Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Системы технологические производительность

    Когда воздействие оказывается также на выходящий из системы поток, производительность технологической аппаратуры используется не полностью. Например, если бы не хватило пара для поддержания соответствующей температуры в аппарате, в который подается большой поток взаимодействующих в эндотермической реакции веществ, то можно было бы сохранить заданный уровень температуры, изменяя величину потока и, следовательно, уменьшая количество получаемого продукта. [c.474]


    Управление процессом изготовления направлено на максимальное использование возможностей технологической системы. Обычно производительность процесса обработки значительно ниже возможной, так как режимы процесса существенно отличаются от оптимальных, учитывающих конкретные условия протекания процесса в каждый момент времени. [c.141]

    Расширение ассортимента выпускаемой продукции при оптимальной реконструкции осуществлялось поэтапно в рамках иерархической системы технологической гибкости, структурной гибкости и организационной гибкости первого и второго уровня. Реконструкция действующих ХТС на основе гибких производственных систем позволяет расширить ассортимент, увеличить производительность и повысить качество продукции на тех же производственных шющадях. [c.104]

    Система регулирования производительности компрессорной установки должна отвечать требованиям технологического процесса и обеспечивать безопасный и экономичный режим работы. [c.36]

    В каждом отдельном случае решение принимается после сопоставления анализов нефтепродуктов и технологического режима в той его части, от которой может зависеть качество продуктов. При этом необходимо учитывать качество сырья и катализатора, находящихся в системе, а также количественные показатели — производительность установки по свежему сырью и рециркулирующему газойлю, объемные скорости п кратность циркуляции катализатора [c.164]

    В полунепрерывных и особенно непрерывных технологических схемах важно правильно выбрать насосы для перекачивания полупродуктов и смазок, а также конфигурацию накопителей готовой продукции для гибкого регулирования и согласования производительности технологической установки с производительностью автоматических линий по затариванию готовой продукции. Из-за повышенной вязкости для транспортирования смазок применяют роторно-зубчатые и винтовые насосы. В качестве сборников-накопителей используют бункеры с обогреваемыми стенками, которые оборудованы системой замкнутой циркуляции смазок через гомогенизирующий клапан. [c.100]

    В большинстве случаев приборы технологических замеров и дистанционного управления монтируют на щитах контроля и автоматики (вторичные приборы замера производительности, давления масла в системе смазки, температуры подшипников, давления и количества охлаждающей воды и др). [c.64]

    Вследствие этого машинное моделирование, проводимое для расчета системы автоматического регулирования процесса, должно делиться обычно на две части. Во-первых, полное моделирование необходимо выполнить, пользуясь предварительно составленными уравнениями объекта и регуляторов, чтобы определить характер распространения по технологической схеме любого возмущения и его влияние на производительность и устойчивость работы установки. [c.93]


    Основные функции и системы машины. Машины применяют для увеличения производительности общественного труда и облегчения физического труда человека при выполнении технологических процессов или отдельных операций. [c.7]

    Наибольшие возможности для механизации ремонтных работ и повышения производительности труда создает централизованная система. Однако на химических заводах кроме централизованной используется также смешанная система, при которой сохраняются заинтересованность ремонтного персонала технологических цехов в исправном состоянии оборудования, а также подчиненность механической службы технологических цехов основной цели производства — выпуску продукции необходимого качества. [c.8]

    Остановка на ремонт в различное время оборудования, входящего в химико-технологическую систему, снижает производительность всей цепочки аппаратов. Приурочивание ремонта всего оборудования технологической схемы к одному периоду ведет к уменьшению простоев химико-технологической системы. При остановочных ремонтах заменяются детали и узлы, срок службы которых еще не истек, однако затраты на такой ремонт гораздо меньше тех убытков, которые могли бы возникнуть при внеплановом простое системы из-за отказа зтих деталей и узлов. [c.11]

    Технологическая схема битумной установки должна обеспечивать требуемую производительность, возможность получения широкого ассортимента битумов при достаточно хорошем их качестве. Обязательным требованием должно быть обеспечение возможности поддержания максимальной поверхности реагирующих фаз, высокой степени ее обновления и оптимальная продолжительность контакта сырья с воздухом. Процесс будет высокоэффективным при наличии специальной системы отвода тепла, выделяющегося в результате окисления сырья. [c.207]

