Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Экстракция редких металлов из руд

    В производствах редких металлов экстракцию из растворов метилизобутилкетоном и ТБФ проводят для разделения циркония и гафния. Для разделения фторидов тантала и ниобия используют экстракцию цикло-гексаноном и ТБФ. Экстракционные методы широко применяются для получения концентратов редкоземельных элементов и для выделения индивидуальных лантаноидов. Чрезвычайно перспективно широкое проникновение методов экстракции в гидрометаллургию цветных металлов. [c.36]


    В книге подробно рассмотрены вопросы жидкостной экстракции, широко применяемой в современной технологии наряду с другими основными технологическими процессами, например при получении редких металлов, нашедших применение в качестве полупроводников, в производстве естественных радиоактивных веществ, при селективном рафинировании минеральных масел, при выделении ароматических соединений из нефтяных продуктов, при получении фенола в коксохимической промышленности, при рафинировании пищевых масел и жиров, в производстве антибиотиков, витаминов и т. п. Кроме того, в книге излагаются методы технологического расчета экстракционных аппаратов, что позволяет проектировщикам решать проектные задачи, а научным работникам—организовывать исследовательские работы. [c.2]

    Хлор является весьма активным реагентом. При высоких температурах он способен вытеснять серу из сульфидов, а в присутствии восстановителей хлорировать окислы различных металлов и вытеснять из сульфатов, фосфатов, силикатов кислородные соединения серы, фосфора, кремния с образованием соответствующих хлоридов. Это используют в технологии благородных и цветных металлов при рафинировке золота, алюминия, свинца и олова а также в металлургии титана и редких металлов — циркония, тантала, ниобия и др.При хлорировании полиметаллических руд образующиеся хлориды могут быть разделены на основе различия в температурах испарения, а также методами экстракции [c.731]

    Для извлечения ряда благородных и редких металлов, а также других элементов эффективными экстрагентами являются органические основания — амины. Процессы экстракции аминами могут протекать по механизмам реакций присоединения и анионного обмена в обоих случаях равновесие при экстракции аминами можно рассчитывать по уравнению (ХП1,3). [c.525]

    С учетом областей применения нефтяных сераорганических соединений и была принята основной следующая схема получения НСО. Из фракции диз. топлива сернистой или высокосернистой нефти выделяются концентраты сульфидов по известному 16] и усовершенствованному в Институте химии способу сернокислотной экстракции. Часть выделенных сульфидных концентратов может непосредственно использоваться в качестве экстрагентов благородных металлов и флотореагентов, другая часть сульфидного концентрата, преимущественно высокомолекулярная, должна окисляться до сульфоксидов, пригодных в качестве эффективных экстрагентов редких металлов. [c.29]


    Испытания сульфоксидов, проведенные в лабораторных и промышленных условиях в качестве экстрагентов редких металлов, флотореагентов медно-цинковых руд и пластификаторов клеевых композиций показали, что свойства сульфоксидов, полученных из концентрата сульфидов, выделенных отработанной серной кислотой, практически не отличаются от свойств сульфоксидов, полученных другими способами экстракцией свежей 86% серной кислотой, окислением сульфидов фракции дизельного топлива в пенно-эмульсионном режиме. Следует отметить, что окисление концентрата сульфидов по разработанной технологии отличается сравнительной простотой и низкой себестоимостью сульфоксидов. [c.230]

    Весьма перспективно применение экстракции для разделения смесей неорганических веществ, когда другие способы разделения неприменимы. Процессы жидкостной экстракции в настоящее время успешно используются для переработки ядерного горючего, получения циркония и гафния и многих других редких металлов. С помощью экстракции можно получать высокочистые цветные и благородные металлы. [c.522]

    Экстрагирование в жидких смесях приобретает все большее значение в химической промышленности и применяется при очистке нефтепродуктов, при извлечении фенола из надсмольных и сточных вод коксования и полукоксования, в производстве анилина, для извлечения его из водных растворов, в производстве капрона (экстракция капролактама растворителями), при отмывке водой от кислот и щелочей различных органических жидкостей, прп извлечении редких металлов из разбавленных растворов, в производстве брома и иода и т. п. [c.209]

