Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Неорганическая химия неметаллы и их соединения

    В последнюю четверть века в обиход органической химии, помимо классических элементов-органогенов, стало входить все большее число металлов и неметаллов, образующих часто довольно сложные комплексные соединения. Возникшая на этой основе элементоорганическая химия тесно переплелась с неорганической химией координационных соединений, соединив органическую и неорганическую главы общей химии. [c.65]


    Обобщение знаний о веществе осуществляется на базе основных теоретических концепций, изученных к этому времени. Важнейшей из них является учение о периодичности. Поскольку целью изучения неорганической химии является конкретное усвоение периодического закона, то материал обобщают на основе периодической системы Д. И. Менделеева, объединяя неметаллы и металлы в две большие группы и сопоставляя свойства простых веществ и соединений элементов друг с другом. [c.296]

    Начало препаративных исследований в химии боразотных соединений было положено трудами Альфреда Штока, а на особое положение химии боразотных соединений в рамках неорганической химии указал в первую очередь Эгон Виберг. Химией боразотных соединений впоследствии занимался ряд выдающихся химиков, и начиная приблизительно с 1958 г. можно говорить о бурном развитии этой области. Хотя в настоящее время препаративные возможности еще далеко не исчерпаны и еще довольно мало известно о причинах, определяющих особенности связи бор — азот, все же кажется целесообразным дать краткий обзор этой области неорганической химии. Можно надеяться, что данная, небольшая по объему книга даст представление о состоянии наших знаний в этой области всем тем, кто интересуется химией неметаллов, и может побудить к новым экспериментальным и теоретическим исследованиям. [c.7]

    Значение этих исследований состоит также в том, что на их основе была пересмотрена роль кислорода в химии. С конца XVI столетия, после крушения теории флогистона, кислороду отводилось исключительное место в химии. Этот элемент характеризовали тем, что, соединяясь с металлами, он дает основания, а с неметаллами — кислоты его рассматривали вообще как элемент, сообщающий некоторые отличительные свойства тем соединениям, в состав которых он входит. Представления об исключительной роли кислорода в неорганической химии были перенесены в область органической химии так, например, считалось, что многие органические вещества следует рассматривать как окислы некоторых органических радикалов. В связи с этим открытие, что такой органический радикал, как бензоил, уже содержит кислород, превращало последний из главного в обыкновенный химический элемент, по крайней мере в органической химии. [c.42]

    Из курса неорганической химии известно, что гидроокиси типичных металлов являются основаниями. Наоборот, гидро- окиси неметаллов и высших степеней окисления некоторых менее типичных металлов (например, хрома и марганца) относятся к классу кислот. Однако наряду с этим встречаются гидроокиси, совмещающие свойства кислот и оснований. Подобные соединения называются амфотерными, а самое явление — амфотерностью. [c.161]


    Современная неорганическая химия очень обширна и разветвлена. Естественно, что все ее разделы не могут быть отражены в однотомном издании, подобном настоящему. Однако есть все основания думать, что в данном сборнике помещены статьи, относящиеся к наиболее важным и интенсивно развивающимся областям неорганической химии. К ним, безусловно, относятся некоторые проблемы химии металлоорганических соединений, химия гидридов и борогидридов металлов, химия лантанидов и актинидов, химия фторидов металлов и неметаллов, химия полупроводниковых веществ, а также методы получения и свойства [c.5]

    Согласно теориям Косселя и Льюиса, излагаемых в курсах неорганической химии, атомы различных элементов (особенно стоящих в начале и в конце периода периодической системы), вступая в химическое соединение, отдают или получают валентные электроны при этом один из атомов заряжается положительно, другой отрицательно образуются ионы возникающее электростатическое взаимодействие между ионами приводит к образованию молекулы. Здесь мы имеем дело с гетерополярной связью (ионной). Так, например, атомы металлов легко теряют свои валентные электроны, а атомы неметаллов (металлоидов), напротив, стремятся присоединить добавочные электроны при этом возникают устойчивые катионы и анионы. [c.39]

    Напротив, перенесение понятия о пределе в неорганическую химию и распространение его на соединения других элементов (кроме С) требовало учета химического состава не только водородистых соединений неметаллов, но и соединений металлов, среди которых на первом месте стояли окислы. Это вело к более широкому взгляду на понятие о пределе и о формах соединений, в частности — о формах высших водородных и кислородных солеобразующих соединений (см. ст. 4). [c.584]

