Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Тетраэдрическая симметрия углерода

    В 1874 г. Ле Бель и Вант-Гофф независимо друг от друга прищли к заключению, что оптическая изомерия обусловлена различным пространственным строением молекул обоих антиподов. Они ввели в органическую химию фундаментальное представление о тетраэдрической симметрии углерода, т. е. о тетраэдрическом расположении связанных с атомом углерода замещающих групп. С помощью этого представления легко удалось на основании строения молекул оптически активных соединений объяснить и предсказать существование двух оптически изомерных форм. [c.131]


    Тетраэдрическая симметрия углерода 131 Тетраэтиламмоний иодистый 165 Тетраэтилгерманий 185  [c.1202]

    Размышления о причинах оптической изомерии послужили тем непосредственным толчком, который привел Вант-Гоффа к идее о тетраэдрическом атоме углерода. Вант-Гофф связал оптическую активность органических веществ с отсутствием симметрии в их молекулах. Симметрия пропадает в частности тогда, когда в молекуле присутствует асимметрический атом углерода так называют атом углерода, связанный с четырьмя различными заместителями. Геометрические соображения подсказывают, что возможны два тетраэдрических расположения заместителей вокруг асимметрического атома. [c.41]

    Азот несколько ближе к углероду, чем кислород, по своему стремлению к тетраэдрической симметрии, достаточно вспомнить об ионе аммония МН4 . [c.361]

    Концепция гибридизации получила широкое распространение главным образом прн обсуждении сте-реохимических проблем. Однако не следует дум-ать, что именно характер гибридизации электронных облаков определяет геометрию молекулы. В действительности дело обстоит как раз наоборот — исходным моментом при определении типа гибридизации является известная пространственная симметрия молекулы, Когда же от данной молекулы (например, СН4) переходят к другим, гомологичным соединениям (скажем, насыщенным углеводородам) и утверждают, что вследствие яр -гибридизации электронных облаков атомов углерода его соседи должны находиться в тетраэдрических или близких к ним углах, то создается иллюзия, будто причиной такой геометрической структуры углеводородов является вр -гибридизация. На самом же деле в основе подобных рассуждений лежит предположение (очень часто оправдывающееся экспериментально) о сходстве геометрической структуры рассматриваемых молекул. [c.208]

    Поскольку в структуре алмаза все связи между атомами углерода одинаковы, их образование можно рассматривать исходя из представления об 5р -гибридизации, характеризующейся тетраэдрической симметрией (объемная структура). (Типы гибридизации подробно изучаются в курсе органической химии.) Структуру же графита с углами между связями в одном слое 120° (плоская структура) можно рассматривать как следствие хр -гибридизации. Естественно поэтому предположить, что должна сз ществовать третья форма углерода, отвечающая 5р-гибридизации (линейная структура), состоящая из длинных полимерных молекул, например (—С = С—)х- [c.155]

    Парафиновые углеводороды неполярны. Этого и следовало ожидать из соображений симметрии, даже если связи С—Н в них и имеют отличные от нуля дипольные моменты. Благодаря тетраэдрической симметрии насыщенного атома углерода векторная сумма моментов трех связей С—X в трехзамещенной метильной группе СХз равна моменту одной связи СХ, расположенной на оси третьего порядка (рис. 19). [c.82]


    Можно предположить, что атом углерода с такой конфигурацией будет образовывать одну связь определенного рода при помощи 25-электрона и три связи другого рода при помощи трех 2р-электронов. В действительности, однако, все четыре образуемые им связи совершенно равноценны молекула метана СН4, например, обладает правильной тетраэдрической симметрией, и ядра четырех атомов водорода находятся на равном расстоянии от ядра атома углерода (рис. 93). Это объясняется тем, что 25-орбита и три [c.188]

    Если тетраэдрический атом углерода связан с двумя (или ббльшим количеством) одинаковыми структурными фрагментами, то молекула обладает плоскостью симметрии (рис. 2). Следовательно, она тождественна своему зеркальному отражению и в этом случае оптическая [c.18]

    Экспериментальные данные показывают (см., например, [ ]), что если связь С—С образована тетраэдрическими атомами углерода (т. е. не соседствует с двойной связью С=С), то минимуму потенциальной энергии отвечает скрещенная конформация молекулы (см. рис. 2). В то же время, если к одному из атомов углерода присоединена двойная связь, она принимает затененную конформацию по отношению к одному из атомов группы с симметрией [c.48]

