Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Растворимость в воде хлорида натрия и калия

    Природные растворимые соли встречаются в виде солевых залежей или естественных растворов (рассолы, рапы) озер, морей и подземных источников. Основные составляющие солевых залежей или рапы соляных озер хлорид натрия, сульфат натрия, хлориды и сульфаты калия, магния и кальция, соли брома, бора, карбонаты (природная сода). Советский Союз обладает мощными месторождениями ряда природных солей. В СССР имеется более половины разведанных мировых запасов калийных солей (60%) и огромные ресурсы природного и коксового газа для получения азотнокислых и аммиачных солей (азотных удобрений). В СССР есть большое количество соляных озер, рапа которых служит источником для получения солей натрия, магния, кальция, а также соединений брома, бора и др. Основными методами эксплуатацни твердых солевых отложений являются горные разработки в копях и подземное выщелачивание. Добычу соли в копях ведут открытым или подземным способом в зависимости от глубины залегания пласта. Таким путем добывают каменную соль, сульфат натрия (тенардит), природные соли калия и магния (сильвинит, карналлит) и т. д. Подземное выщелачивание является способом добычи солей (главным образом поваренной соли) в виде рассола. Этот метод удобен, когда поваренная соль должна применяться в растворенном виде — для производства кальцинированной соды, хлора и едкого натра и т. п. Подземное выщелачивание ведут, размывая пласт водой, накачиваемой в него через буровые скважины. Естественные рассолы образуются в результате растворения пластов соли подпочвенными водами. Добыча естественных рассолов производится откачиванием через буровые скважины при помощи глубинных насосов или сжатого воздуха (эрлифт). Естественные растворы поваренной соли, используемые как сырье для содовых и хлорных заводов, донасыщают каменной солью в резервуарах-сатураторах и подвергают очистке. Иногда естественные рассолы [c.140]


    При испарении морской воды при температурах 20— 35 °С вначале выделяются наименее растворимые соли — карбонаты кальция, магния и сульфат кальция. Затем выпадают более растворимые соли — сульфаты натрия и магния, хлориды натрия, калия, магния и после них сульфаты калия и магния. Порядок кристаллизации солей и состав образующихся осадков может несколько изменяться в зависимости от температуры, скорости испарения и других условий. При испарении морской воды в естественных условиях последовательно образуются следующие минералы  [c.25]

    При испарении морской воды и рассолов при 20-35° С вначале выпадают наименее растворимые соли — карбонаты кальция и магния, затем — сульфат кальция. Следующими выпадают сульфаты натрия и магния и только потом — хлориды натрия, калия и магния. Последними выделяются сульфаты калия и магния, а также шестиводный хлорид магния. В оставшихся рассолах оказываются сконцентрированными анионы [c.54]

    Многие неорганические соединения в небольших количествах необходимы для роста растений, но более высокие их концентрации оказываются токсичными. Типичным примером может служить бор. Многие зерновые культуры и разновидности трав чувствительны к высоким концентрациям бора, в то же время некоторое количество бора может поглощаться этими растениями. Важным фактором является содержание натрия в сточной воде. Высокое отношение содержания натрия к содержанию многовалентных катионов оказывает неблагоприятное влияние на растения и грунт. Растениям трудно получать воду из раствора с повышенным содержанием солей, и если натриево-адсорбционное отношение слишком высоко, то грунтовая структура теряет пористость. Засоленность почвы представляет собой более серьезную проблему для ирригации в засушливых районах, где быстрое испарение приводит к увеличению концентрации солей. В северных районах с более влажным климатом накопление солей не может оказаться таким критическим фактором для выращивания фуражных культур. Концентрация растворенных минеральных примесей в воде может оказаться существенным фактором и в том случае, если предполагается прямое повторное использование восстановленной воды. Наиболее распространенными растворимыми солями являются сульфаты и хлориды натрия, калия, магния и кальция. Хотя некоторые из них задерживаются в грунте при ионном обмене, общее содержание растворенных веществ в очищенной воде может быть таким же, как и в исходной сточной воде. Бор, селен и нитрат не задерживаются грунтами и проходят вместе с потоком воды через толщу груита, если они уже прошли через растительную и микробиальную зоны. [c.398]