    Интенсивное развитие химии элементоорганических соединений, синтез обширных классов органических соединений бора, кремния, фосфора, фтора и других неметаллов и металлов, а также многоэлементных соединений с несколькими гетероэлементами в молекуле потребовали разработки быстрых, достаточно универсальных, а главное, точных и надежных методов определения элементов. Одним из таких методов является абсорбционная спектрофотометрия. Спектрофотометрические методы получили широкое распространение в неорганическом анализе [254, 278—287]. Однако работ, посвященных применению этих методов для микроанализа органических соединений, мало. Литература по анализу многих элементоорганических соединений вообще отсутствует. Между тем спектрофотометрические методы отвечают жестким требованиям элементного анализа органических соединений благодаря таким особенностям, как 1) высокая чувствительность, позволяющая работать с миллиграммовыми навесками вещества в широком диапазоне концентраций определяемого элемента 2) большая избирательность, позволяющая проводить определение одного или нескольких элементов в присутствии большого числа других элементов 3) возможность получения результатов, характеризующихся высокой воспроизводимостью и правильностью. Наконец, если учесть большую производительность при выполнении серийных анализов, доступность и дешевизну реактивов и приборов, то целесообразность применения спектрофотометрии для анализа элементоорганических соединений делается очевидной. [c.159]

    Химия неорганических соединений многообразна и сложна. Последнее время происходит процесс ее дифференциации с выделением в самостоятельные научные направления химии отдельных элементов (бора, кремния, фтора и т. д.). Одновременно наблюдается все большее слияние органической и неорганической химии, в частности, в комплексных соединениях многочисленные органические молекулы и анионы органических кислот образуют химические связи с металлами и неметаллами. [c.188]

    Книга представляет собой том 2 практикума по неорганической химии, посвященный металлам (том I — Неметаллы — выпущен изд-вом Мир в 1965 г.). Авторы книги — румынские ученые, имеющие большой педагогический опыт. Им удалось систематически и весьма наглядно изложить обширный материал по химии металлов. Схема изложения материала та же, что и в т. . Каждому рассматриваемому элементу посвящен раздел, где дана история открытия данного элемента, указаны его химические II физические свойства, распространенность в природе, способы получения и применения как самого элемента, так и его соединений. Описано много разнообразных химических опытов с указанием необходимой аппаратуры. [c.272]

    Во втором издании решение типовых задач не рассматривается, так как отдельно издана книга Г. П. Хомченко, И. Г. Хомченко. Задачи по химии для поступающих в вузы. М. Высшая школа , 1986. В учебнике не приведены лабораторные работы, предусмотренные программой (например, классы неорганических соединений, приготовление растворов заданной концентрации, ионные реакции, гидролиз солей, неметаллы и металлы, некоторые работы по органической химии и др.). Соответствующие работы можно подобрать из учебников по химии для средней школы или из вузовских практикумов по общей и неорганической химии. [c.3]


    Направление научных исследований расчет молекулярных орбит электронная корреляция применение квантовой механики к изучению проблем в области валентности, спектроскопии и межмолекулярных сил ИК-спектры и ЯМР высокого разрешения кинетика и механизм неорганических окислительно-восстановительных реакций реакционная способность связи углерод — металл амиды металлов и неметаллов кинетика реакций в газовой фазе, реакций гидрирования и полимеризации неорганические полимеры органические соединения бора, фосфора, кремния, германия, олова влияние у-излучения на металлорганические соединения калориметрия металлорганических соединений рентгеноструктурный анализ природных веществ химия производных ацетилена, алкалоидов, терпенов и стероидов биосинтез метаболитов плесени моделирование системы энзимов. [c.273]

    Как известно из курса неорганической химии, гидроокиси типичных металлов являются основаниями. Наоборот, у неметаллов или у некоторых менее типичных металлов, например, у хрома и марганца (в высших степенях окисления), они относятся к противоположному по своим химическим свойствам классу кислот. Однако, наряду с этим встречаются случаи, когда в одной и той же гидроокиси совмещаются эти противоположные друг другу свойства кислот и оснований. Подобные соединения называются амфотерными, а самое явление — амфотерностью. [c.168]

    До начала XX столетия химия разделялась на две главные области, занимавшиеся изучением неорганических и органических веществ, но по мере возрастания химических знаний и накопления материала происходила дальнейшая специализация. Конечно, о вполне четком разграничении говорить трудно, поскольку различные области в той или иной степени налагаются одна на другую, по все же основные пути в этом направлении можно наметить. Неорганическая химия занимается изучением металлов и неметаллов и их соединений. Физическая химия посвящена исследованию основных законов и теорий химии. Радиохимия специализируется на изучении ядерных реакций, радиоактивных изотопов и строения атома. Аналити- [c.15]

