Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фосфолипиды структура

Рис. 7.16. Структура липидных фаз, принимаемых главными липидами мембран (фосфолипидами, гликолипидами). Рис. 7.16. <a href="/info/1401735">Структура липидных</a> фаз, принимаемых главными <a href="/info/1327459">липидами мембран</a> (фосфолипидами, гликолипидами).

    ФОСФАТИДЫ (фосфолипиды) — сложные эфиры фосфорной кислоты и глицерина или сфингозина, которые связаны эфирной или амидной связью с одним или несколькими остатками высших жирных кислот. В зависимости от природы спирта, лежащего в основе химической структуры Ф., различают глицерофос-фатиды и сфингофосфатиды. Ф. входят в состав клеток и тканей всех живых организмов. Особенно велико их содержанне в нервной ткани, они есть в мозге, печени, мускулах, принимают участие в окислительных процессах живых организмов. Ф. вместе с холестерином и белками, участвуют в построении мембран клеток, обусловливают избирате,аьную проницаемость для различных соединений, активно переносят вещества через мембраны, играют важную роль в транспортировке жиров, жирных кислот и холестерина. Нарушение синтеза Ф. в организме ведет к развитию жирового перерождения печени. [c.264]

    В этом разделе уместно обсудить также важную группу липо-протеинов сыворотки крови, хотя такие белки не являются мембранными в строгом смысле слова. Эти белковые комплексы растворимы в воде, что способствует транспорту липидов в организме. Состав одного из липопротеинов сыворотки крови приведен в табл. 25.3.1 помимо фосфолипидов и белков он содержит сложные эфиры холестерина и триглицериды. Определена аминокислотная последовательность некоторых апопротеинов [29]. Обычно принимают, что липопротеины сыворотки имеют мицеллярную структуру, но детальное расположение белков и различных классов липидов внутри этой структуры до конца не выяснено. [c.123]

    Мицеллы могут быть сферическими или образовывать слоистые структуры, но водная среда всегда соприкасается с их гидрофильной зоной. Благодаря такой двойственности фосфолипиды могут вовлекать в водные среды значительные количества гидрофобного материала, без которого было бы немыслимо образование клеточных структур. [c.388]

    Образование глобул типично не только для структур, построенных из молекул с гидрофильными и гидрофобными участками. Фосфолипиды и родственные им соединения самопроизвольно образуют монослой на поверхности водной среды и двойной слой в водной среде (подобно вытянутой мицелле). Полярные концы фосфолипидов сольватируются водой, в то время как углеводородные хвосты остатков жирных кислот и т. д. создают электрически изолирующий слой, не пропускающий заряженные частицы, такие, как Ыа+ или К+. [c.339]


    В фосфолипидах, структура которых показана на рис. 15.27, боковые цепи представлены остатками лауриловой кислоты, не содержащими двойных связей. В биологических мембранах присутствуют углеводородные боковые цепи нескольких видов (разд. 13.5). Углеводородные боковые цепи с двойной связью и с чыс-конфигурацией при двойной связи изогнуты. Получены данные, свидетельствующие о том, что в биологических мембранах углеводородные цепи располагаются перпендикулярно по отнощению к каждой из двух поверхностей на некотором участке, а затем изгибаются под углом примерно 30°. Кроме того, было обнаружено, что строение мембраны хорошо фиксировано лишь непосредственно у ее поверхностей (рис. 15.27), тогда как концы цепей двигаются довольно свободно, так что структура средней части мембраны приближается к структуре жидкости, а структура у поверхностей — к кристаллу. [c.467]

    В миелине из структур центральной нервной системы человека было обнаружено около 1500 различных липидов, 30 из которых присутствуют в значительных количествах [12]. Изучение общих закономерностей состава мембран сильно затрудняется тем, что мембраны разного происхождения очень сильно различаются по содержанию в них липидов разного типа. Однако практически во всех мембранах независимо от их происхождения имеются фосфолипиды, содержание которых составляет от 40 до 90% общего количества липидов в мембране (табл. 5-1). [c.341]