    Перхлорат калия плохо растворим в воде. В табл. 8-15 приведена растворимость КСЮ в воде и в табл. 8-16 совместная растворимость перхлората калия и хлорида натрия. [c.456]

    Свойства соединений сильно зависят от наличия в молекулах этих соединений связей того или иного типа. Так, для соединений с ионными связями (хлорид натрия, нитрат калия, сульфат аммония) характерны высокие температуры плавления и кипения, хорошая растворимость в воде и плохая — в неполярных растворителях их растворы и расплавы проводят электрический ток. Напротив, соединения с неполярными связями (например, углеводороды) характеризуются низкими температурами плавления и кипения, они растворяются в неполярных растворителях, а их растворы и расплавы не проводят электрического тока. [c.63]

    Опыты 1, 2, 4. Цилиндр на 250 мл. Набор ареометров. Мерная колба на 1000 мл. Мерный цилиндр на 50—100 мл. Бюретки. Конические колбы на 100— 150 мл. Пипетки на 10 мл. Термометр до 250 С. Тигель. Ступка. Песочная баня. Эксикатор. Технохимические весы. Прибор для определения растворимости воздуха в воде (см. рис. 66). Прибор для криоскопического определения молекулярного веса (см. стр. 67). рН-метр ЛПУ-01. Хлорид натрия, растворы различной концентрации. Соляная кислота, концентрированная. Едкий натр, 0,1 н. титрованный раствор. Фенолфталеин. Сульфат меди. Нитрат аммония. Едкий натр, мелкие кусочки. Иод. Бензол. Этиловый спирт. Сульфат калия обезвоженный. Ацетат кальция, насыщенный раствор. Глюкоза (или сахароза). Растворы для определения pH. [c.172]

    При стабилизации грунтов особенно с > 5 м/сут перечисленными химическими реагентами отмечается локальное загрязнение грунтовых вод компонентами исходных соединений, продуктами химического взаимодействия крепителей и отвердителей, выщелачивания грунтов и ионного обмена В зависимости от исходного состава крепителей и отвердителей в грунтовые воды поступают натрий, калий, кальций, ионы аммония, хлориды, фтор, ортофосфаты, сульфаты, бикарбонаты. Поскольку растворы жидкого стекла имеют pH 9,7-13, силикатизация грунтов сопровождается щелочным гидролизом алюмосиликатов й переходом в грунтовые воды его продуктов — кремнекислоты и алюминия. Результатом ионообменных реакций с участием натрия или калия растворимого стекла является обогащение грунтовых вод кальцием и магнием, ранее находившимися в обменном комплексе грунта. В случаях использования органических соединений при силикатизации грунтов в грунтовые воды переходят как исходные реагенты, так и продукты их взаимодействия с жидким стеклом, которые обычно представлены метанолом и этанолом, анионами карбоновых кислот и их комплексами с Ка, , Са и [252]. Спирты и анионы карбоновых кислот подвергаются биохимическому окислению в водоносном горизонте с образованием СОг  [c.236]

    В работе [171 приведены данные о влиянии хлоридов натрия, калия, тетра-этиламмония, а также п-толуолсульфоната натрия на растворимость о-, м- и п-динитробензола в воде. [c.249]

    В отсутствие мешающих веществ, между интенсивностью излучения, испускаемого пламенем при длине волны, характерной для определенного элемента, и концентрацией катиона существует зависимость, очень близкая к пропорциональной. Однако это простое отношение часто нарушается в присутствии других растворимых веществ. Например, значительное количество калия вызывает ошибку от 10 до 12% при определении натрия и избыток последнего оказывает аналогичное (хотя и неравное) влияние на результаты определения калия. Ошибка может быть как положительной, так и отрицательной, в зависимости от количества определяемого иона. Это затруднение можно легко преодолеть введением в исследуемый раствор большого избытка катионов, соответствующих составу определяемого объекта. Так, при анализе природных вод , содержащих натрий, калий, кальций и магний, можно избежать помех в определении каждого элемента со стороны трех других использованием так называемых световых буферов. Например, при определении натрия к 25 мл анализируемого раствора прибавляют 1 мл раствора, насыщенного по отношению к хлоридам калия, кальция и магния. Можно пренебречь любым незначитель-ньщ изменением содержания этих элементов в пробе по сравнению с введенным количеством. Полученный раствор исследуют посредством фотометра для пламени и результат, наблюдаемый при длине волны натриевого излучения, с поправкой, введенной на яркость фона (связанную главным образом с рассеиванием), сравнивают с калибровочной кривой, построенной с использованием стандартов. Этим способом можно легко обнаружить различие концентраций 1 или 2 части на миллион для натрия или калия и 3 или 4 части на миллион для кальция. Метод менее чувствителен в отношении магния. [c.161]


