Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Диэлектрические свойства полиолефинов

    Измерение характеристик полимеров, определяющих их поведение в переменных электрических полях (диэлектрическая проницаемость и тангенс угла диэлектрических потерь), представляет собой более трудную экспериментальную задачу, чем измерение величины пробивного напряжения или сопротивления прохождению постоянного тока. Однако основное внимание уделяется все же измерению характеристик полимеров под действием переменного напряжения. Это обусловлено, в частности, тем, что именно эти характеристики в большинстве случаев определяют выбор материала для различных практических целей. В высокочастотном электронном оборудовании чрезвычайно важно, насколько это возможно, снизить диэлектрические потери. По некоторым данным , тангенс угла диэлектрических потерь у полиолефинов удается снизить до 0,00004. Иногда для снижения емкостных потерь используются пенопласты. В последнее время опубликован ряд сводных таблиц- в которых приводятся многочисленные данные по диэлектрическим свойствам большого числа полимерных материалов. [c.122]


    Среди полимерных материалов особое значение в настоящее время приобретают полиолефины — полиэтилен, полипропилен, сополимеры этилена и пропилена. Эти полимеры обладают высокой механической прочностью, низкой плотностью, гибкостью при низких температурах, высокой ударной прочностью, влагостойкостью, отличными электроизоляционными свойствами и рядом других свойств. Однако, как и большинство других высокомолекулярных соединений, полиолефины под влиянием атмосферных условий, повышенной температуры, света, агрессивных сред и ряда других факторов подвержены окислительно-деструктивным процессам. В процессе старения полиолефины теряют эластичность, становятся хрупкими, растрескиваются, теряют механическую прочность, диэлектрические свойства, в большинстве случаев изменяют окраску и т. д. [c.91]

    Диэлектрические свойства полиолефинов [c.54]

    Старение полиолефинов сопровождается поглощением кислорода и выделением низкомолекулярных продуктов. Окислительно-деструктивные и структурирующие процессы, протекающие под влиянием повышенных температур, приводят к ухудшению механических и диэлектрических свойств полиолефинов. Особенно быстро подвергается деструкции полипропилен. [c.65]

    В табл. 13 приведены данные о диэлектрических свойствах полиолефинов  [c.54]

    Изменение физико-механических и диэлектрических свойств полиолефинов после воздействия тепла (температура 55 и 85 °С), повышенной влажности (97 37о > 40 °С), солнечной радиации (ксеноновая лампа [c.390]

    Термическая предыстория образцов влияет не только на сопротивляемость растрескиванию, но и на другие свойства полиолефинов. Одним из таких свойств является низкотемпературная хрупкость , которая также чувствительна к степени кристалличности и характеру структуры другим — диэлектрическая проницаемость , пропорциональная в этих полимерах плотности. [c.347]

    Применение в качестве вспенивающих веществ собственно газов позволяет значительно упростить технологию получения пенопластмасс и одновременно повысить теплоизоляционные и диэлектрические свойства этих материалов. В большинстве случаев принцип получения пенопластов с применением газов — принцип дисперсии (см. гл. 1) — состоит в насыщении раствора или расплава газом при повышенном давлении с последующим вспениванием материала путем понижения давления или повышением температуры. Возникающая при этом ячеистая структура фиксируется отверждением или вулканизацией. При этом следует учесть, что для газов, легко растворяющихся в смоляных композициях (NHg, СО2), не требуется создания высоких давлений (достаточно 5—20 атм). В случае же применения таких труднорастворимых газов, как азот, водород, гелий и другие, необходимо создание давлений порядка 100—300 атм и выше. С помощью собственно газов получают некоторые виды пенопластов на основе ПВХ, полистирола и полиолефинов. [c.135]


    Диэлектрические свойства. В полиолефинах и полистироле дипольный момент связей С—Н и С=С составляет 0,30 поэтому эти полимеры являются хорошими диэлектриками. Величина диэлектрической проницаемости нри частоте 10 Гц составляет 2,0 — 2,3. Диэлектрическая проницаемость зависит от плотности полимера, степени его окисления и присутствия остатков катализатора. Так, при переходе от полиэтилена низкой плотности к полиэтилену высокой плотности [31] диэлектрическая проницаемость возрастает от 2,28 до 2,45. [c.513]