    То же относится и к очень длинным углеродным цепям, имеющимся, например, в полиэтилене, в особенности полученном по способу Циглера при низком давлении [14]. Это легко обнаруживается при рассмотрении обычных моделей таким образом, и для длинных углерод-углеродных цепей строго соблюдается тетраэдрическая симметрия атома углерода. Поперечное сечение подобной цепи составляет около [c.45]

    Подобная теория образования алициклических соединений, связывающая в конечном итоге запас энергии соединения с тетраэдрической симметрией атома углерода, выдвинута Байером [21] и названа Теорией напряжения. Запас энергии подобных напряженных циклических систем должен проявляться в зависимости теплот сгорания от числа звеньев в кольце. [c.52]

    С (алмаз). Лтом углерода в алмазе имеет тетраэдрическую симметрию. [c.330]

    Введение довольно крупных заместителей у атомов углерода, связанных с донорными атомами азота, уменьшает способность реагента образовывать характерные т ас-комплексы железа(II). Наоборот, эти заместители не мешают образованию соответствующего комплекса меди(1), в котором только две молекулы лиганда присоединены к центральному атому в тетраэдрической симметрии. Значит, замещенные дипиридил и фенантролин действуют как избирательные реагенты на медь [222, 223, 228]. [c.68]

    Образование о-комплексов. В отличие от л-комплексов 0-комплексы — это катионы, при образовании которых реагент Х+ образует ковалентную связь с одним из атомов углерода бензольного кольца за счет его двух я-электронов. При этом один из атомов углерода переходит из состояния в состояние 5р -гибридизации, в котором все четыре валентности его находятся под углами, близкими к тетраэдрическому тем самым нарушается симметрия бензольного кольца. Группа X и атом водорода при этом оказываются в плоскости, перпендикулярной плоскости кольца  [c.318]

    В качестве второго примера применения метода МО обсудим в общих чертах молекулу СН4, которая уже упоминалась в связи с изучением метода валентных связей, где с привлечением понятия гибридизация для нее получена тетраэдрическая структура. Четыре атомные 1з-орбитали 1 л, -фг, 1 3з, и я )4 четырех атомов водорода можно комбинировать различными способами (табл. А.11). Если атомы водорода расположены по углам тетраэдра, то полученные четыре комбинации (рис. А.41) имеют такую же симметрию, как и четыре атомных состояния , р , Ру, Рг центрального атома углерода. Поэтому при линейной комбинации этих четырех волновых функций углерода с волновыми функциями четырех атомов водорода получается очень хорошее перекрыва- [c.98]

    Под ней подразумевают взаимную интерференцию четырех АО возбужденного С-атома. Для этого необходимо около 100 кДж моль . Линейная комбинация четырех АО приводит к четырем 5/ -гибридным АО (5р -А0), оси симметрии которых по отношению друг к другу расположены под углом 109,5° и, таким образом, направлены по углам тетраэдра (рис. 1.2.5). Это в известной стенени является теоретической основой тетраэдрической модели атома углерода Вант-Гоффа и Ле-Беля, предложенной на основании экспериментальных данных. [c.58]

    Отсутствие неподеленных пар в молекуле СН4, во-первых, приводит к заметному упрочнению связей и, во-вторых, делает метан гораздо менее реакционноспособным по сравнению с соединениями элементов 15-17 й групп. Высокая симметрия sp -гиб-ридных орбиталей приводит к тому, что тетраэдрические молекулы метана лишены дипольного момента и поэтому межмолекулярные силы слабы, а отсутствие неподеленных пар на атомах углерода делает невозможным образование водородных связей в жидком СН4, что сразу же сказывается на его физических свойствах. [c.305]

    Но какие соединения могут быть оптически активными Вант-Гофф связал оптическую активность органических веществ с отсутствием симметрии в их молекулах, например с наличием асимметрического атома углерода (см. Введ. 5). В этом случае возможны два тетраэдрических расположения заместителей вокруг асимметрического атома. Обе пространственные формы нельзя совместить никаким вращением. Одна из них является зеркальным отражением другой. Получаются два стереоизомера (энантиомеры, зеркальные изомеры, оптические изомеры). Оба стереоизомера составляют пару оптических антиподов, которые отличаются друг от друга знаком оптического вращения —[а] и +[а] при одинаковом значении а]. [c.61]