    Соединения металлов и неметаллов с серой — сульфиды — являются одним из важнейших в практическом и в теоретическом отношении классов неорганических соединений. Сера обладает высокой химической активностью и образует соединения практически со всеми элементами Периодической системы Д. И. Менделеева, за исключением инертных газов. Наибольшее число сульфидных фаз образуют переходные металлы. Многие природные соединения цветных и редких металлов являются сульфидами. Сульфиды широко используют в металлургии цветных и редких металлов, технике полупроводников и люминофоров, аналитической химии, химической технологии, машиностроении. Особенно интересны сульфиды переходных металлов П1—VI групп Периодической системы, физико-химические свойства и методы получения которых еще сравнительно мало изучены. Некоторые физические и физико-технические свойства сульфидов переходных металлов уникальны (термоэлектрические, магнитные, смазочные, каталитическая активность). [c.5]

    Наряду с классификациями элементов, прямо связанными с периодической системой (периоды, группы, подгруппы, ряды, блоки), исторически сложились еще иные, которые отражают те или иные существенные особенности соответствующих элементов, имеющие значение для рассматриваемой проблемы. Из числа этих классификаций для химического анализа имеет значение старейшее по происхождению деление элементов на металлы и неметаллы. Это деление первоначально основывалось и сейчас еще включает в себя состояние соответственных простых веществ при обычных условиях. В химическом отношении, что важно для аналитической химии, оно выражает тенденцию к образованию, по крайней мере в низших валентных состояниях, катионов (металлы) или анионов (неметаллы), причем речь идет как о простых анионах, так и о сложных (т. е. типа 8 - и МОг)-Для аналитической химии это деление издавна имеет колоссальное значение, так как катионы разделяют посредством ионных реакций с различными анионами (классический сероводородный метод качественного анализа, бессероводородные неорганические схемы анализа катионов), а анионы — соответственно с катионами. В последние десятилетия присоединились ионообменные методы разделения и методы разделения ионов с помощью электролиза. Кроме металлов и неметаллов, часто в последнее время различают еще полуметаллы, или иначе металлоиды (что не следует путать с устаревшим применением термина металлоид как синонима слова неметалл ). К ним относятся элементы, обладающие как в виде простых веществ, так и в соединениях промежуточными свойствами бор, кремний, германий, мышьяк, сурьма, теллур, астат. [c.15]

    В-пятых, данный справочник содержит весь фактологический материал школьного курса химии (раздел 10). Охарактеризованы химические свойства и получение неорганических веществ для металлов (натрий, калий, кальций, алюминий, железо) и неметаллов (водород, хлор, кислород, сера, азот, фосфор, углерод, кремний). Приведены необходимые и достаточные наборы уравнений реакций с участием простых веществ, оксидов, гидроксидов, солей и бинарных соединений указанных металлов и неметаллов. Отдельно выделены способы синтеза этих веществ в лаборатории и в промышленности, качественные реакции их обнаружения. [c.6]

    ХИМИЯ ПЛАЗМЫ. Плазма — ионизованный газ, используется как среда, в которой протекают в[лсокотемператур-ные химические процессы. С помощью плазмы достигают температуры около миллиона градусов. Плазма, используемая в химии, в сравнении с термоядерной считается низкотемпературной (1500—3500 С). Несмотря на это, в химии и химической технологии она дает возможность достижения самых высоких температур. В химии плазма используется как носитель высокой температуры для осуществления эндотермических реакций или воздействия на жаростойкие материалы ири их исследовании. Технически перспективными процессами X. п. считаются окисление атмосферного азота, получение ацетилена электро-крекингом метана и других углеводородов, а также синтез других ценных неорганических и органических соединений. Специальными разделами X. п. является плазменная металлургия — получение особо чистых металлов и неметаллов действием водородной плазмы на оксиды или галогениды металлов, обработка поверхностей металлов кислородной плазмой для получения жаростойких оксидных пленок или очистки поверхности (в случае полимеров). К X. п. примыкают также процессы фотохимии (напр., получение озона). Здесь фотохимический процесс протекает в той же плазме, которая служит источником излучения. [c.275]