    Свойства полиолефинов сильно изменяются под влиянием ультрафиолетового излучения. Особенно сильно действие света сказывается в атмосфере кислорода. В работе [81] показано, что облучение пленок полиолефинов на воздухе при комнатной температуре светом ртутно-кварцевой лампы (ПРК-4) приводит к сравнительно быстрому ухудшению физико-механических свойств. Резко падает относительное удлинение (рис. 55), изменяется предел прочности при разрыве (рис. 56), увеличивается значение тангенса угла диэлектрических потерь (рис. 57). В процессе фотостарения полимер растрескивается, становится хрупким, приобретает окраску. В той же работе показано, что изменение физико-механических свойств полиолефинов в условиях атмосферного старения протекает по [c.119]

    Полиолефины не являются долговечными материалами, им свойственно термоокислительное старение, протекающее по типичному механизму радикально-цепных окислительных реакций [185]. Инициируют старение повышенные температуры переработки и эксплуатации, действие света, агрессивных сред, влияние атмосферных условий и механические нагрузки. В результате ухудшаются эксплуатационные свойства полимера — эластичность, механическая прочность, диэлектрические свойства, изменяется окраска, увеличивается хрупкость. [c.173]

    Разработано и освоено производство материалов со специфическими свойствами на основе модифицированных полиолефинов путем совмещения полиизобутилена с полиэтиленом низкой плотности (типа ПОВ) и с сополимерами этилена и пропилена (типа СОВ), сочетающих прочность и диэлектрические свойства полиэтилена с эластичностью полиизобутилена они легко перерабатываются методами экструзии и литья, изделия из них обладают кислото-и щелочестойкостью, эксплуатируются в интервале температур от [c.14]

    Такая зависимость диэлектрических свойств от степени кристалличности обычно наблюдается при Т У аморфных областей. В таком состоянии находятся, например, многие полиолефины при комнатной температуре. [c.258]

    Антистатики — вещества, способные при добавлении к синтетическим смолам и пластмассам уменьшать электризацию полимерных материалов в процессе нх переработки и эксплуатации изделий из них. Способность полимерных материалов накапливать заряды статического электричества объясняется тем, что по своим свойствам большинство этих материалов (полиолефины, полистирольные пластики, поливинилхлорид и др.) являются диэлектриками, т. е. обладают большим удельным поверхностным (р ) и объемным (р ,) электрическим сопротивлением (соответственно Ю " —10 ом и 10 5—10 ом-см), а следовательно, и ничтожно малой проводимостью. Высокие показатели диэлектрических свойств полимерных материалов создают условия для скопления электростатических зарядов на трущихся поверхностях изделий искровые разряды статического электричества могут вызвать взрывы и пожары легковоспламеняющихся и горючих жидкостей, огнеопасных газовых смесей, пыли. Кроме того, электризация способствует сильному загрязнению пластмассовых изделий, а также может увеличивать скорость их химической деструкции, при которой возможно выделение токсичных веществ. Устранение зарядов имеет большое экономическое значение, так как электростатические помехи на разных стадиях производства и переработки синтетических материалов являются причиной брака продукции, резко снижают скорости работы машин и аппаратов, а следовательно, препятствуют повышению производительности труда. [c.445]

    Полиолефины занимают ведущее место в промышленном производстве синтетических полимерных материалов в СССР и за рубежом. В мировом потреблении пластических масс доля полиолефинов, составляет более трети и имеет постоянную тенденцию к увеличению, что связано с комплексом ценных качеств полиолефинов низкой плотностью, химической стойкостью, достаточно высокой прочностью, низкой газо- и паро-проницаемостью, высокими диэлектрическими свойствами, стойкостью к радиационному облучению, легкой перерабатывае-мостью и относительно низкой стоимостью. Доминирующее положение среди полиолефинов занимает полиэтилен, второе место по объему выпуска занимает полипропилен. Выпускаются также различные сополимеры этилена с пропиленом, бутеном-1 и винилацетатом, сополимеры пропилена с этиленом, а также теплостойкие полиолефины поли-4-метилпентен-1 (полиметил-пентен), поли-З-метилпентен-1, поливинилциклогексан и различные сополимеры. [c.48]