    Необходимые растворы. 0,25-процентный раствор хромовой смеси 0,25 г бихромата калия растворяют в 1 мл воды и разбавляют в мерной колбе до 100 мл концентрированной серной кислотой. 5-процентный раствор иодида калия 0,01 н. раствор тиосульфата этот раствор готовят каждый раз разбавлением 0,1 н. раствора. 1-процентный раствор крахмала (растворимого), насыщенный хлоридом натрия. [c.67]

    Растворимость в воде хлорида натрия мало изменяется с температурой, а растворимость хлорида калия — в значительно большей степени  [c.611]

    Так, например, растворимость кварца резко возрастает при высоких давлениях и температурах, если к воде добавлены оксид натрия, хлорид натрия и др. Аналогично сульфаты натрия и калия сильно увеличивают свою растворимость при добавлении к воде некоторых хлоридов. Эти явления имеют большое значение для вы-ран ивания кристаллов и синтеза минералов. [c.76]

    Растворимость веществ в воде в значительной мере зависит от температуры. Растворимость твердых веществ и жидкостей с повышением температуры, как правило, возрастает. Однако температурная зависимость растворимости разных веществ самая различная. Например, растворимость хлорида калия с увеличением температуры растет очень сильно, а хлорида натрия — незначительно. Растворимость анилина при обычной температуре очень мала, но выше 40° С он растворяется в воде в неограниченных количествах. Правда, имеются твердые вещества, растворимость которых с повышением температуры падает, например уксуснокислый кальций, известь и др. [c.126]

    Наиболее растворимыми являются соединения натрия и калия. Так, например,. хорошо растворяются в воде хлориды, фториды, сульфиды, карбонаты, сульфаты, фосфаты, гидроокиси и многие другие соединения калия и натрия. [c.83]

    Отличительной чертой катионов I аналитической группы является то, что большинство их солей хорошо растворимо в воде. Наиболее растворимыми являются соединения натрия и калия. Так, например, хорошо растворяются в воде хлориды, фториды, сульфиды, карбонаты, сульфаты, фосфаты, гидроокиси и многие другие соединения калия и натрия. [c.98]

    По р-римости в воде различают растворимые, мало растворимые и практически нерастворимые С. К р-римым относятся почти все С. натрия, калия и аммония, мн. нитраты, ацетаты и хлориды, за исключением солей поливалентных металлов, гидролизующихся в воде, мн. кислые С. [c.377]

    Остановимся на возможных источниках ошибок при гравиметрическом определении калия в виде хлороплатината [2386]. В некоторых вариантах этого метода отделяют хлороплатинат калия от соответствующих солей натрия, лития, бария и других элементов отмыванием последних 95%-ным этанолом [1846, 1893, 2000, 2168, 2217, 2255, 2366, 2577, 2724] и даже абсолютным этанолом [1268, 1269, 1270, 1876, 2155]. Однако под влиянием этих растворителей хлороплатинаты могут разлагаться с выделением нерастворимых в этаноле хлоридов натрия и калия [2061, 2867], а также хлорида бария [2345] Метанол вызывает такой же эффект [2365]. Присутствие хлоридов натрия или бария увеличивает вес осадка и приводит к повышенным результатам определения калия Поэтому после промывания осадка этанолом необходимо промыть его и водой. Промывание вызывает некоторые, обычно небольшие, потери вследствие растворимости [240, 1583, 1790, 2533] (о растворимости хлороплатината калия в разных растворителях см стр. 168). Потери уменьшают применением для промывания растворителя, насыщенного хлороплатинатом калия [1177, 1429, 1790] [c.35]

