Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Термодинамика параметры

    Параметры состояния и уравнение состояния. Параметром называют вообще переменную величину, которой можно придать в условиях задачи определенное значение. В термодинамике параметры служат для характеристики состояния системы. Ими являются температура (Г), давление (р) и объем (V ). Каким бы образом не совершился переход из исходного состояния системы в конечное, [c.23]


    Такой же смысл имеют параметры в естественнонаучных теориях. Например, в термодинамике параметрами [c.52]

    Не следует противопоставлять химическую кинетику и химическую термодинамику. На основе термодинамических закономерностей проектировщик, инженер или исследователь устанавливает в целом наиболее благоприятную, с точки зрения выхода целевого продукта, область протекания химических реакций. Химическая же кинетика позволяет в термодинамически разрешенной области рассчитать концентрации (не равновесные, а кинетические) продуктов реакций, материальный баланс, геометрические размеры реакционных аппаратов и оптимизировать технологические параметры процессов. [c.15]

    Энтальпия или теплосодержание газа. Это один из важных параметров технической термодинамики. Энтальпией называется сумма внутренней энергии единицы массы газа (и) и произведения е] о удельного объема на абсолютное давление. Энтальпия обозначается буквой г. [c.26]

    Термодинамика, наряду с другими вопросами, изучает условия равновесия химических реакций. На современном уровне развития для большинства реакций термодинамика дает ответ на первый вопрос, пользуясь обобщениями, основанными на тепловых и спектроскопических данных и на измерениях параметров уравнения состояния системы. [c.12]

    Совокупность изучаемых термодинамикой свойств (так называемых термодинамических параметров) системы определяет термодинамическое состояние системы. Изменение любых термодинамических свойств (хотя бы только одного) приводит к изменению термодинамического состояния системы. [c.27]

    Энтропия широка используется в технической термодинамике (теплотехнике), как один из важных параметров рабочего тела в тепловой машине, например водяного пара. Величины энтропии водяного пара в данном состоянии вычисляются по сравнению с некоторым стандартным состоянием—обычно О °С и 1 ат. Эти значения энтропии используются для построения так назы- [c.101]

    В соответствии с воззрением классической термодинамики и статистической физики, состояние равновесия системы характеризуется набором величин Р , Р",. . ., Р (например, давление, температура, концентрация и т. п.). При этом число независимых переменных определяется правилом фаз Гиббса. При фиксированных параметрах системы состоянию равновесия соответствует определенная точка в п-мерном фазовом пространстве Гиббса. Любая другая точка этого пространства определяет неравновесное состояние системы, характеризующееся набором величин Р , Р[,. . ., Р п илп же набором векторов Р = Р — Р.  [c.16]


    Для расчета термодинамических функций веществ по дифференциальным соотношениям термодинамики пользуются уравнениями состояния, содержащими различное число параметров (постоянных). [c.35]

    Создавая математическую модель, исследователь формализует рассматриваемый процесс или элемент, представляя его в виде математической связи между входными и выходными параметрами. Точность воспроизведения сущности рассматриваемого процесса на модели будет зависеть от степени изученности его. Составление математического описания, например, процесса получения и выделения продуктов реакции основывается на степени изученности процесса и составляющих его элементов, на знаниях о всех существенных внешних и внутренних связях. Источником этих сведений обычно являются фундаментальные исследования в области термодинамики, химической кинетики и явлений переноса. Основываясь на фундаментальных законах термодинамики, можно записать уравнения для определения тепловой нагрузки на конденсатор, подогреватель, кипятильник, найти равновесные составы химической реакции и т. д. На основе законов химической кинетики можно установить механизм реакции, определить скорости образования продуктов. Как для процесса в целом, так и для отдельных его элементов записываются фундаментальные уравнения переноса массы, энергии и момента. С точки зрения машинной реализации математического описания процесса получения и выделения продуктов реакции этой задаче свойственны причинно-следственные отношения между элементами, так как модели и реактора, и колонны в своей структуре содержат большое число взаимосвязанных подзадач. В этом смысле к математической модели технологического процесса применимы общие принципы системного анализа. [c.8]

    Выбор параметров стандартного состояния в общем случае произволен и диктуется лишь соображениями удобства и выполнения законов термодинамики. Так как коэффициенты активности должны удовлетворять уравнению Гиббса—Дюгема при постоянном давлении и температуре [c.104]

    Значительный интерес представляет распространение статистических методов неравновесной механики и термодинамики на поли-дисперсные ФХС [36]. Для этого уравнения типа (1.80), которые раньше записывались для совокупности молекул жидкости или газа, используются для описания ансамблей включений (твердых частиц, капель, пузырьков) полидисперсной ФХС. В данном случае уравнение (1.80) играет роль приближенной математической модели поведения ансамбля частиц дисперсной фазы, параметры которой должны определяться на основании обработки экспериментальных данных путем решения обратных задач. [c.71]