    Деструкция многих важных технических полимеров, проявляющаяся в обесцвечивании, растрескивании, потере прочности и ухудшении диэлектрических свойств изделий, является результатом реакций окисления, протекающих по цепному свободно-радикальному механизму. Этот механизм точно установлен для эластомеров и полиолефинов и, вероятно, принимает участие в деструкции полимеров многих других классов. Реакции окисления можно изобразить следующим образом  [c.468]

    Отсутствие у полиолефинов сродства к красителям затрудняет процессы их окрашивания. До настоящего времени основной способ окрашивания заключается во введении различных красителей и пигментов в массу полимера [7, стр. 195 17, стр. 120 79—82]. При этом возникают проблемы, связанные с миграцией красителя на поверхность изделий, ухудшением диэлектрических свойств (возрастание тангенса угла диэлектрических потерь), термо- и светостойкостью красителей, необходимостью равномерного распределения красителя в полимере. [c.124]

    Полиолефины обладают весьма ценным комплексом свойств высокими диэлектрическими характеристиками, сохраняющимися в широком интервале температур, химической стойкостью, значительной теплостойкостью и в большинстве случаев морозостойкостью, прочностью, небольшим удельным весом и т. д. Однако зачастую те особенности структуры, которые обусловливают эти ценные свойства, оказываются одновременно причиной, препятствующей тому или иному специфическому применению материала. Например, незначительная полярность полиолефинов, с одной стороны, сообщает им прекрасные диэлектрические свойства и химическую стойкость, с другой — приводит к ограниченной адгезии к различным материалам и слабой восприимчивости к красителям. Высокая кристалличность и [c.3]

    Достоинствами эпоксидированных полиолефинов являются хорошие диэлектрические свойства, близкие к свойствам обычных эпоксидных смол и сохраняющиеся в широком интервале температур, химическая стойкость к действию щелочей, кислот и растворителей, высокое сопротивление изгибу, небольшой удельный вес (почти на 10—15% ниже, чем у обычных эпоксидных смол) и незначительная потеря в весе при длительном действии повышенных температур. Для этих смол, отвержденных ангидридами или перекисями, характерна необычайная зависимость деформации от температуры. Эта зависимость выражается в медленном росте величины прогиба прн температурах, превышающих температуру деформации обычных эпоксидных смол, полученных из диоксидифенилпропана и эпихлоргидрина. [c.699]

    Так, димеризацией пропилена в присутствии щелочнометаллического катализатора на носителе производят 4-метил-1-пентен, гомополимер которого представляет собой самый легкий (плотность 830 кг/м ) и самый прозрачный (светопроницаемость выше 90%) полиолефин (полиалкен). Он обладает сравнительно высокой термостойкостью ( пл 240 °С) в сочетании с низкой теплопроводностью и высокими диэлектрическими свойствами. Содимеризация этилена с бутенами на тех же катализаторах дает З-метил-1-пентен, гомополимер которого имеет еще более высокую температуру плавления (около 360 °С). [c.319]

    Образование новых гидроксильных групп после размола ПОМ в воде снижает его термостойкость (рис. 2.28), так как способствует протеканию ступенчатой деполимеризации [701, 702]. Теплофизические свойства ПП зависят от глубины деструкции в процессе переработки [519]. В ряде работ показано, что образование новых функциональных групп различной полярности и снижение молекулярной массы вызывает изменение электрохимических (у шелка, казеина, коллагена, кератина, крахмала) и ферментационных (у коллагена, желатина, дубленого альбумина, крахмала) свойств [916], а также электрической проводимости 11050]. Наблюдалось также изменение диэлектрических свойств у полиолефинов 11280]. [c.66]