    Примером сигматропных реакций может быть и хорошо известная перегруппировка Кляйзена (рис. 56, а). При реакции происходит поворот я-орбиталей у атомов 1 и 6 и их регибридизация до вр -состояния, одновременно происходит разворот лопастей о-связи в положении 3—4 и их регибридизация до я-орбиталей (рис. 56, б). Конечным итогом реакции является образование новой о-связи в положении 1—6 и двух новых я-свя-зей в положении 2—3 и 4—5. Четырехцентровое переходное состояние в этом случае имеет вид, изображенный на рис. 56, в. Затем система стабилизируется запрещенным по симметрии, но очень выгодным энергетически [1,3]-переходом атома водорода к атому кислорода и образованием ароматической системы бензола. Энергетическая выгодность в данном случае, помимо выигрыша за счет энергии резонанса ароматического ядра бензола, определяется и значительно большей электроотрицательностью атома кислорода по сравнению с атомом углерода (сравнить с нереализуемой схемой на рис. 52). Наличие в системе атома кислорода вместо тетраэдрического углеродного атома не допускает оценки перегруппировки с точки зрения супра- или антараповерхностного перехода. Появившиеся в последнее время данные по ускорению перегруппировки Кляйзена под действием кислот не противоречат отнесению перегруппировки к сигматропным процессам, так как протонирование атома кислорода или хотя бы блокирование его электронной пары могут, не меняя [c.649]

    Однако, как впервые указал Мор [26], формы а и б можно легко перевести друг в друга с незначительным временным искажением тетраэдров ( отгибание атома С4 вниз, ниже атомов Сд и g). Этим объясняется отрицательный результат всех попыток получения изомерных монопроизводных циклогексана. Мор указал далее, что присоединением короткого мостика из атомов углерода к цикло-гексану в орто-, мета- или пара-положениях можно получить ненапряженные модели бициклических систем так, например, могут существовать два пространственно изомерных декагидронафталина. В таких декалинах центры тяжести атомов углерода расположены не в одной плоскости и модели не обнаруживают напряжения. Переведение их друг в друга, например путем отгибания , как в случае ванны и кресла циклогексана, в данном случае невозможно. Присоединенное кольцо стабилизирует обе формы, поэтому их можно получить в изолированном состоянии, если представления Закса — Мора правильны. Эти соединения, а также ряд других веществ аналогичного строения были впервые получены Хюккелем [27, 28] (о бициклических системах см. стр. 66 и далее). Поэтому, хотя теория напряжения Вайера и не может быть принята в ее первоначальной форме, ее все же следует сохранить с тем существенным ограничением, что начиная с б-членного кольца и выше происходит образование неплоских, свободных от напряжения систем с сохранением тетраэдрической симметрии углерода. [c.53]

    В случае многоатомных молекул положение усложняется. Однако в некоторых случаях, для которых строение молекулы известно, моменты связей можно легко определить путем измерения молекулярного момента молекулы при допущении, что этот момент является равнодействующим моментов связей, направленных вдоль направления связей. Так, известно, что вода имеет (см> гл. XV) изогнутую структуру, в которой две О—Н связи составляют угол в 105°. Если эти связи имеют равные моменты, направленные под таким углом друг к другу, то момент связи легко может быть рассчитан на основе измерения результирующего момента молекулы. Для соединений углерода задача усложняется вследствие тетраэдрической симметрии углерода. Например, в метане все моменты связей взаимно погашаются и относительно их величины нельзя получить никаких сведений на основании того, что дипольный момент метана равен нулю. Однако, если момент С—Н определить экстраполяцией данных о моментах О—Н и N—Н [момент связи N — Н может быть найден потому, что аммиак имеет пирамидальное строение (см. в гл. XV) и поэтому для него результирующий момент не равен нулю], то при помощи измерений моментов молекул органических соединений можно найти моменты других связей углерода. Обычно принимают, что момент связи зависит только от самой связи и не зависит от соединения, в котором она содержится. Не входя в подробности определения моментов связей,, ограничимся указанием на то, что значительное число их было-определено с большей или меньшей точностью и достоверностью.. Было найдено [38, 16, 39], что момент связи водорода с целым рядом элементов прямо пропорционален величинам электроотрицательности, приведенным в табл. 14. Это позволяет ожидать, чта вообще момент ординарной связи, образуемой любьши двумя элементами, пропорционален разности их электроотрицательности> Однако, если один из них не водород, то, как установлено,, это правило в лучшем случае становится только качественным. Тем не менее, совершенно ясно, что между дипольным моментом и полярным характером связи существует взаимная зависимость, несмотря на то, что ее не удается выразить настолько же просто, как в случае энергий связей. [c.200]