    Экстракция используется для извлечения целевых компонентов из твердого и жидкого сырья. Это один из основных методов извлечения редких металлов из минерального сырья. [c.247]

    Экстракционные методы находят широкое применение в технологии редких металлов для очистки соединений этих металлов от примесей и для разделения близких по свойствам элементов. Применение экстракции позволяет осуществить непрерывный высокопроизводительный технологический процесс, легко поддающийся контролю и автоматизации. [c.183]

    Метод жидкостной экстракции индия алкилфосфорными кислотами (из них особенно эффективной оказалась ди-2-этилгексилфосфорная кислота) позволил значительно сократить время получения этого редкого металла, уменьшить его себестоимость и, главное, извлекать индий более полно. [c.36]

    Экстрагирование растворимых веществ из твердых материалов — один из важнейших процессов химической технологии. Он применяется в производстве минеральных солей, глинозема, целлюлозы, сахара, при извлечении редких металлов из руд, в гидрометаллургии, в фармацевтической промышленности и т. д. Между тем ни в отечественной, ни в иностранной литературе нет монографий, посвященных этому процессу (хотя есть немало книг по жидкостной экстракции). [c.2]

    Экстракция. Закон распределения широко применяется при расчетах экстракционных процессов —процессов переноса растворенного вещества из водной фазы в несмешиваюшуюся с ней органическую фазу. Метод экстракции широко используется в химической и фармацевтической промышленности, в металлургии цветных и редких металлов, в атомной технологии и радиохимии, в аналитической химии. [c.427]

    Достигнутая чувствительность определения кислорода в тугоплавких и редких металлах известными методами анализа сравнительно невелика. Метод хлорирования и гидрохлорирования, бромно-углеродный метод имеют чувствительность 10" %, метод вакуум-плавления и изотопного разбавления — 10 % [23, 24]. Если чувствительность изотопного разбавления еще может быть несколько повышена, то в методе вакуум-плавления она достигла предела из-за сорбции выделяемого газа на возгонах металла и неполноты экстракции из пробы. Большая сорбционная способность возгонов титана и высокая термическая прочность его окислов приводят к тому, что кислород в металлическом титане с помощью вакуум-плавления определяется лишь с чувствительностью 10 % [25, 26]. [c.40]

    Большаков К. А., Коровин С. С., Использование экстракции при выделении и разделении редких металлов, ЖВХО им. Менделеева, 15, 380 (1970). [c.423]

    Сферы применения экстракции быстро расширяются сейчас можно назвать аналитическую химию, радиохимию, ядерную технологию, технологию цветных и редких металлов, отчасти химическую промышленность. [c.7]

    Области применения экстракции быстро расширяются, в настоящее время можно назвать аналитическую химию, радиохимию, ядерную технологию, технологию цветных и редких металлов и др. Кроме того, необходимо отметить большое значение экстракции для препаративных и аналитических целей в научных исследованиях, например, при изучении процессов комплексообразования и состояния веществ в растворах. [c.3]


    Экстракция неорганических веществ получила распространение сравнительно недавно использование этого процесса для извлечения и очистки неорганических солей (и кислот) связано с возникновением и бурным развитием урановой промышленности [58]. В конце 30-х — начале 40-х годов для получения урана ядер-ной чистоты стали использовать извлечение нитрата уранила ди-этиловым эфиром. Широкое развитие экстракционной технологии и исследований в области экстракции неорганических веществ относится к началу пятидесятых годов, когда были синтезированы новые экстрагенты, отвечающие требованиям технологии. С тех пор экстракционные процессы завоевали прочное место в технологии урана, при переработке облученного ядерного горючего [55], в производстве редких металлов. [c.197]

    Сборник составлен в основном из статей, направленных авторами в журнал Атомная энергия , и частично из работ, представленных на первом Всесоюзном совещании по экстракции, состоявшемся в декабре 1959 г. Ввиду большого числа статей представлялось целесообразным распределение материала по отдельным выпускам. При этом для удобства читателей материал по каждому из сборников распределен более или менее равномерно, т. е. в каждом из выпусков имеются работы по теории экстракции, применению экстракционных процессов для получения чистых редких металлов, конструкционных материалов и ядерного горючего, отчасти — по переработке облученных тепловыделяющих элементов, а также работы по расчету и описанию экстракционной аппаратуры. [c.3]