    Интерес представляет установленный факт переноса фосфолипидов из одной мембранной структуры в другую. Например, изолированные митохондрии и микросомы способны. обмениваться фосфатидилхолином, фосфатидилэтаноламином и фосфатидилинозитом. Было показано, что перенос фосфатидилхолина катализируется специфическим обменивающим белком [72] [Уравнение (12-24)], [c.561]

    Липиды разных типов (см. приложение 8) по-разному ведут себя в гидратированных средах. Действительно, в воде некоторые липиды, такие, как углеводородные цепи жирных кислот и триглицериды, образуют полностью разделенные фазы, тогда как главные липиды мембран (фосфолипиды и гликолипиды) образуют ламеллярные (пластинчатые) или инверсные гексагональные (шестиугольные) структуры (рис. 7.16). [c.307]

    Белки могут также вызывать изменения липидной фазы в бимолекулярном слое. Так, в присутствии цитохрома с выявлено [17] формирование инверсных мицеллярных структур в бимолекулярных липидных слоях, состоящих из фосфолипидов ФХ и КЛ. Этот белок ведет себя по отношению к КЛ так же, как двухвалентные катионы (см, 6.1.1). По данным этих авторов [17], цитохром с находится в инкапсулированном виде в мембране, внутри мицеллярной структуры (рис. 7,22), [c.312]

    Как отмечалось ранее, на основании данных рентгеноскопии, электронной микроскопии и спектроскопических методов видно, что структуры в биологических мембранах аналогичны структурам дисперсий фосфолипидов ( модельных мембран ). Из табл. 25..3.4 следует, что зтк аналогии распространяются и на другие физические свойства этих двух систем и оправдывают изучение модельных мембран для понимания строения биологических мембран. Основное различие между модельными и биологическими мембранами заключается в их проницаемости (см. табл. 25.3.4). Множество [c.114]

    Митохондрии-—сравнительно большие, несколько изогнутые палочковидные структуры, длина которых достигает 1500 нм, а диаметр — 500 нм. Митохондрии покрывает оболочка, которая состоит из двух мембран. Между мембранами находится водянистая жидкость. Внутренняя мембрана образует большие складки — кристы," или септы, которые значительно увеличивают общую поверхность мембраны (рис. 6). Как внешняя, так и внутренняя мембраны состоят из белков (80%) и липидов (20%), главным образом из фосфолипидов. В составе митохондрий обнаружены полифосфаты, РНК и ДНК. [c.18]

    От обычных белков, состоящих исключительно из протеиногенных аминокислот, следует отличать сложные белки, называемые также конъюгированными белками или протеидами. Это вещества, содержащие помимо белковой части небелковый органический или неорганический компонент, необходимый для функционирования, могущий быть связанным с полипептидной цепью ковалентно, гетерополярно или координационно и вместе с аминокислотами присутствующий в гидролизате. Важнейшие представители сложных белков гликопроТеины (простетическая группа — нейтральные сахара (галактоза, манноза, фукоза), аминосахара (N-aцeтилглюкoзa-мин, N-aцeтилгaлaктoэaмин) или кислые производные моносахаридов (уро-новые или сиаловые кислоты)), липопротеины, содержащие триглицериды, фосфолипиды и холестерин, металлопротеины с ионом металла, связанным ионной или координационной связью, фосфопротеины, связанные эфирной связью через остаток серина или треонина с фосфорной кислотой, нуклеопротеины, ассоциирующиеся с нуклеиновыми кислотами в рибосомах или вирусах, а также хромопротеины, содержащие в качестве просте-тической группы окрашенный компонент. Обзор структур важнейших белков см. в разд. 3.8. [c.345]