    Идея о гибридизации орбиталей связана с выводом о том, что гибридизованные орбитали имеют строго определенное направление в пространстве, отличное от направлений исходных орбиталей. Тетраэдрическая симметрия атома углерода хорошо объясняется с этой точки зрения. Поэтому геометрия молекулы должна зависеть от геометрии гибридных орбиталей составляющих ее атомов. Если в атомах имеются несвязывающие электроны, их размещают на негибридизованных орбиталях, так как гибридизация осуществляется именно в процессе соединения, т. е. во время образования химических связей. [c.135]

Рис. 2. Наличие плоскости симметрии в молекуле СсЬаз, где тетраэдрический атом углерода связан с двумя одинаковыми группами а Рис. 2. Наличие <a href="/info/4933">плоскости симметрии</a> в молекуле СсЬаз, где <a href="/info/71157">тетраэдрический атом углерода</a> связан с двумя одинаковыми группами а
    Это ион пазывается бензолониевым ионом [1576]. Структура имеет симметрию о, а координата реакции сохраняет симметрию группы в процессе образования. Этот ион можно представить себе как тетраэдрический атом углерода, связанный с резонансно стабилизированной системой из пяти атомов углерода с четырьмя п-электронами. Можно было бы ожидать, Что бензолониевый ион должен образовываться с трудом из-за потери энергии резонанса бензола. В действительности сродство бензола к протону очень велико, 183 ккал/моль, что несколько выше, чем сродство этилена к протону [160]. [c.382]

    В молекулах, подобных молекулам метана, чотыреххлористого углерода и др., все связи в каждой молекуле равноценны, и, следовательно, распределение электронной плотности по всем этим связям совершенно одинаково молекулы этих веществ обладают тетраэдрической симметрией и пе имеют дипольного момента. [c.45]

    При тетраэдрической симметрии четыре 1хн-А0 образуют групповые орбитали двух типов одну невырожденную (а) и вторую триждывырожденную (/). Комбинируя эти групповые орбитали с 25- и 2р-А0 углерода можно получить МО метана. Например, перекрывание 2 -А0 углерода с групповой орбиталью типа а дает связывающую МО [c.57]

    Эти определения не совсем точные. Две молекулы являются энантиомерами, если они относятся друг к другу как предмет и его зеркальное отображение, не совместимое с ним путем вращения или перемещения в пространстве. Молекулы, для которых существует энантиомерия, называются хиральными если молекулу и ее зеркальное отображение можно совместить в п юстранстве путем вышеуказанных операций, то она называется ахиральной. Любой предмет, имеющий плоскость, центр или зеркально-поворотную ось симметрии можно совместить со своим зеркальным отображением (ахи-ральные). Хиральными являются молекулы, имеющие только простые оси симметрии или полностью лишенные элементов симметрии. В последнем случае иногда используют термин асимметричные молекулы. Тетраэдрический атом углерода, связанный с четырьмя различными заместителями, называют асимметрическим атомом углерода (см. например, структуру втор-бутилового спирта в табл. 22) очевидно, что он является хиральным центром молекулы.— Прим. ред. [c.158]

    На самом деле все четыре образуемые углеродом связи совершенно равноценны. Поэтому молекулы метана обладают правильной тетраэдрической симметрией и ядра всех четырех атомов водорода находятся на равном расстоянии от тома углерода. Это объясняется тем, что 25- и р-орбиты могут гибридизировать и таким образом образовывать четыре совершенно равноценные орбиты. Эти четыре орбиты направлены к четырем углам правильного тетраэдра и являются тетраэдрическими орбитами связи, как показано на рис. 6. Еще в большей степени гибридизация орбиты имеет распространение среди элементоорганических соединений. Именно этим объясняется образование устойчивых соединений из четырехвалентного олова и свинца типа 5пН4, РЬН4- [c.15]