    Значительный рост интереса к серусодержащим экстрагентам обусловлен начавшимся в конце 1960 х годов внедрением экстракции в цветную металлургию. Если атомная промышленность и промышленность редких металлов, где экстракция давно завоевала себе позиции основного метода выделения и разделения металлов, имеют дело главным образом с литофильными элементами (уран, плутоний, нептуний, цирконий, ниобий, лантаниды) и заинтересованы преимущественно в кислородсодержащих экстрагентах, то в цветной металлургии картина сильно меняется. Эта отрасль народного хозяйства связана с получением большого числа металлов, среди которых много халькофильных медь, золото, серебро, свинец и др. [1]. [c.5]

    К числу типичных примеров применения экстракции можно отнести выделение урана из руд, отделение плутония от урана, очистку урана от продуктов деления и др. Совсем недавно экстракционные методы предложено использовать при производстве некоторых редких металлов, например циркония и ниобия высокой степени чистоты. [c.5]

    Представленные данные свидетельствуют о повышении коэффициентов распределения и разделения элементов при экстракции из растворов смесей электролитов, что обеспечивает высокую эффективность процессов и дает широкие возможности для совершенствования технологии получения чистых редких металлов и их соединений. [c.400]

    Помимо получения продуктов химического превращения ас- фальтены могут быть использованы ля экстракции редких и благородных металлов из разбавленных сред, как ингибиторы радикальной полимеризации ряда полимерных материалов, катализаторы гидрирования, добавки для получения высокоплавких битумов, а также в качестве материалов для теплоизоляции трубопроводов и многих других целей. [c.217]

    Для обогащения используют также различие и других свойств компонентов минерального сырья, к которым относятся плавкость (термическое обогащение), химическая активность (химическое обогащение), растворимость в некоторых жидкостях (экстракция). В промыщ-ленности эти способы применяются для обогащения твердого минерального сырья. Например, при нагревании серосодержащей руды легкоплавкая сера раньще других переходит в жидкое состояние и отделяется (термическое обогащение). Химическим обогащением удаляют балластные органические примеси при обжиге твердой породы. Экстракция — один из основных методов извлечения редких металлов из минерального сырья. [c.32]

    Экстракция получает широкое применение в технологии редких металлов для разделения близких по свойствам элементов [301. Так, для разделения рубидия и цезия наиболее перспективными из опробованных в настоящее время экстрагентов являются замещенные фенолы цирконий и гафний разделяют в промышленности экстракцией родапидов этих метал.лов метализобутилкетоном или нитратов трибутилфосфатом. С помощью этих экстрагентов можно разделить также ниобий и тантал из растворов смесей плавиковой и других минеральных кислот. Молибден и вольфрад разделяются при экстракции ацетофеноном. Редкоземельные элементы делят экстракцией грибутилфосфатом в присутствии высаливателей или из концентрированных растворов азотной кислоты. Хотя коэффициенты разделения соседних пар элементов малы, при наличии нескольких десятков ступеней экстракции возможно получить индивидуальные РЗЭ в чистом виде. Более высоким коэффициентом разделения при экстракции РЗЭ характеризуется ди-2-этилгексил-фосфорная кислота. [c.13]

    В основе млогих технических применений макроЦиклов лежит главное и уникальное свойство - способность избирательно захватывать строго определенные ионы в соответствии с размером полости краун-кольЦа. На основе этого свойства краун-соединений уже сейчас созданы и продолжают создаваться принципиально новые методы анализа, селективной экстракции различных веществ. Разработаны процессы извлечения из сточных вод промышленных предприятий ценных цветных и редких металлов. Большая перспектива в использовании краун-соединений открылась в области разделения изотопов. С их помощью можно отделить, например, кальДий-40 от кальция-44, разделить натрий-23 и натрий-24, литий-6 и литий-7, а также изотопы радиоактивных элементов, что имеет огромное значение в создании будущих реакторов термоядерного синтеза. [c.6]