    Разделение хлоридов калия и натрия, содержащихся в сильвините, основано на различной растворимости этих солей при разной температуре. Растворимость хлорида калия в воде при повышении температуры резко возрастает, в то время как растворимость хлорида натрия изменяется незначительно. В результате охлаждения раствора сильвинита из него кристаллизуется хлорид калия, а маточный раствор остается насыщенным по отношению к хлориду натрия. Дальнейшая обработка сильвинита горячим маточным раствором приводит к тому, что в него переходит хлорид калия, а в остатке содержится хлорид натрия. [c.49]

    Несколько иначе ведут себя сульфаты натрия и калия, растворимость которых в воде при высоких температурах относительно невелика (отрицательный температурный коэффициент растворимости) [6—9]. В отличие от хорошо растворимых хлоридов натрия и калия кривые давления пара насыщенных растворов сульфатов натрия и калия 3, 8, 9] на всем своем протяжении близки к кривой давления пара чистой воды (в масштабе чертежа фиг. 2 эти кривые почти сливаются). [c.235]

    Растворимые примеси в составе БСВ представлены преимущественно минеральными солями и некоторыми органическими соединениями. В сточных водах содержатся, как правило, хлориды, сульфаты и гидрокарбонаты натрия, калия, кальция и магния. Содержание растворимых примесей на практике оценивается по показателю "сухой остаток" (СО) или интегральным показателем удельная электропроводимость" к. Содержание растворимых минеральных солей оценивается показателем "прокаленный остаток" (ПО). Для полной характеристики растворимых минеральных [c.169]

    Сырьем для производства хлора и гидроксида калия служат растворы хлорида калия, получаемые растворением твердого хлорида в воде. В СССР твердый хлорид калия вырабатывают из минералов сильвинита или карналита Верхнекамского или Соли-горского месторождений. В сильвините содержится 20—40% хлорида калия, 58—78% поваренной соли в карналите — 20—25% хлорида калия, 20—25% поваренной соли и 25—30% хлорида магния. Хлорид калия извлекают из этих минералов в основном галур-гическим процессом, основанном на различии в растворимости солей в воде при изменении температуры. Так, при извлечении хлорида калия из сильвинита используют то обстоятельство, что растворимость поваренной соли мало изменяется с повышением температуры, а растворимость хлорида калия при этом резко растет. Этот процесс проводят следующим образом. Сильвинит растворяют при температуре около 100° С, получая насыщенный раствор очищают полученный рассол от нерастворимых примесей и охлаждают его. При этом из раствора выделяется достаточно чистый кристаллический хлорид калия, который отфильтровывают, промывают и сушат. В хлориде калия так же, как и в хлориде натрия, ограничиваются примеси кальция, магния и сульфатов. [c.36]

    Но в результате изучения указанных выше многокомпонентных систем выявилось, что при высоких температурах (выше критической температуры воды) сульфаты натрия и калия хорошо растворяются в концентрированных растворах хлоридов этих металлов, и их растворимость с повышением температуры не уменьшается, а увеличивается. [c.127]

    До сих пор широко применяется метод Гуча, основанный на легкой растворимости хлорида лития в амиловом спирте и нерастворимости хлоридов натрия и калия. К раствору, свободному от всех компонентов, кроме щелочных металлов, добавляют небольшое количество амилового спирта и осторожно Нагревают в конической колбе емкостью 50 мл на плите, покрытой асбестом. Когда при точке кипения амилового спирта (132° С) вся вода улетучится, хлорид натрия и калия с некоторым количеством гидроокиси лития выделяется из раствора. Жидкость декантируют через фильтр и остаток несколько раз промывают горячим амиловым спиртом. Затем остаток смачивают разбавленной соляной кислотой, растворяют в воде и повторяют извлечение амиловым спиртом. Объединенные фильтраты и промывные жидкости досуха выпаривают, растворяют в небольшом коли- [c.136]

    Грунтовая вода (из колодцев, подземных ключей, артезианских скважин) содержит различные органические примеси (растворимые вещества растительного и животного происхождения) и неорганические примеси (бикарбонаты, хлориды и сульфаты натрия, калия, магния, кальция и др.)- Примеси вымываются из слоев почвы и горных пород, через которые проходят грунтовые воды. От состава этих горных пород зависит химический состав грунтовых вод, который вследствие этого может быть весьма различным. [c.28]