    За основу любой естественной науки принимается классификация объектов исследования. В основе классификации в неорганической химии лежат химические элементы — металлы и неметаллы, т. е. периодическая система элементов, а также классы и группы образуемых ими химических соединений — кислот и оснований, оксидов и гидрадов, простых и комплексных солей, интерэлементных соединений. [c.18]

    Между неорганической и органической химией не существует абсолютно четкой границы, и наиболее она размыта для соединений неметаллов. Некоторые из них, например галогениды (РСЦ) и кислородсодержащие соединения (Р4О10. ЫазРзОд), являются типично неорганическими, а другие, содержащие органические заместители (РРЬз, Р252Ме4), часто называют органическими соединениями, поскольку некоторые неметаллы по ряду свойств проявляют сходство с углеродом. В этом разделе будет обсуждена химия неметаллов с точки зрения их склонности (подобно углероду) образовывать каркасные цепи, циклы и клетки. [c.465]

    В настоящее время число объектов неорганической химии значительно возросло. Кроме кислородных соединений, хорошо известны и многие другие, например гидриды, халькогениды, бинарные соединения типа металл — неметалл, тройные соединения, интерметаллнды и т. д. К сожалению, научно обоснованная классификация неорганических веществ пока отсутствует. Для создания такой классификации в ее основу должны быть положены определенные принципы. Такими принципами могут служить следующие. [c.92]

    К третьей группе продуктов относятся вещества и материалы, обладающие способностью к спеканию и используемые в производстве так называемой особо чистой (тонкой) керамики, изготовляемые из чистых, сверхчистых, ультрамелких порошков, формуемых, спекаемых и обрабатываемых в тщательно контролируемых условиях и имеющих особые эксплуатационные характеристики. Для получения таких порошков как полупродуктов или готовых материалов требуются специально очищенные оксиды металлов и неметаллов (алюминия, магния, циркония, цинка, никеля, железа, бария и т.д.), нитриды, бориды, силициды и другие тугоплавкие соединения, которые входят в первую группу продуктов тонкой неорганической химии. [c.59]

    Химическое отделение Направление научных исследований электрические и механические свойства молекулярных кристаллов термодинамика смесей жидкостей диффузия газов фториды металлов и неметаллов неводные растворители спектроскопия неорганических комплексов вольфрама термическая диссоциация неорганических комплексных соединений кондуктометрическое титрование кинетика неорганических реакций реакции лигандов магнетохимия химия металлорганических соединений ароматические соединения окисление фенола биосинтез нтеридинов химия антибиотиков и других лекарственных веществ ЯМР- и ИК-спектроскопия стероидов и алкалоидов химия терпенов и гетероциклических соединений реакции металлсодержащих хелатов р-дикетонов алкалоиды и природные хиноны физические свойства и строение полимеров гетерогенный катализ. [c.271]

    Фтор стоит на грани органической и неорганической химии. Особые свойства этого элемента, образующего соедине ния с металлами и неметаллами, причем с проявлением максимальной валентности элемента широкий интервал прочности элемент-фторной связи приводит к реализации таких структур, которые не имеют аналогов среди углеводородных соединений. Решение многих технических задач привело к тщательному исследованию насыщенных и ненасыщенньь Г фторуглеродов. Получены фторуглероды с различными функциональными группами перфторированные галоидные алк I-лы, спирты, альдегиды, кетоны, сульфиды, карбоновые кислоты, диазосоединения, кетены и прочие. Свойства этих соединений резко отличаются от свойств производных углеводородов. Они расширяют границы использования химических соединений в науке и технике. [c.6]

    А, с =6,13 А, с/а = 1,633. Рентгеновская плотность 0,088 г/см . Теплота плавления 14 кал/г. Сжимаемость твердого В. наибольшая по сравнению со сжимаемостью твердых тел и составляет (т-ра 4,2 К, давление 10 000,йт) 4,8 10 см /кг. В. плохо растворяется в воде (нри т-ре 20° С в 100 объемах воды растворяется 1,82, при т-ре 80° С — 0,85 объема В.). Еще меньше растворимость В. в органических растворителях. В небольших количествах растворяется во всех расплавленных металлах, во многих (никеле, платине и др.) хорошо, особенно в палладии (850 объемов на 1 объем палладия). При высоких т-рах растворяется в огнеупорных материалах, в кварце (при т-ре 690° С и давлении 788 мм рт. ст. содержится 6,0 X X Ю" г1см В.). В.— один из самых реакционноспособных хим. элементов, непосредственно взаимодействует со мн. лшталлами и неметаллами, входит в состав мн. неорганических и почти всех органических соединений. В обычных условиях молекулярный В. малоактивен. Однако при нагревании вступает в реакцию со мн. хим. элементами с кислородом образует воду (пре- [c.197]