    Электрические свойства всех типов полиолефинов имеют большое значение, учитывая широкое применения этих полимеров в электротехнике. Диэлектрическую проницаемость и тангенс угла диэлектрических потерь определяют по [c.38]

    Полиолефины принадлежат к классу высокомолекулярных углеводородов алифатического ряда. Они состоят из цепных макромолекул линейного строения, звеньями которых являются соответствующие олефины. Практическое отсутствие активных групп или связей обусловливает их инертность. Чрезвычайно высокие средние молекулярные массы полиолефинов (от сотен тысяч до миллионов) и способность-молекул ориентироваться в кристаллические образования определяют прочностные характеристики, вязкостные свойства, твердость, термостойкость, низкую плотность, высокие диэлектрические показатели этих полимеров. [c.26]

    При воздействии кислорода воздуха, УФ-лучей, солнечного света и тепла (особенно в период изготовления изделий) происходит ухудшение физико-механических и диэлектрических свойств полиолефинов (особенно полипропилена). Такой процесс носит название старения. Для предотвращения или замедления старения в полиолефины вводят 0,05—2% специальных веществ — стабилизаторов. К ним относятся ароматические амины (фенил-р-нафтил-амин, Л ,Л -дифенил-п-фенилендиамин и др.), замещенные фенолы (2.4-диметил-6-грег-бутилфенол, 2,2 -диизоборнил-4-метилфенол, 2,2 -метиленбис-4-метил-6-г/7ет -бутилфенол, 2,2 -тиобис-4-метил-6-трет-бутилфенол и др.), замещенные бензофеноны (2-гидрокси-4-метоксибензофенон, 2,2 -дигидрокси-4-метоксибензофенон), сажа и другие вещества. [c.25]

    Шелтон и Винсент [2] и Бейтман с сотр. [3] предположили, что для большинства полимеров разложение перекисей, указанное в реакции (Х1П-4), является основным источником радикалов, которые инициируют окисление. В процессе переработки полимеров обычно образуются в небольших количествах перекиси и другие примеси. На первых стадиях окисления Шелтон наблюдал изменение скорости, которое он объяснил началом бимолекулярного разложения, по мере того как накап.т1ивались гидроперекиси. Большинство полимерных углеводородов окисляются с заметной скоростью при действии ультрафиолетового излучения и/или повышенной температуры. В условиях атмосферных воздействий у полиэтилена, нанример, менее чем через 2 года происходит ухудшение механических и диэлектрических свойств [4, 5]. Как полиэтилен, так и полипропилен окисляются с заметной скоростью в темноте при 60° [6]. Фотоокисление полиэтилена становится заметным только через несколько месяцев экспозиции на открытом воздухе [4, 5]. Ионы некоторых металлов увеличивают скорость инициирования, ускоряя разложение гидроперекисей, вероятно, путем гомолитического распада их на радикалы. Медь является одним из активных катализаторов реакций окисления полиоле-фина. Этот эффект значительно больше для полипропилена, полиизобутилена и других полиолефинов аналогичного строения, содержащих больше третичных атомов углерода в основной цепи, чем в молекуле полиэтилена. Некоторые остатки катализатора, удерживаемые полимерами в процессе полимеризации, становятся активными катализаторами окисления. [c.452]

    Полиолефины, к которым кроме полиэтилена относятся полипропилен, полибутилен, сополимеры этилена, пропилена и другие полимеры, отличаются высокими диэлектрическими свойствами, эластичностью, химической стойкостью, сравнительно высокими физико-механическими свойствами и теплостойкостью, высокой морозостойкостью. Они применяются для изготовления изоляции проводов и кабелей, труб и фасонных деталей, шлангов, листов, нитей и жгутов, баллонов, тары, пленок, шестерен, деталей пылесосов и домашних холодильников, крупных емкостей для химической промышленности и др. Полиэтилен, как и большинство других термопластов, перерабатывают в готовые изделия преимущественно в виде расплавов. Меньшее значение имеют методы механической обработки и склеивания. В виде растворов или эмульсий полиэтилен почти не перерабатывают вследствие нерастворимости его в холодных растворителях. Наиболее распространены методы формования изделий из полиэтилена в виде расплавов литье под давлением, экструзия, интрузия и т. д. Применяются также методы ( рмования полиэтилена в размягченном состоянии вакуумное и пневматическое формование, штампование, вспенивание. Изделия из полиэтилена можно изготовлять несколькими методами. Например, полые изделия в одних [c.5]