    Кардиолипин. Своеобразным представителем глицерофосфолипидов является кардиолипин, впервые выделенный из сердечной мышцы. По своей химической структуре кардиолипин можно рассматривать как соединение, в котором 2 молекулы фосфатидной кислоты связаны с помощью одной молекулы глицерина. В отличие от остальных глицерофосфолипидов кардиолипин является как бы двойным глицерофосфолипидом. Кардиолипин локализован во внутренней мембране митохондрий. Функция его пока неясна, хотя известно, что в отличие от других фосфолипидов кардиолипин обладает иммунными свойствами. [c.197]

    Липиды образуют большой гетерогенный класс органических молекул, которые могут быть экстрагированы неполярными растворителями. Наряду с изолированными молекулами, такими, как жирорастворимые витамины и стероидные гормоны, для которых ЯМР успешно применяется для установления химической структуры, важны также фосфолипиды, которые образуют плоские, надмолекулярные структуры - двойные липидные мембраны. В соответствии с той ролью, которую играют мембраны, они были исчерпывающе исследованы с использованием всех имеющихся в распоряжении биофизических методов, включая ЯМР. [c.156]

    Липиды, входящие в состав вещества мембран, содержат фосфор. Это так называемые фосфолипиды, структура молекул которых как будто специально приспособлена для создания макрогете-рогенных структур и поверхностей раздела. Дело в том, что многие биологически важные вещества состоят из молекул, в которых можно обнаружить как гидрофильную часть, т. е. группы атомов (как, например, ОН, СООН, NH2), и гидрофобную, состоящую из углеводородных цепей, или циклов. Последние также окружены молекулами воды, но сближение и объединение углеводородных частей, связанные с частичным разрушением упорядоченной водной оболочки, дают в итоге убыль соответствующего термодинамического потенциала, поэтому между углеводородными частями различных молекул в водной среде обнаруживаются силы притяжения ( гидрофобные силы ). Строение фосфолипидов можно представить себе, если в молекуле глицерина заместить два гидроксильных атома водорода на остатки жирных кислот, а третий [c.387]

    Липиды, входящие в состав вещества мембран, содержат фосфор. Это фосфолипиды, структура молекул которых как будто специально приспособлена для создания макрогетерогенных структур и поверхностей раздела. Фосфолипиды (а иногда и иные липиды, например глико-или сульфолипиды) входят в состав всех мембран на фосфолипиды приходится около трети массы сухого вещества мембраны. Фосфолипиды связаны с белками мембран за счет гидрофобных связей, причем в зависимости от рода мембран состав основания фосфолипида может быть различным. В повторяющихся единицах фосфолипиды сосредоточены преимущественно в подставках. [c.160]

    Липиды с эфирной связью по структуре очень сходны с триглицеридами и фосфолипидами. Различие заключается только в том, что рассматриваемая группа соединений вместо одной из ацильных групп содержит алкильную (—ОН) или алкенильную (—О—СН = СН—Н) группу [65]. Плазмалогены — липиды, содержащие алк-1-енольную группу, — были впервые обнаружены Фельгеном и Войтом в 1924 г. Разрабатывая методы гистологического окрашивания, эти авторы обнаружили, что при обработке срезов ткани кислотой происходит освобождение альдегидов. Последующие исследования показали, что альдегиды образуются в результате расщепления липидов, содержащих алкенильную группу  [c.558]

    В 1971 г. Ф. Сенгер и Г. Николсон предложили жидкостно-мозаичную модель биомембран, согласно которой мембраны представляют собой жидкокристаллические структуры, в которых белки могут быть не только на поверхности мембран, но и пронизывать их насквозь. В этом случае основой мембраны является липидный бислой, в котором углеводородные цепи фосфолипидов находятся в жидкокристаллическом состоянии, и с этим бислоем связаны белки двух типов периферические и интегральнь1е. Первые - гидрофильные, связаны с мембранами водородными и ионными связями и могут быть легко отделены от липидов при промывании буфером, солевым раствором или при центрифугировании. Вторые белки - гидрофобные, находятся внутри мембраны и могут быть выделены только после разрушения липидного слоя детергентом (процесс солюбилизации мембран), например, додецилсульфатом натрия, ЭДТА, тритоном и др. Интегральные белки, как правило, амфипатические, т.е. своей гидрофобной частью они взаимодействуют с жирными кислотами, а гидрофильной частью - с клеточным содержимым. Интегральные белки часто являются гликопротеидами, которые синтезируются в аппарате Гольджи, глико-зилируются в мембране и содержат много гидрофобных АК и до 50% спиральных участков. Эти белки перемещаются внутри липидного бислоя со скоростью, сравнимой с перемещением в среде, имеющей вязкость жидкого масла ( море липидов с плавающими айсбергами белков ). [c.107]