    Практика обогащения руд цветных и редких металлов В 4-х т Т 4 М, Госгортехиздат, 1963, 712 с Авт М А Фишман, Д С Соболев Прикладная электрохимия Л, Химия , 1967, 600 с Авт Н П Федотьев А Ф Алабышев, А П Ротинин и др Процессы жидкостной экстракции и хемосорбции М — Л, Химия , 1966,376 с Рузинов Л П, Веселая Г Н, Глубокова Г Н Извлечение технологической информации из термодинамического расчета М, Гиредмет , 1967, 84 с Руководство по ионообменной распределительной и осадочной хроматографии М, Химия 1965, 200 с 4вт К М Ольшанова, М А Потапова, В Д Копылова, И М Морозова Робинсои Р, Стокс Р Растворы электролитов Пер с англ М, Изд во иностр лит, 1963, б4б с [c.336]

    Концентраты нефтяных сульфоксидов являются эффективными экстрагентами при извлечении и разделении радиоактивных и редких металлов урана, циркония, тория, гафния, щюбия, тантала, редкоземельЕплх элементов (лантанидов), теллура, рения, золота, палладия и др. Эти экстрагенты являются полноценными заменителями трибутилфосфата и индивидуальных сульфоксидов. Например, константа экстракции ура-нилнитрата для концентрата нефтяных сульфоксидов равна 4000, диоктилсульфоксида — 1260, трибутилфосфата—100. [c.748]

    Коэффициенты распределения редких земель и иттрия между трибутилфосфатом и водным раствором азотной кислоты изменяются с изменением концентрации последней. Эта зависимость имеет довольно сложный характер, причем наиболее сильные различия между коэффициентами распределения двух соседних редкоземель-яых элементов наблюдаются при наиболее высоких концентрациях азотной кислоты. Присутствие нитрата кальция и нитратов других слабоэкстрагируемых металлов повышает степень экстракции редких земель. [c.26]

    Навтанович М. Л., Черняк А. С., Жидкостная экстракция металлов кислыми амилфосфатами. Сб. научн. трудов Иркутского научно-исследовательского института редких металлов, вып. 9, Госгортехиздат, 1961, стр. 140. [c.695]

    Основные научные исследования относятся к химии редких металлов, Разработал теоретические основы и технологию разделения, а также прецизионной очистки циркония и гафния. Установил существование устойчивых многоядерных соединений циркония. Разработал новые методы изучения нестационарной массопередачи в процессах экстракции, обеспечивающие измерение констант скорости поверхностных реакций и определение механизма поверхностных явлений, Развил кинетику химических реакций извлечения и явлений, сопровождающих эти реакции на границе раздела фаз. В соавторстве с сотрудниками издал учебник Технология редких металлов в атомной технике (1974). Основал одну из научных школ по кинетнке экстракционных процессов, [c.602]

    Разработаны методы определения неметаллических примесей в металлах, в частности фосфора, серы, а также газообразующих — углерода, кислорода, водорода, азота. На фотографии показан современный прибор для быстрого определения серы в металлах. Для определения газообразующих примесей применяют плавление в вакууме, активационный анализ, масс-спектрометрию, ртутную экстракцию легких металлов. Параллельно с разработкой аналитических методов ведется изучение состояния, форм существования газообразующих примесей в металлах. Задачи здесь заключаются в снижении предела обнаружения существующих методов определения примесей (сейчас он редко превыщает 10 —10 %), разработке точных и особенно экспрессных и непрерывных методов, способов локального анализа металлов, приемов определения газообразующих примесей без разрущепия образца, нахождении способов различать поверхностную и объемную концентрацию примесей, создании стандартных образцов. [c.101]

    НОГО научно-исследовательского института химических реактивов и особо чистых химических веществ. Сотрудники этих институтов И. П. Алимарин, Ю. А, Золотов, М. С. Чупахин, Ю. В. Яковлев (ГЕОХИ АН СССР), В. Г. Горющина, В. В. Недлер (Гиредмет) и Е. А. Божевольнов (ИРЕА) удостоены за указанные работы Государственной премии СССР 1972 года. Были проведены щирокне исследования в области аналитической химии чистых атомных материалов, полупроводников, редких металлов, сцинтилляторов, химических реактивов. Разработаны теоретические основы ряда методов концентрирования и определения микроэлементов, созданы многочисленные приемы анализа разнообразных высокочистых веществ. Из методов концентрирования главное внимание уделялось методу экстракции. Из методов определения развитие получили самые чувствительные методы — радиоактивационный и масс-спектрометрический, а также эмиссионный спектральный анализ, люминесцентные и фотометрические методы, отличающиеся хорошгши аналитическими характеристиками, широкой доступностью и простотой. [c.107]