    На основе теоретических, экспериментальных и полигонных исследований разработаны и проверены в условиях, приближенных к реальным, основные узлы системы взрыво- и пожаробезопасности, применительно к технологической установке ЛК-6у нефтеперерабатывающего завода производительностью 6 млн. т нефти в год. [c.193]

    Установка применяется в системах резервуарных парков. Блочность технологического оборудования позволяет использовать его при любой возможной производительности, заменить при необходимости любой блок, перейти на новый режим работы. Газ, отбираемый из вертикальных газоотделителей, подается в конденсатосборник. Диаметр газопроводов обеспечивает минимальный перепад давления. Сжатый газ из компрессорной установки подается в газосборную линию потребителя. [c.26]

    Наиболее типичными целевыми функциями физической интенсификации при заданных ограничениях являются сокращение продолжительности лимитирующих стадий процессов, сокращение энергозатрат, увеличение производительности и к. п. д., улучшение качества продуктов, получение продуктов со свойствами, не достигаемыми по традиционной технологии, уменьшение габаритов аппаратов и расхода материалов на их изготовление, экономия сырья, проведение совершенно новых процессов, улучшение экономических и эргономических характеристик оборудования, ведение непрерывных управляемых процессов. Обрабатываемые вещества совместно с аппаратом и условиями, при которых проходит процесс, образуют сложную физико-химическую систему. Подобная система характеризуется взаимосвязью отдельных частей и их взаимодействием между собой, со смежными системами в общей химико-технологической системе и с окружающей средой. Свойства и поведение системы являются в общем случае динамическими и стохастическими. [c.7]

    Традиционно принято считать непрерывные процессы более прогрессивными, главным образом, потому, что они более производительны. Действительно, периодическому способу организации технологических процессов свойственны такие недостатки, как большое число вспомогательных операций, низкий коэффициент использования основного оборудования, обусловленный несогласованностью функционирования взаимодействующих аппаратурных стадий химико-технологической системы. Однако периодические процессы имеют и преимущества перед непрерывными  [c.28]

    Относительная производительность ХТС определяется как отно ление абсолютной производительности к интенсивности поступления сырья. Смысл этой характеристики заключается в вероятности переработки партии сырья. Среднее время пребывания партии сырья (промежуточного продукта) в ХТС (в основных технологических аппаратах илн в вспомогательных емкостях) —это среднее время технологического цикла стадии. Среднее число занятых аппаратов или коэффициент их загрузки характеризует эффективность использования технологического оборудования системы. [c.235]


    К задачам оценки возможных вариантов структуры технологических связей сложных ХТС тесно примыкают задачи, обусловленные выбором таких параметров элементов ХТС, которые обеспечивают согласование элементов между собой по их производительности в процессе функционирования системы. Для этого необходимо по результатам моделирования оценить производительность отдельных элементов, провести расчеты для выбора соответствующих конструкционных и технологических параметров, проверив приемлемость полученных результатов путем комплексного моделирования всей системы в целом. [c.34]

    В результате решения системы уравнений балансов на стадии проектирования ХТС определяют количественные характеристики функционирования системы, которыми являются материальные и тепловые нагрузки и производительность элементов системы в виде массовых расходов и составов сырья, конечных и промежуточных продуктов массовых расходов сточных вод и выбросов вредных газов в атмосферу массовых расходов греющего пара и охлаждающей воды количества тепла и электроэнергии. Материальные и тепловые нагрузки и производительность элементов ХТС представляют собой исходную информацию для расчета технологических моделей отдельных элементов, а также для технологического и конструкционного расчетов элементов системы. [c.37]

    Подпрограмма ввода исходной информации содержит информацию о технологической и информационной топологии системы в виде технологической схемы, а также в виде параметрического потокового графа или информационно-потокового мультиграфа информацию о производительности системы, составе и физических свойствах сырья, промежуточных и готовых продуктов информацию о технологических и конструкционных параметрах элементов и параметрах технологических режимов системы информацию о требуемой точности результатов моделирования. [c.326]

    Параллельная технологическая связь (рис. УП-2, б) применяется для повышения производительности и мощности ХТС, а также при параллельном получении на базе одного исходного вещества двух или нескольких промежуточных продуктов, идущих на производство одного целевого продукта. Примером системы с параллельными технологическими связями между элементами является ХТС производства этиленоксида, в которой параллельно работают четыре каталитических реактора. [c.173]