    Как было сказано выше, фосфолипиды, гликолипиды и сфинго-липиды широко распространены в мембранах живых систем и почти полностью отсутствуют в жирах депо. Несмотря на то что точная функция фосфолипидов и других соединений в мембранах все еще до конца не установлена, в целом хорошо понятно, почему эта группа органических веществ находится в тесной связи с данным типом клеточных структур. Все липиды, описанные выше, начиная с фосфолипидов, имеют характерное [c.336]

    Холин (XVI) — вещество, которое входит в клеточные структуры как составная часть двух фосфолипидов — лецитина и сфингомиелина — и одновременно является веществом, поставляющим метильные группы в реакциях метилирования различных соединений в организме. Для нормальной жизнедеятельности организма необходимо поступление холина из внешней среды. Холин не является витамином, его следует отнести к незаменимым аминоспиртам он используется как пластическое вещество для построения клеток. [c.626]

    Спирт, обнаруживаемый при анализе фосфолипидов, обычно является глицерином (1,2,3-триоксипропаном разд. 13.3). Фосфатная группа связывает этот спирт с азотсодержащей группой. Группа фосфорной кислоты занимает положение Л в глицерине, а две группы жирных кислот находятся в положении 2 и 3. Изобразите структуру типичного лецитина. [c.427]

    Венгерские исследователи попытались применить в качестве эмульгатора инвертных эмульсий другое биологически важное вещество — холестерин, являющийся вместе с фосфолипидами и белками материалом мембран клеток и субклеточных структур (ядер, митохондрий и др.) и важным фактором обмена веществ. Холестерин представляет собой гидроксилсодержащее производное циклопептанопергидрофе-нантрена, обладающее значительной реакционной способностью с образованием двойных соединений и аддуктов. Он дает в воде кол- лоидные растворы и растворим в ряде органических веществ. С холестерином были получены обратные эмульсии, но с малым содержанием воды. Применение этого эмульгатора представляет, видимо, лишь теоретический интерес. [c.210]

    Несколько особняком стоят липидпереносящие белки, -рые. обнаружены как в мембранных структурах, так и в плазме крови. Они переносят лишь определенный тип фосфолипидов и участвуют в построении биол. мембран. [c.254]

    Л. более полярны и легче раств. в воде, чем диацил-фосфолипиды (в ф-ле R и R -ацилы). Обладают высокой поверхностной активностью и проявляют св-ва детергентов. Образуют в воде мицеллярные р-ры (критич. концентрация мицеллообразования 10 -10 М). Сами по себе Л. не способны давать бислойные структуры, но легко формируют их при ассоциации с жирными к-тами и холестерином. При щелочном гидролизе Л. образуются жирные к-ты и замещенные глицерофосфаты (в ф-ле R и R -H), к-рые далее расщепляются с одноврем. изомеризацией до смеси незамещенных 2- и 3-глицерофосфатов (R, R, Х-Н). В условиях основного или кислотного катализа Л. изомеризуются в результате миграции ацильной группы между положениями 1 и 2 остатка глицерина. Селективное отщепление жирной к-ты от Л. происходит под действием фермента лизофосфолипазы. С помощью ацилирующих реагентов Л. могут быть переведены в диацилфосфолипиды. [c.593]