    Электрохимическим методом — путем электролиза водных растворов хлоридов натрия или калия—в настоящее время производится более 99% хлора, вырабатываемого во всем мире. Соли щелочных металлов легко растворимы в воде, растворы их хорошо проводят электрический ток, что дает возможность пропускать через небольшие объемы растворов большие количества электричества при невысоком напряжении. [c.325]

    Заметьте, что кривая растворимости для хлорида натрия (Na l) представляет собой практически горизонтальную линию. Иначе говоря, температура практически не влияет на растворимость этого вещества в воде. В противоположность этому кривая для KNO3 резко уходит вверх при повышении температуры, показывая, что растворимость нитрата калия в воде сильно зависит от температуры. [c.53]

    Если экстрагируемое вещество хорошо растворяется в экстрагируемой фазе (особенно в воде), то применяют метод высаливания К раствору добавляют твердую соль, обладающую высокой растворимостью в воде (хлорид натрия, сульфат натрия и аммония, карбонат калия и др.). Происходит изменение плотности раствора, умень-шаегся растворимость извлекаемого вещества, и экстракция облегчается. [c.27]

    Пользуясь диаграммой растворилюсти (стр. 44), определить растворимость в г на 100 г воды а) хлорида натрия при 1С0"С б) нитрата серебра при ЮО С в) иодистого калия при 30°С г) калийной селитры при 30°С  [c.43]

    Большую часть калийных удобрений получают у нас в стгра-не из сильвинита. Каким образом отделить хлорид калия от хлорида натрия Растворимость хлорида натрия с понижением температуры почти не изменяется, а растворимость хлорида калия резко падает. Поэтому при охлаждении насыщенного при 100°С раствора сильвинита в воде до комнатной температуры значительная часть хлорида калия выпадает из раствора. Кристаллы отделяют фильтрованием, а раствор используют для растворения следующей порции сильвинита. Этот способ осуществляется в промышленности. Однако он довольно сложен, требует больших капиталовложений и расхода энергии. [c.84]

    Хлорид, бромид и иодид таллия(1).В отличие от фторида хлорид, бромид и иодид таллия (I) плохо растворимы в воде (рис. 79). Их удобнее всего получать, осаждая из водных растворов солей таллия (I) действием солями натрия, калия или галогеноводородными кислотами. Можно получать и взаимодействием элементов. Т1С1 и Т1Вг кристаллизуются в кубической решетке типа s l. Моноиодид таллия обладает полиморфизмом выше 178° устойчива аналогичная кубическая модификация, ниже 178° — ромбическая. [c.332]

    Для производства калийных удобрений в качестве сырья используют природные минералы — каинит, карналлит и сильвинит. Например, отделение КС1 от Na l в сильвините осуществляется путем обработки последнего горячей водой. Растворимость хлорида калия при 100 °С значительно выше, чем при 0°С, а для хлорида натрия она в этом интервале температур почти не изменяется. [c.332]

    Примеси из анолита уходят также вместе с амальгамным маслом — это пенистая смесь ртути и амальгам различных металлов. Оно легче ртути, образуется и плавает на поверхности катода и удаляется из электролизера ручным вычерпыванием. Ртуть из амальгамного масла и осадков регенерируется. Хлор, входящий из электролизера, осушается и, если нужно, сжижается. Количество и состав иримесей в продукте определяются наличием примесей в воде, подаваемой в разлагатель. Гидроксид калия производят электролизом из растворов хлорида калия как в электролизерах с жидким ртутным катодом, так и в электролизерах с твердым катодом. Технологическая схема, аппаратура, режим аналогичны с производством гидроксида натрия. Однако основные технические показатели в производстве гидроксида калия ниже, чем в производстве гидроксида натрия. Так, выход по току на 10—15% меньше, а срок службы графитовых анодов короче. Это определяется свойствами раствора хлорида калия — исходного сырья для получения гидроксида калия. Его растворимость в воде в противоположность растворимости хлорида натрия с изменением температуры заметно увеличивается. Поэтому, чтобы исключить кристаллизацию хлорида калия при охлаждении растворов, работают с ненасыщенными растворами. С этой же целью температуру электролиза поддерживают-сравнительно низкой на уровне 70° С. [c.39]