    На рис. УП1-3 изображена схема выбросов в окружающую среду крупнотоннажным агрегатом производительностью 1360 т/сут. Крупнотоннажное производство аммиака дает следующие выбросы в окружающую среду 1) жидкие стоки, состоящие из конденсата, продуктов продувки систем охлаждения и промывки растворов 2) газовые выбросы, содержащие аммиак, диоксид углерода и другие газы 3) невосполнимые потерн низкопотенциальной энергии в системах воздушного и водяного охлаждения, которые сами по себе не оказывают заметного влияния на окружающую среду, однако приводят к косвенному увеличению расхода энергии на технологические процессы и увеличивают тепловые потери процессов, производящих энергию. [c.209]

    Непрерывные технологические процессы химических и нефтехимических производств предполагают использование АВО при постоянных параметрах по температуре и давлению охлаждаемых или конденсируемых потоков. Для обеспечения стабильных параметров охлаждения применяют системы регулирования, увлажнения, комбинированные схемы охлаждения и пр. Однако такие параметры, как температура атмосферного воздуха t, объемная производительность вентилятора Ув и скорость охлаждающего воздуха Ууз, изменяются в течение различных периодов эксплуатации. Изменение t обусловлено годовыми, сезонными и суточными колебаниями температур. Величина Ууз при длительной эксплуатации изменяется в сторону уменьшения по мере увеличения аэродинамического сопротивления теплообменных секций. Опыт эксплуатации показывает, что плотные пылевые и волокнистые отложения на первых рядах труб по ходу охлаждающего воздуха и в глубине пучка могут приводить к снижению объемной производительности вентиляторов до 40%- Аналогичная картина наблюдается [c.50]

    Известно, что пульсирующий газовый поток отрдацательно влияет на работу системы, снижая производительность компрессора и вызывая вибрацию трубопроводов и оборудования [1]. Поэтому при проектировании трубопроводных систем должны предусматриваться мероприятия, снижающие пульсацию давления до допустимого уровня. В случаях, когда пульсация рабочей среды является технологическим фактором и специально создается для интенсификации технологических процессов, необходимо обеспечить заданные параметры пульсации в нужных областях системы, минимизируя при этом ее влияние на остальную часть установки. [c.35]

    Сточные воды на этом заводе канализованы раздельно шестью системами. Технологические конденсаты (84 м /ч подвергаются очистка от HjS и NHg на двух отпарных колоннах. Подпитка оборотной системы производительностью 2725U м /ч осуществляется физико-химически и биохимически очищенной и доочищенной на фильтрах смесью производственных и хозяйственно-бытовых (нефтезаводских) сточных вод, технологического конденсата, использованного после отпарки для нужд ЭЛОУ и других промнужд (промывки), а также его избыточного количества. Для подпитки используются также ливневая вода, прошедшая отстаивание в пруде, оборудованном нефтесборником, и фильтрование, а также прозд вочная вода паровых котлов, которую ввиду низкого содержания кальция и магния мокко упаривать при многократном использовании для охлаждения. Суммарное количество указанных сточных вод составляет 23V м /ч, или 51% от расхода подпитки из р.Заяндех, а соотношение сточной и речной воды в смешанной подпитке соответственно [c.47]

    При дальнейшем всестороннем изучении хода технологического процесса может оказаться, что регулирование и контроль следует вести не только по температурным критериям, но и по другим параметрам, непосредственно характеризующим ход процесса. Такими параметрами являются степень полимеризации, концентрация незаполимеризированного мономера, вязкость массы и др. Непосредственное измерение этих величин по зонам представляет значительные трудности и может потребоваться их косвенная оценка, например, по изменению коэффициента преломления света, интенсивности радиоактивного потока и т. д. Взаимосвязь между системами контроля и регулирования параметров качества и системой регулирования производительности может быть установлена на основе регулирования уровня массы не только в форполимеризаторе, но и в колонне. Регулирование уровня массы в колонне также может быть осуществлено косвенно, например, путем непрерывного измерения весовой производительности по готовому полистиролу после резательной машины, в зависимости от изменения которой регулирующая система будет изменять число оборотов шнека. [c.100]