    ГАЗОФАЗНЫЕ ПОКРЫТИЯ - покрытия, образующиеся вследствие взаимодействия паров летучих соединений металлов и неметаллов с поверхностью нагретых изделий вид защитных покрытий и покрытий спец. назначения. При формировании Г. п. происходит разложение или восстановление паров летучих соединеню с образованием твердофазных и газообразных продуктов. Твердофазные продукты оседают на поверхности изделия, образуя покрытие, а газообразные продукты, как правило, непрерывно удаляются. Газофазным осаждением наносят металлы (в особенности тугоплавкие), их сплавы, металлиды, некоторые кислородсодержащие и бескислородные тугоплавкие соединения, покрытия на основе окислов, карбидов, боридов, нитридов, силицидов, кера-мико-металлических материалов. Наряду с покрытиями на основе материалов высокой чистоты этим методом получают стехиометрические соединения, выращивают эпитаксиальные слои (см. Эпитаксия), монокристаллы. Различают процессы создания Г. п. высокотемпературные (т-ра выше 800° С) и низкотемпературные (т-ра ниже 600— 800° С). При высокотемпературном процессе образование Г. п. происходит вследствие термического разложения паров неорганических соединений, гл. обр. фторидов, хлоридов, бромидов и йодидов. Для получения покрытий в виде сплавов смешивают пары хим. соединений нескольких металлов. При нанесении тугоплавких соединений используют смесь пара, в к-рую наряду с галогенидами металлов вводят добавки, содержащие (в соответствии с получаемым соединением) углерод, азот, бор, кислород или кремний. Высокотемпературный процесс покрытия изделий ниобием из его йодида осуществля- [c.245]

    Деление фторидов на ионные и неионные является произвольным, так как резкого различия между разными типами связей не суш ествует. Более вероятно, что имеет место постепенный переход от соединений с ионной решеткой, каковыми являются фториды щелочных металлов, к соединениям. с ковалентной связью, к каковым относятся газообразные фториды неметаллов. К сожалению, химия неорганических фторидов исследована далеко не полно, а физические характеристики соответствующих соединений (структура молекул, межатомные расстояния, электропроводность в расплавленном состоянии и т. д.), которые могли бы помочь решению проблемы, связанной со строением молекул этих соединений, не всегда могут быть получены. В этих условиях может быть оправдано применение произвольного критерия, примером одного из которых может служить допущение, что наиболее летучие фториды представляют собой соединения неионного типа. Именно благодаря этому допущению многие летучие фториды и оксифториды металлов, начиная с четвертой и кончая восьмой группой, рассматриваются в основном во второй статье этой книги вместе с фторидами типичных неметаллов. В этой статье они рассматриваются лишь постольку, поскольку это необходимо для того, чтобы нарисовать общую картину всего ряда фторидов, образуемых различными элементами. Другой характерной чертой этих фторидов как соединений промежуточного типа является образование фторокислот последние подробно рассмотрены в третьей статье. Было показано, что если металл образует несколько различных фторидов, то летучесть повышается с увеличением валентности металла. Поэтому в этом разделе подробно удалось описать только нелетучие фториды, соответствующие низшим степеням валентности. Именно так обстоит дело, нанример, с платиновыми металлами, а также с другими элементами переходных групп. [c.9]

    IVA неметаллами являются только углерод и кремний, причем углерод йграет более важную роль. Углерод существует в нескольких формах и со многими элементами образует различные неорганические соединения. Поскольку углерод является основной составной частью всех органических соединений, их свойства и реакции будут рассмотрены в соответствующих главах, посвященных органической и биологической химии. Здесь HI6 рассматриваются различные формы элементарного углерода, окись и двуокись углерода и карбонаты, относящиеся к неорганическим соединениям. [c.166]


Смотреть страницы где упоминается термин Неорганическая химия неметаллы и их соединения: [c.363]    [c.13]    [c.13]    [c.103]    [c.195]    [c.127]    [c.554]    [c.123]    [c.188]    [c.224]    [c.224]    [c.155]    [c.464]    [c.421]    [c.334]   
Научно-исследовательские организации в области химии США, Англии, Италии, ФРГ, Франции и Японии (1971) -- [ c.3 ]




ПОИСК





Смотрите так же термины и статьи:

Неметаллы

Химия неорганическая



© 2024 chem21.info Реклама на сайте