    Некоторые твердые вещества коры также реакционноспособны. Урану (U) и калию (К), элементам, часто встречающимся в гранитных породах, свойственна нестабильность из-за их радиоактивности (см. вставку 2.6). Радиоактивный распад изотопов урана с образованием газа радона (Rn) может быть опасным для здоровья людей, живущих в районах с гранитной материнской породой (вставка 3.2). Некоторые минералы стабильны только в определенных условиях температуры и давления. Например, силикаты, образующиеся глубоко в коре при высоких температуре и давлении, становятся неустойчивыми, когда попадают на поверхность земли в процессе выветривания. Минералы приспосабливаются к новым условиям, чтобы вновь приобрести устойчивость. Приспособление может быть быстрым (минуты) для растворимых минералов, например галита (хлорид натрия, Na l), растворенного в воде, или крайне медленным (тысячи или миллионы лет) при выветривании силикатов. [c.70]

    Индий количественно осаждается щелочами из растворов, содержащих хлорид аммония [335]. По данным Мозера и Зигмана [357], гидроокись индия практически нерастворима в растворе, содержащем по 10% аммиака и хлорида аммония. В то же время некоторые исследователи [387—389, 451, 452] отмечают заметную растворимость гидроокиси индия в избытке растворов гидроокиси натрия, калия и аммиака. Б. Н. Иванов-Эмин иЭ. А. Остроумов [38] получили кристаллические гидрокс-индаты путем растворения свежеосажденной гидроокиси индия в горячих концентрированных растворах щелочей (15 н.) и последующего охлаждения. Результаты определения индия, натрия, калия и кристаллизационной воды хорошо соответствуют формулам  [c.30]

    И странностей в его свойствах, как говорится, хоть от-бавля11. С одной стороны, таллий сходен со щелочными металлами. И в то же время он чем-то похож на серебро, а чем-то на свинец и олово. Судите сами подобно калию и натрию, таллий обычно проявляет валентность 1+, гидроокись одновалентного таллия ТЮН — сильное основание, хорошо растворимое в воде. Как и щелочные металлы, таллий способен образовывать полииодиды, нолисульфиды, алкоголяты... Зато слабая растворимость в воде хлорида, бромида и иодида одновалентного таллия роднит этот элемент с серебром. А по внешнему виду, плотиости, твердости, температуре плавления — но всему комплексу фи- [c.256]

    Серый металл плотность 7,19 т. пл. 1890 °С т. кип. 2680 °С растворимы хлорид, н-итрат, сульфат хрома (III), хроматы и бихроматы натрия, калия, аммония. Соединения хрома (VI) в водоемах очень стабильны в анаэробных условиях xpoM(VI) переходит в хром(П1), соединения которого выпадают в осадок. При щелочной реакции осаждение происходит быстрее и эта особенность используется при очистке сточных вод от хрома. При низкой температуре осаждение соединений хрома (III) замедляется, поэтому отстойники должны устраиваться в отапливаемых помещениях, иначе зимой осаждение происходить не будет. [c.134]

    При выветривании изверженных пород содержащийся в них калий как и натрий, переходит в растворимые соля. Но так как Ионы калия, в отличие от ионов Na% сильно адсорбируются почвой, они задерживаются почвами и лишь в малом количестве достигают океана. В морокой воде калия содержится в 60 раз меньше, чем натрия. При пересыхании отъединившихся от океана бассейнов после выделения главной iMa bi хлорида натрия начинается садка алийных солей сильвина КС1 и карналлита KMg U. Эти соли и являются исходным материалом для производства из них других соединений кал ия. Из почвы калий переходит в растения, зола которых в значительной степени представляет собой карбонат калия (поташ). [c.458]


Смотреть страницы где упоминается термин Растворимость в воде хлорида натрия и калия: [c.86]    [c.166]    [c.294]    [c.364]    [c.464]    [c.661]    [c.29]    [c.463]    [c.250]    [c.514]    [c.385]   
Справочник по производству хлора каустической соды и основных хлорпродуктов (1976) -- [ c.120 ]




ПОИСК





Смотрите так же термины и статьи:

Калий в воде

Калий растворимость в воде

Калия натрия

Калия хлорид

Натрий калием

Натрия хлорид

Растворимость в воде

Растворимость хлоридов

Хлорид в воде

Хлорид калия в воде

Хлориды натрия и калия



© 2025 chem21.info Реклама на сайте