    Практическое применение нашла главным образом экстракция кобальта ТБФ, особенно для разделения кобальта и никеля. Ежов-ска-Тшебятовска и Копач [397—401] описали схемы разделения смесей цветных и редких металлов, содержащих кобальт экстракция проводилась из растворов НС1 — a lg 100%-иым ТБФ. Кобальт отделяли от никеля экстракцией 67%-ным раствором ТБФ в толуоле из 8,3 М НС1 (99,5% за 7 последовательных экстракций) с последующим фотометрическим определением [974]. Разработаны ме1Тоды выделения Со без носителя из облученной нейтронами никелевой мишени при помощи ТБФ (9 М НС1, противоточный метод) [125] и раствора ТОФО в L (8 М НС1, экстракция в аппа- [c.168]

    В атомной энергетике и во многих других отраслях промышлен- ности (металлургии цветных и редких металлов, химической, фармацевтической и др.) начинает широко применяться метод экстракции — бесфильтрационный метод разделения смесей, основанный на различиях в распределении компонентов между несмешиваю-щимися водной и органической фазами. Метод характеризуется селективностью, высокой производительностью и возможностью его осуществления в различных масштабах. Крупногабаритные экстракционные установки могут обеспечить непрерывное проведение процесса и его автоматизацию. В то же время литература по экстракции (по теории метода, аппаратурному оформлению и его применению) представлена большим числом оригинальных статей в самых различных научных и научно-технических журналах. В связи с очевидной необходимостью и актуальностью всестороннего и систематизированного изложения результатов исследований в области экстракции Госатомиздатом решено издать ряд сборников. [c.3]

    Способы экстракционного разделения веществ характеризуются высокой эффективностью, г,1ростотой и быстротой осуществления. На экстракции основаны методы выделения ценных компонентов из сложных смесей, а также методы разделения элементов, близких по свойствам. В настоящее время разработаны экстракционные методы, с помощью которых можно экстрагировать из водной фазы в органическую почти все элементы. Жидкостные экстракционные процессы успешно используются в гидрометаллургии цветных и редких металлов для разделения, концентрирования и извлечения из их растворов никеля, кобальта, галлия, алюминия, урана, золота, тантала, ниобия и ряда других металлов. [c.386]

    В середине XX в. наступила новая эпоха в неорганической химии и химии комплексных соединений. Это связано с требованиями современной техники и созданием новых материалов. В производство стали вовлекаться редкие и рассеянные элементы, а для этого потребовалось создание технологий их получения, очистки и разработки новых методов анализа. Многие из этих вопросов решались с помощью координационных соединений и процессов комплексообразования. Так, гидрометаллургические процессы получения редких в благородных элементов целиком основаны на явлении комплексообразования. На этом же явлении основана теория и практика экстракции соединений металлов. При разработке гидрометаллургических и экстракционных технологий часто использовался опыт химиков-анали-тиков. Некоторые аналитические методики разделения лишь с небольшими изменениями были перенесены в схемы технологических процессов. Например, было известно, что оксиоксимы являются избирательными реагентами на ионы меди. Поэтому при разработке ныне действующих технологических процессов выделения меди были использованы реагенты этого класса. [c.421]

    В монографии дан критический обзор псследовани11 г по экстракции металлов одно- и многоатотыми фено-лами различного строения. Подробно рассмотрен механизм процесса, ириведены данные о возможном при-. менении экстракции фенолами в технологии и аналити-1 ческой химии цезия, рубидия и других редких металлов. Книга представляет интерес для работников научно- й исследовательских институтов, аналитических лабора- 4 торий, а также предприятий металлургии редких п 1 цветных металлов. [c.2]


Смотреть страницы где упоминается термин Экстракция редких металлов из руд: [c.84]    [c.46]    [c.465]    [c.46]   
Общая химическая технология Том 2 (1959) -- [ c.188 ]




ПОИСК





Смотрите так же термины и статьи:

Металл редкие



© 2025 chem21.info Реклама на сайте