    Отечественные сернокислотные системы ДК производительностью 360 тыс. т/год (см. рис. 45) по техническому уровню соответствуют лучшим зарубежным системам на колчедане. В них комплексно использован весь отечественный опыт совершенствования и интенсификации сернокислотного производства. Печные отделения оснащены мощными печами для обжига колчедана в кипящем слое — КС-450, производительностью 450— 500 т/сут колчедана с утилизацией тепла его горения — получением пара энергетических параметров (450 °С 4,0 МПа), используемого для производства электроэисрг ии и для технологических нужд теплофикации. Очистка обжигового газа от пыли производится в 3-х польных электрофильтрах УГТ-3-30. Промывные отделения работают в испарительном режиме. Кислоты в циклах орошения сушильных башен и абсорберов охлаждаются в аппаратах воздушного охлаждения. Используются погружные насосы. Степень окисления SO2 в контактных аппаратах составляет 99,6—99,8%. [c.248]

    Однако наиболее часто оборудование ХОГФ функциональных слоев ИМС классифицируют по типу системы осаждения (типу реактора) [12]. Хорошая система ХОГФ должна обеспечивать не только требуемые свойства пленки (ФС), но и высокие показатели по технологической производительности, надежности, ремонтопригодности при приемлемой (конкурентоспособной) операционной стоимости обработки одной пластины. [c.55]

    Величина допустимого натекания зависит от технологических требова ний к аппарату, объема вакуумной системы и производительности откачи вающих аппаратов. Нужно учесть, что при работе промышленных вакуум ных аппаратов воздух откачивается вакуумными насосами непрерывно т. е. здесь имеем динамическую вакуумную систему. Величину допустимого натекания следует выбрать такой, чтобы принятая система насосов успевала откачивать натекающий в систему газ. При очень больших объемах аппаратов достижение малых значений натекания представляет значительные трудности. [c.559]

    Тепловые ресурсы охлаждающей воды. Уходящая из конденсаторов и холодильников нагретая вода является источником большого количества низкопотенциального тепла. В случае оборотной системы водоснабжения вода поступает в технологические аппараты при 25—26 °С и уходит при 45—50 °С и выше. Размер тепловой энергии, содержащейся в сбрасываемой в канализационную систему воды, зависит от ее расхода. Так, на установке ЭЛОУ — АВТ производительностью 3 млн. т/год нефти охлаждающая вода уносит в канализацию около 70 Гккал/ч низкопотенциального тепла. На охлаждение отработанной охлаждающей воды до первоначальной температуры (25—26°С) в системе оборотного водоснабжения требуется большое количество дополнительной энергии. Кроме конденсаторов и холодильников вода расходуется в электродегидраторах обессоливающей установки (100—110°С), а также подается в барометрические конденсаторы узла вакуумной перегонки мазута (60—70 °С). В настоящее время тепловая энергия горячей воды применения на нефтезаводах не находит. [c.212]

    В настоящее время утвердилась тенденция сооружения труб-латых печей большой единичной мощности, обладающих рядом /преимуществ и высокими технико-экономическими показателями по сравнению с печами мал ой производительности значительно уменьшаются капиталовложения на сооружение и эксплуатацию крупные печи компактны, занимают намного меньше производственных площадей сокращается необходимое число дополнительного оборудования и трубопроводов существенно снижаются удельные затраты дорогих металлов высоколегированных, жаропрочных сталей и сплавов, огнеупоров, тепловой изоляции значительно сокращаются сроки строительства печей, так как их сооружают из крупных блоков с использованием индустриальных методов, предусматривающих широкое применение средств механизации монтажных работ более оперативно и четко осуществляется эксплуатация печей, чему способствует наличие современной системы автоматического контроля и регулирования технологического режима их работы создаются более благоприятные возможности для поддержания оптимальных режимов работы печи и всей установки и получения максимальных выходов целевых продуктов при минимальных энергетических затратах сокращается обслуживающий персонал. [c.7]

