, модифицированными каучуками блочными полимерами, такими, как АБС-пластики (на основе акрилонитрила, бутадиена и стирола). Даже тогда, когда остающиеся стабилизирующие цепи не подвергаются дальнейшим химическим или физическим изменениям, делающим их менее растворимыми в исходной непрерывной фазе, чем перед образованием пленки, устойчивость пленки к репептизации в исходном разбавителе [c.280]

    Микрогетерогенная структура полученной таким образом системы характеризуется весьма интересным комплексом физико-химических и механич. свойств, в основном обусловленных наличием связанных с полимерными цепями сетчатых образований заданной химич. структуры, играющих роль активного наполнителя-модификатора. Так, взаимодействие каучуков с олиго-эфиракрилатами позволяет получать высокопрочные резины без применения наполнителей. Такие резины превосходят стандартные по стойкости к тепловому старению, динамич. выносливости, диэлектрическим и ряду др. свойств и характеризуются меньшими гистере-зисными потерями. Кроме того, введение в каучуки 10—50% (от массы эластомера) жидкого термореактивного олигоэфиракрилата в 5—7 раз снижает вязкость смеси, что резко облегчает переработку и позволяет создать более рациональные методы формования резиновых изделий. [c.135]


Смотреть страницы где упоминается термин Микрогетерогенность полимерных: [c.7]    [c.168]    [c.183]    [c.524]    [c.51]    [c.271]    [c.269]   
Термомеханический анализ полимеров (1979) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Микрогетерогенность



© 2025 chem21.info Реклама на сайте