    Как в миелине, так н в наружных члениках палочек сетчатки на электронно-микроскопических фотографиях видны близко прилегающие друг к другу пары таких мембран, суммарная толщина которых составляет 18 нм Аналогичные структуры можно наблюдать при помощи электронного микроскопа после окраски и фиксации фосфолипидов, находящих1Ся в ламеллярной жидкокристаллической фазе Для корректной интерпретации этих результатов необходимо ответить еще [c.339]

    Важное свойство мембран состоит в способности небольших участков их поверхности сворачиваться и образовывать структуры, близкие по форме к сферическим. Электронно-микроскопическое исследование водных суспензий фосфолипидов показало, что образуются концентрические многослойные структуры (липосомы). Ультразвук разрушает эти структуры на более мел кие пузырьки, окруженные фоофолп-пидными бислоями, апалогичным и бислоям мембран. При определенных усло1виях маленькие пузырьки сливаются, образуя более крупные. Клетки тоже иногда сливаются друг с другом, образуя полиядерные клетки, что может быть связано, в частности, с повышенной текучестью мембран, а также с изменением ориентации полярных групп фосфолипидов [37]. Это явление имеет важное практическое значение для селекции растений и при изучении хромосом человека (гл. 15). [c.357]

    Если вспомнить, что ацетиладенилат (ацетил-АМР) образуется как промежуточное соединение при синтезе ацетил-СоА, и сравнить между собой биосинтез сахаров, фосфолипидов и ацетил-СоА, то увидим, что в каждом случае фермент, принимающий участие в биосинтезе, проявляет специфичность к определенной нуклеотидной ручке . Последняя обеспечивает способы узнавания, посредством которых фермент может отбирать нужное количество сырья в окружающем его море молекул. Конечно, наличие ручки не единственное условие, предъявляемое к молекуле, которая отбирается ферментом, так как соответствовать структуре фермента должна вся молекула субстрата в целом, а не только его ручка . [c.189]

    Подробнее остановимся на свойствах цитохрома Р-450 (цитохром типа Ь). Он выделяется в лаборатории из клеток печени, коры надпочечников, бактерий и др. Ферментная система цитохрома Р-450, гидроксилирующая связи С-Н субстратов, содержит три компоненты. Первая - это ассоциат из НАДФ (см. XVI), из цитохрома Р-450 вторая - цитохром Р-450 и третья - это фосфолипиды. Исследователи наиболее глубоко проникли в структуру, функции и механизм действия этой ферментной системы. Однако вопросы механизма активации молекулы О2 этим ферментом не решены. Известно, что при функционировании Р-450 происходит экстракоординация фазу двух лигандов -атома S цистеинового остатка белка и О2. Следует учесть то, что атом серы в тиоспиртах и тиоэфирах является слабым экстралигандом даже для атома железа, имеющего достаточное сродство к S и образующего сульфиды с низким значением произведения растворимости. В отличие от имидазола, атом S, подобно гемоглобину, не обеспечивает прочного связывания О2. Поэтому механизм окислительного воздействия О2 должен быть связан с изменением окислительного состояния железа в цитохроме. На рис. 5.4 приведен каталитический цикл цитохрома Р-450. Координационные взаимодействия на атоме железа (экстракоординация) выступают здесь также четко, как в фотосинтезе и фиксации-переносе О2. [c.290]

    Предложено несколько гипотез структуры клейковины. По одной из них [87] гидратированная клейковина имеет структуру листа липопротеидного типа, организованную вокруг бимолекулярного слоя из фосфолипидов. Боковые неполярные цепи полипептидов составляют гидрофобные ядра. Полярные группы, ориентированные наружу, образуют с фосфолипидами солевые связи между основными группами белков и кислыми группами липидов. Ориентированный бимолекулярный липидный слой создает плоскость скольжения между двумя слоями листка, обеспечивая тем самым вязкую текучесть. [c.219]

    Сложные липиды - фосфолипиды и фосфосфинголипиды, содержащие глицерин - в случае фосфолипидов, и сфингозин - в случае фосфосфинголи-пидов, включающих сфингомиелины. Кроме того, в состав сложных липидов входят жирные кислоты, фосфатный остаток, аминоспирты и углеводные компоненты. На рис. 41 представлены структуры простых и сложных липидов. [c.97]