    В книге в систематической форме описаны как точные, так и приближенные методы расчета основных термодинамических свойств веществ и термодинамических параметров химических реакций (теплового эффекта реакций, константы равновесия, изменения энтропии и др.). Наряду с изложением теоретических основ методов, значительное внимание уделено практическому их применению. В книге рассматриваются также характерные особенности термодинамики химических реакций при высоких температурах. Описаны важнейшие справочные издания. Приведены таблицы термодинамических свойств химических элементов и большого числа химических соединений (неорганических и органических) при обычных и высоких температурах. Во 2-е издание книги (1-ое вышло в 1970 г.) введены сведения о новых справочных изданиях и экспериментальных работах, содержащих новые данные. Исправлены описки и ошибки, внесены некоторые новые значения термодинамических величин. [c.2]

    В книге кратко описаны методы расчета некоторых параметров фазовых переходов, наиболее существенных для термодинамики химических реакций, в частности процессов перехода из жидкого или кристаллического состояний в состояние идеального газа и обратно при равновесных или при стандартных условиях. Однако автор не затрагивал свойств растворов и методов их расчета, а также специфических особенностей расчетов для области высоких давлений, так как это потребовало бы значительного увеличения объема книги. По тем же причинам не рассмотрены реакции образования комплексных соединений и методы статистической термодинамики, но описаны некоторые методы практического расчета термодинамических функций, основанные на выводах статистической термодинамики. [c.7]

    Термодинамические параметры реакций определяются термодинамическими свойствами веществ, участвующих в реакции. Важнейшими из этих свойств являются внутренняя энергия, энтальпия, энтропия, теплоемкость, энергия Гиббса (изобарно-изотермический потенциал), энергия Гельмгольца (изохорно-изотермический потенциал). Как показывает статистическая термодинамика, каждая из термодинамических функций отражает в совокупности влияние всех особенностей состава, внутреннего строения и условий существования веществ. Использование термодинамических величин для характеристики химических свойств веществ и параметров химических реакций дает возможность количественно отражать влияние этих факторов. Вместо того чтобы определять, как то или иное изменение в строении молекул (характер связи между атомами, расстояние между ними и др.) влияет на положение равновесия в данной реакции (что большей частью и недостижимо), мы, пользуясь термодинамическим методом, оперируем такими функциями, которые дают возможность отразить это влияние суммарно и в более доступной форме. [c.14]


    Применение методов статистической физики к решению проблем химической термодинамики привело в 20-х годах к созданию статистической термодинамики и к возможности определять значения основных термодинамических функций веществ в состоянии идеальных газов на основе данных о строении молекул и о спектрах веществ. Правда, и в настоящее время возможности этого метода практически ограничиваются лишь простыми молекулами или молекулами, для которых такие расчеты упрощаются вследствие их симметрии. Однако большое значение имела прежде всего возможность определить значения энтропии и других величин двумя независимыми методами — методами классической термодинамики на основе калориметрических определений и методами статистической термодинамики на основе данных о строении молекул и их спектрах. В большинстве случаев этими двумя методами были получены хорошо согласующиеся значения энтропии, что. явилось убедительным доказательством надежности каждого из них. Позднее были выяснены и причины наблюдаемых в известных случаях расхождений, что привело к возможности использовать эти расхождения для определения параметров, относящихся к строению молекул (энергетический барьер внутреннего вращения и другие). В дальнейшем развитие радиоспектроскопии расширило экспериментальные основы расчетов, а использование электронно-вычислительных машин облегчило проведение их. В результате методы статистической термодинамики нашли широкое применение для определения основных термодинамических функций разных веществ в газообразном состоянии при самых различных внешних условиях и значительно способствовали быстрому увеличению фонда имеющихся данных. Однако эти методы сами по себе не дают в настоящее время возможности определять тепловые [c.18]

    Термодинамика химических реакций базируется главным образом на опытных данных. Результаты экспериментальных исследований служат большей частью основой как новых теоретических выводов и обобщений, так и обширного фактического материала, используемого при изучении различных конкретных реакций. Эти экспериментальные данные или непосредственно выражают термодинамические параметры реакции, или характеризуют свойства веществ— компонентов реакции, — дающие возможность рассчитать параметры реакций. [c.28]

    В связи с этими трудностями общий объем данных о равновесии и связанных с ним термодинамических параметрах химических реакций первоначально был сравнительно ограниченным. Открытие третьего закона термодинамики дало возможность определять химические равновесия на основе расчета абсолютных значений энтропии путем измерения низкотемпературных теплоемкостей и теплот фазовых переходов. В настоящее время этот путь часто оказывается более доступным, чем путь прямого определения равновесия, в особенности, если имеется возможность использовать для тех или иных составляющих величин готовые справочные данные. [c.32]