    Из-за стерических препятствий метильных групп у атомов углерода, смежных с электронодонорпыми атомами азота в молекуле фенантролина, реагент не образует низкоспинового ярко-красного комплекса с железом (II), который характерен для производных фенантролина. Однако. в присутствии восстановителей неокупроин реагирует с медью, образуя комплекс меди(1) состава МАг тетраэдрической симметрии. Этот хелат не растворяется в воде, и его можно экстрагировать хлороформом, в котором комплекс имеет максимум поглощения при длине волны 457 нм. Таким образом можно установить концентрацию комплекса. Метод пригоден для определения меди в железных, марганцевых и ванадиевых рудах даже в присутствии алюминия, германия, титана и кремния. [c.97]

    В чем причина появления оптической активности у некоторых органических вешеста Ответ на этот вопрос был дан на основании тетраэдрической теории Я. Вант-Гоффа и Л. Ле-Беля (1874). Согласно этой теории оптической активностью обладают соединения, молекулы которых имеют асимметрическое строение. В состав таких молекул входит асимметрический атом углерода, т. е. атом, у которого все четыре валентности затрачены на соединение с различными атомами или группами атомов (рис. 2.3). Такой атом не имеет ни одного элемента симметрии — ни центров, ни осей, ни плоскости. [c.217]

    Метай, этаи, пропаи и их гомологи имеют тетраэдрическое строегше. Можно представить, что их углерод-углеродные связи образованы перекрьшаннем хр -гибридных орбиталей каждого из атомов углерода, а связь С-Н - перекрыванием лр -гибридной орбнтали углерода и Ь-орбнтали водорода (см. гл. 1). Длина С-С связи составляет 1,54 0,01А, а длина С-Н связи - 1,095 0,01А. Такая геометрия молекул алканов приводит к важным следствиям, углерод-углеродная с-связь обладает цилиндрической осью симметрии, т.е. сечение этой а-орбитали представляет собой круг. Такой тип симметрии а-связи допускает свободное вращение вокруг простой одинарной углерод-углеродной связи в алканах, поскольку ири вращении нерекрьшанне между -гибридными орбиталями соседних атомов углерода не нарушается. [c.343]

    Вскоре после того, как Байер опубликовал свою теорию напряжения, Закс установил, что можно построить неплоские модели циклогексанового кольца, в которых все валентные углы будут тетраэдрическими [27] или близкими к ним. Если углеродные атомы циклогексана расположить в одной плоскости, го они образовали бы лишь один шестиугольник с углами между связями в 120°, что привело бы к значительному байеровскому напряжению. Более того, в плоской форме должны были бы проявиться сильные взаимодействия за счет заслонения, возникающего между вицинальными водородными атомами. Закс показал, что ненапряженные углы между связями, равные 109,5°, могли бы существовать, если бы атомы углерода находились в альтернирующих положениях выше и ниже общей плоскости кольца. При таком расположении атомов углерода вицинальные водородные атомы становятся заторможенными и, таким образом, устраняются неблагоприятные взаимодействия, связанные с заслонением. Неплоская высокосимметричная форма циклогексана, предложенная впервые Заксом, в настоящее время повсеместно рассматривается как конформация кресла (см. ниже). Закс рассмотрел также другую, менее жесткую модель неплоского циклогексана, которую он называл гибкой формой. Хотя некоторые дополнительные соображения, на которых был основан анализ Закса, были отброшены Мором [28], все же этот анализ явился первым проникновением в конформационные свойства циклических молекул. В настоящее время имеется много доказательств того, что наиболее устойчивой конформацией циклогексана и многих его производных является конформация кресла. На приведенных выше проекциях Ньюмена подчеркнуто заторможенное положение атомов водорода в кольце. Из этой конформации вытекает существование двух типов связей углерод — водород. Конформация кресла имеет простую ось симметрии третьего порядка. Шесть связей С—Н примерно параллельны этой оси три направлены вверх, а три — вниз. Эти связи называют аксиальными. Остальные шесть С—Н-связей почти перпендикулярны оси симметрии, их называют экваториальными [c.83]


Смотреть страницы где упоминается термин Тетраэдрическая симметрия углерода: [c.131]    [c.115]    [c.465]    [c.385]    [c.27]    [c.176]    [c.257]    [c.679]    [c.115]    [c.332]    [c.83]    [c.115]    [c.332]    [c.101]    [c.173]    [c.185]    [c.79]   
Курс органической химии (0) -- [ c.131 ]




ПОИСК







© 2025 chem21.info Реклама на сайте