    Для печей пиролиза схема размещения акустических горелок на трех ярусах боковых стенок топки оказалась наиболее удачной. Взамен 112 инжекционных чашеобразных горелок смонтировали 24 акустических горелки типа АГГ-П (по 12 шт.) с обеих сторон радиантной камеры. В результате реконструкции каждую из четырех секций пирозмеевикоЕ облучают шесть горелок, поэтому появилась возможность ва])ьировать теплопроизводительность горелок и создавать тепловой режим процесса пиролиза, как этого требует технологический регламент. После выполнения пусковых операций система сжигания топлива переключается на работу в автоматическом режиме, т. е. расход топлива управляется клапаном в зависимости от производительности печи по сырью и температуры пирогаза на выходе из пирозмеевиков. При ручном управлении расход топливного газа косвенно контролируют по показаниям манометров, смонтированных на газопроводе около горелок. [c.282]

    Если селективность по целевому продукту снижается с повышением температуры, то производительность реактора проходит через максимум по мере уменьшения отношения поверхности теплоотвода к объему реактора. Еслп этого нет, то с уменьшением указанного отношения производительность реактора будет монотонно возрастать и оптимум будет лежать на границе технологического ограничения по температуре. Во всех случаях оптимизация должна проводиться при ограпиченип Т Г р. Значение выбирается или из условий устойчивости системы (границы цепного или теплового взрыва) или из соображений о начале заметного протекания реакций, пе описываемых исходной кинетической моделью. [c.104]

    Содержание кокса на катализаторе из регенератора может повышаться в результате недостаточной подачи воздуха в регенератор, низкой температуры катализатора в зоне регенерации или увеличенной подачи в оды над кипящий слой катализатора, повышения отложения кокса на катализаторе, выходящем из реактора, и увеличения скорости циркуляции катализатора. Повышенное содержание кокса на регенерированном катализаторе при повторном коксоотложении может привести к значительному накоплению кокса на катализаторе в реакторе н к резкому увеличению температуры в зоне регенерации. Поэтому оператор должен поинимать срочные меры с целью уменьшения количества кокса на катализаторе, выходящем из регенератора. В случае повышения содержания кокса на катализаторе необходимо немедленно провести следующие операции увеличить подачу воздуха в регенератор (в маточники), уменьшить подачу рециркулирующего шлама или повысить температуру регенерации до максимальной, указанной в технологической карте, слегка снизить количество циркулирующего катализатора в системе и таким образуй увеличить время пребывания катализатора в зоче регенерации. Если при этом не достигаются удовлетворительные результаты — прекратить подачу рисайкла и в случае необходимости снизить производительность установки. [c.177]

    В процессе подготовки и переналадки ГАПС происходит настройка всех ее подсистем на выпуск продукции изменившегося ассортимента. П0дг010вку системы начинают с [)ешения задачи асси.мпляции (усвоения) технологических процессов производства продуктов нового ассортимента оборудованием гибких систем, т. е. синтезируют систему из уже смонтированного в цехе оборудования с учетом реально существующих материальных и энергетических связей. В процессе ассимиляции продукции нового ассортимента формируют организационную структуру системы, т. е. группируют продукты ио п )ииципу их технологического и аппаратурного сходства, совместимости определяют очередность выпуска продуктов или их групп, технологические мари1руты. Сформировав организационную структуру, разрабатывают календарный план выпуска продукции на планируемый нер од (месяц, квартал, год). Формируют технологическую структуру системы и по уравнениям материального баланса и регламентным длительностям технологических операций проверяют условия достаточности производительности оборудования. [c.70]

    Задана производительность р химико-технологической системы. Требуется определить объемы аппаратов У ь Яо и промежуточной емкости //. Bвeдe [ следующие обозначения  [c.195]

    Очевидно, что прн известной производительности цеха по каждому продукту, располагая необходимой информацией, можно подобрать объем и производительность стандартного обору-довация, рассматривая каждый модуль либо как индивидуальную, либо как совмещенную химико-технологическую систему. В зависимости от числа последовательно включенных аппаратов периодического детктвия хпмико-технологическая система является либо одно-, лпбо многостадийной. [c.228]


Смотреть страницы где упоминается термин Системы технологические производительность: [c.74]    [c.31]    [c.244]    [c.8]    [c.9]    [c.209]    [c.271]    [c.179]    [c.191]    [c.25]    [c.203]   
Основные процессы технологии минеральных удобрений (1990) -- [ c.282 ]




ПОИСК





Смотрите так же термины и статьи:

Производительность технологического оборудования в системе параметров экономического равновесия фирмы

Системы технологические



© 2025 chem21.info Реклама на сайте