    Для применения методов статистической термодинамики к конденсированным фазам (и к неидеальным газовым системам) приходится вводить ряд упрощающих предположений. В зависимости от их характера методы расчета группируются вокруг теории теплоемкости, теории фазовых переходов и теории растворов 17—10]. Как правило, в большинстве расчетных уравнений на этом уровне появляются эмпирические или полуэмпирические параметры. [c.181]

    Использование метода максимального правдоподобия дчя оценки параметров нелинейных моделей в случае ошибок, распределенных но Стьюденту. Круглов В. О., Бугаевский А. А.— Вкн. Математика в химической термодинамике. Новосибирск, Наука, 1980, с. 110-113. [c.191]

    Химическая термодинамика определяется как наука, изучающая свойства равновесных химических систем и закономерности изменения равновесия в химических системах с изменением внешних параметров — Т, Р, С, химической переменной и других. В химической термодинамике равновесия в химических системах и процессы химического превращения веществ изучают с использованием трех законов термодинамики. [c.6]

    I.I. Основные понятия и определения техничеокой термодинамики. Газовые смеси способы задания, вычисление параметров определение кажущейся молярной маосы и газовой посто ошой смеои. [c.23]

    Фотосинтез — единственный из всех типов химических реакций (терм ических, каталитических, ферментативных, радиационных и фо— тохимических), позволяющий при мягких термобарических параметрах б o фepы осуществить невероятную, с точки зрения термодинамики химическую реакцию, протекающую с увеличением свободной энергии. Он обеспечивает прямо или косвенно доступной химической энергией все земные организмы и, как будет показано ниже, является источником образования горючих ископаемых. Обратный фотосинтезу процесс представляет собой знакомую всем нам химическую реак1,,ию горения твердых, жидких и газообразных горючих ископаемых с выделением большого количества энергии. Следовательно, растительный и животный мир, а также органические горючие ископаемые Земли есть не что иное как аккумулированная энергия Солнца На современном этапе эволюции Земли ежегодно в результате фотосинтеза образуется 150 млрд. т органического вещества, усваивается 300 млрд. т СО и выделяется около 200 млрд. т свободног о кислорода. Благодаря только фотосинтезу в первичной атмосфере Земли появился кислород, возник озоновый экран, создались условия для биологической деятельности. При гибели организма происходит обратный процесс [c.43]

    Уравнение первого закона термодинамики (2.15) является уравнением энергии в тепловой форме, в котором при расчетах центробежных компрессоров обычно принимают / ар = О, т. е. считают процессы, происходящие в компрессоре, адиабатноизолированными от окружающей среды [431. Уравнение (2.8) обобщенного политропного процесса связывает основные параметры реального газа при сжатии или расширении. [c.59]

    Теплоемкости Сру и идеального газа, у которого йу < 1, отрицательны, поэтому изобары и изохоры идут в Sy — Ту-диа-грамме с понижением Ту (рис. 3.8), так как подводимая теплота dq >0. При этом изобары идут круче изохор, так как ку = Сру с. у < < 1 и, значит, I Сру I < I с-,у . По мере увеличения давления изобары смещаются вниз в сторону уменьшения условных температур. Для такого идеального газа справедливы уравнения Майера (3.40) и уравнения термодинамики, если заменить в них термодинамическую температуру условной. Энтальпия и внутренняя энергия идеального газа с < I отрицательны, но так как при изобарном или изохорном подводе теплоты величина Ту умень шается, то эти параметры в конце процесса больше, чем в начале т. е. dq = di > u. [c.120]

    В предыдущих главах были рассмотрены равнове ные состояния процессов внутри электролитов с участием ионов (электролитическая диссоциация, гидролиз, сольватация и т. д.) и процессов на электродах (электрохимические реакции и характеризующие их параметры — обратимые электродные потенциалы). Эти состояния не зависят от времени, к ним применимы оба основных закона термодинамики. Поэтому соответствующие закономерности называются термодинамическими, а раздел электрохимии, посвященный им, — термодинамикой электрохимических процессов. Для электродных процессов равнопесие характеризуется отсутствием электрического тока. [c.605]

    Надежные термодинамические параметры получены для алкилбензолов [27]. Мы ниже рассмотрим подробно термодинамику изомеризации их смесей, так как она представляет не только научный, но и практический интерес. Что касается изомеризации алкилнафталинов и полициклических ароматических углеводородов, то в этих случаях для термодинамических расчетов приходится использовать приближенные методы, и для определения равновесного состава часто прибегают к эксперименту. Нужно также отметить, что изучение изомеризации полициклиг ческих ароматических углеводородов имеет пока только научное значение. [c.201]