    Более сложно происходит всасывание жирных кислот с длинной углеродной цепью и моноглицеридов. Этот процесс осуществляется при участии желчи и главным образом желчных кислот, входящих в ее состав. В желчи соли желчных кислот, фосфолипиды и холестерин содержатся в соотношении 12,5 2,5 1,0. Жирные кислоты с длинной цепью и моноглицериды в просвете кишечника образуют с этими соединениями устойчивые в водной среде мицеллы. Структура мицелл такова, что их гидрофобное ядро (жирные кислоты, моноглицериды и др.) оказывается окруженным снаружи гидрофильной оболочкой из желчных кислот и фосфолипидов. Мицеллы примерно в 100 раз меньше самых мелких эмульгированных жировых капель. В составе мицелл высшие жирные кислоты и моноглицериды переносятся от места гидролиза жиров к всасывающей поверхности кишечного эпителия. Относительно механизма всасывания жировых мицелл единого мнения нет. Одни исследователи считают, что в результате так называемой мицеллярной диффузии, а возможно, и пиноцитоза мицеллы целиком проникают в эпителиальные клетки ворсинок, где происходит распад жировых мицелл. При этом желчные кислоты сразу поступают в ток крови и через систему воротной вены попадают сначала в печень, а оттуда вновь в желчь. Другие исследователи допускают возможность перехода в клетки ворсинок только липидного компонента жировых мицелл. Соли желчных кислот, выполнив свою физиологическую роль, остаются в просвете кишечника позже основная масса их всасывается в кровь (в подвздошной кишке), попадает в печень и затем выделяется с желчью. Таким образом, все исследователи признают, что происходит постоянная циркуляция желчных кислот между печенью и кишечником. Этот процесс получил название печеночно-кишечной (гепатоэнтеральной) циркуляции. [c.367]

    Наружные сегменты палочек сетчатки позвоночных интенсивно иследовались с помощью дифракции рентгеновских лучей, электронной микроскопии и других современных методов. В результате было показано, что они содержат стопки мембранных дисков (рис. 9.7). Эти диски представляют собой структуры, состоящие пз двух слоев глобулярного белка (в основном это зрительный пигмент родопсин) и слоя липидов (главным образом фосфолипидов) между нимн. Родопсин составляет большую долю ( 85%) мембранного белка. Молекулы зрительного пигмента ориентированы в рецепторной мембране таким образом, что поглощение света, проходящего вдоль оси палочки, максимально. Была предложена модель, согласно которой молекулы зрительного пигмента могут латерально перемещаться в мембране и вращаться вокруг оси, перпендикулярной поверхности мембраны, причем любые другие перемещения исключены. По- [c.302]

    На основании анализа литературных и экспериментальных данных о стрз стуре НК, взаимодействии каучуковой части НК с белком МИТХТ предложен принципиально новый способ улучшения свойств изопренового синтетического каучука путем создания в его массе структур, аналогичных НК, за счет введения частиц с необходимым уровнем дисперсности и физического взаимодействия с эластомерной матрицей. Суть предложенного способа заключается в иммобилизации гидрофобных белков на макромолекулах методом обращенных мицелл с использованием в качестве ПАВ фосфолипидов. Получены образцы модифицированные лецитином, белкозином, кератином, белково-липидными комплексами (БЛК) разных штаммов. [c.31]


Смотреть страницы где упоминается термин Фосфолипиды структура: [c.65]    [c.388]    [c.337]    [c.7]    [c.303]    [c.599]    [c.129]    [c.195]    [c.355]    [c.390]    [c.112]    [c.113]    [c.16]    [c.88]    [c.395]    [c.470]   
Химия биологически активных природных соединений (1976) -- [ c.270 ]




ПОИСК





Смотрите так же термины и статьи:

Фосфолипиды



© 2025 chem21.info Реклама на сайте