    Если вся система реакций (1.37), (1.38) обратима и близка к состоянию равновесия, то состав катализатора, вне зависимости от исходного, целиком определяется термодинамическими условиями равновесия. В этом случае, если состав катализатора, например окисла, является функцией давления одного из компонентов, например кислорода, то, в соответствии с условиями гетерогенного равновесия, для всей области температур Т и парциальных давлений Р, за исключением точки равновесия с определенными Т ш Р, катализатор будет представлять собой одну фазу. Если реакция проводится в точке равновесия, то катализатор может быть двухфазным, однако практическое осуществление такого случая невероятно. Иное дело, если протекающие в системе реакции, например реакции контактного окисления органических соединений, практически необратимы, тогда фазовый состав работающего катализатора целиком определяется кинетическими, а не термодинамическими параметрами. При проведении обратимых реакций в условиях, далеких от равновесия (что большей частью бывает на практике), фазоЬый состав катализатора также не определяется термодинамикой. [c.50]

    Согласно положениям термодинамики [13], состояние выражает зависимость равновесных внутренних параметров вь от внешних параметров а,-и температуры Т в = f а , U2, , а , т), еспив) =U, где и = U ai,a2,..., а ,Т) - вйутренняя энергия. [c.26]

    В химической термодинамике одну из важнейших величин представляет внутренняя энергия и рассматриваемой системы. Эта величина является параметром состояния. Термодинамически она строго определяется на основе первого закона (см. 68). Физически же этим термином обозначается величина, которая характеризует общий запас энергии системы, включая сюда энергию по ступательного и вращательного движения молекул, энергию внутримолекулярного колебательного движения атомов и атомных групп, составляющих молекулы, энергию вращения электронов в атомах, энергию, заключающуюся в ядрах атомов, и другие виды энергии, но без учета кинетической энергии тела в целом и его потенциальной энергии положения. В настоящее время еще не имеется возможности определить абсолютную величину внутренней энергии какой-нибудь системы, но большей частью можно измерить изменениё энергии Л(7, происходящее в том или ином процессе, что оказывается уже достаточным для успешного применения этого понятия в термодинамике. Величина А11 считается положительной, когда в рассматриваемом процессе внутренняя энергия системы возрастает. [c.181]

    Современные методы расчета равновесных параметров процесса испарения описаны во многих книгах, и здесь нет необходимости вновь излагать их. В новом издании монографии Люиса и Рен-далла, переработанной Питцером и Брюэром содержится ценный материал по термодинамике процессов испарения в разных условиях. Практические методы расчета теплот испарения и давления насыщенного пара жидкостей описаны в книге Рида и Шервуда Весьма полный обзор методов расчета давления насыщенного пара различных неорганических и органических веществ дан в книге М. X, Карапетьянца и Чен Гуанг-Юе Обзор методов [c.49]

    Химические термодинамические свойства разных веществ и параметры химических реакций приводятся как в физико-химических справочниках общего характера, так и в специальных термо-динамических. Фундаментальным справочником первой группы является шестое издание таблиц Лаидольта — Бернштейнавышедшее в период 1950—1961 гг. в четырех томах (22 книги), в которых ряд разделов посвящен величинам, характеризующим тепловые эффекты, равновесия и другие параметры химических реакций и фазовых переходов, а также термодинамические свойства химических соединений и простых веществ. Так, четвертая часть второго тома содержит данные по термодинамике химических реакций и соответствующим свойствам химических соединен и простых веществ по теплоемкости энтропии (5"), теплотам образова- [c.74]

    Масловы утверждают, что описанный метод распространяется на расчеты теплот образования, теплот сгорания и gKf. Однако методы статистической термодинамики, в том числе и самые упрощенные, не дают возможности определять АЯо. Так как АЯо играет значительную и часто определяющую роль (см. табл. IV, 4), это лищает возможности определять таким путем даже приближенные значения указанны.х параметров реакции. Поэтому, хотя в некоторых случаях способы расчета, аналогичные описанным, могут применяться для расчета тех или других параметров реакций образования, однако эти способы нельзя рассматривать, как вытекающие из описанного метода. Границы этой применимости не охарактеризованы. Отнюдь нельзя рекомендовать такого широкого применения подобных путей расчета параметров реакций образования, как эго делалось в некоторых работах [c.278]

    Неравноточность значений 1п Сг при аналогичном анализе данных Тейхмана [2] и Шефера, Никля [31 с применением III закона термодинамики к значимому смещению параметра ДЯо пе приводила. [c.109]


Смотреть страницы где упоминается термин Термодинамика параметры: [c.133]    [c.23]    [c.318]    [c.37]    [c.26]    [c.9]    [c.15]    [c.129]    [c.208]    [c.9]    [c.184]    [c.191]   
Твердофазные реакции (1978) -- [ c.36 , c.266 , c.288 ]




ПОИСК







© 2025 chem21.info Реклама на сайте