    ПОЛИОЛЕФИНЫ м. чн. Термопласты, по.тучаемые гомо-и сополимеризацией олефинов и обладающие устойчивостью к агрессивным средам, высокими диэлектрическими свойствами, низкой влаго- и газопроницаемостью. [c.334]

    В США полиолефины являются ведущей группой синтетических смол и пластмасс. Важнейшим представителем этой лруппы является полиэтилен, обладающий прочностью и гибкостью в широком температурном интервале, хорошими диэлектрическими свойствами и высокой, химической стойкостью. [c.145]

    Полиэтилен высокого и низкого давления и сополимер этилена с пропиленом (СЭП-10) с добавкой алкилариловых эфиров ПФК при переработке их на вальцах при 160 °С в течение 4—6 ч сохраняют первоначальные диэлектрические свойства и относительное удлинение. В этих же условиях относительное удлинение неста-билиЗованных полиолефинов уменьшается на 80—95%, а тангенс угла диэлектрических потерь увеличивается более чем в 10 раз. [c.175]

    Применение лакокрасочных материалов, отверждаемых ангидридами многоосновных кислот, начинает расширяться в связи с разработкой новых типов эпоксидных смол — алициклических, эпоксидированных полиолефинов, эпоксидных порошковых композиций и др. При этом образуются покрытия с большой кислотостой-костью и высокими диэлектрическими свойствами. [c.141]

    Днэлектрические свойства фторполимеров. Политетрафторэтилен и ряд других фторированных полиолефинов обладают высокими диэлектрическими свойствами, значения которых приведены ниже  [c.461]

    Безусловный интерес представляет широкое вовлечение в сферу лакокрасочной технологии полиолефинов. В чистом виде или в составе порошковых красок они могут наноситься в псевдоожиженном слое, в электростатическом поле высокого напряжения, а также газопламенным и струйным напылением на предварительно нагретые изделия и образовьтать водо- и химически стойкие покрытия с хорошими диэлектрическими свойствами. Эти покрытия, однако, имеют все еще [c.88]

    Плотность его (830 кг/м ) ниже плотности других термопластов, выпускаемых промышленностью (см. табл. 1.2), а прозрачность соответствует прозрачности органического стекла из полиметилметакрилата, жесткость же превышает жесткость ПЭНП при 20 °С. Модуль упругости при 20°С достигает значения модуля упругости ПП при 100 °С. ПМП эксплуатируется при более высоких температурах, чем ПЭ и ПП. Стойкость к ударным нагрузкам ниже, чем у ПЭ и ПП, но выше, чем у полиметилметакрилата и полистирола. По химической стойкости полимер близок к ПЭ, а по диэлектрическим свойствам превосходит полиолефины и пластифицированный поливинилхлорид. Перерабатывается стабилизированный ПМП методами литья под давлением, экструзии и прессования. [c.39]

    Зинипласт обладает высокой химической стойкостью к действию кислот, щелочей, бензина, масел, спиртов. Он является антикоррозионным материалом в интервале температур от О до 60 °С, имеет хорошие диэлектрические свойства, легко подвергается различной механической обработке (формованию, сварке). Недостатки винипласта — низкие термостабильность и морозостойкость. При длительной эксплуатации (особенно при изменении температуры) происходит ухудшение механических свойств винипласта. Для их улучшения ПВХ совмещают с каучуками, хлорированными полиолефинами, АВС-сополимерами и др. Ударная вязкость таких материалов повышается в 10 раз. [c.74]

    Для лучшего распределения пигментов в полиолефинах, в частности в полипропилене, многие зарубежные фирмы рекомендуют применять специальные выпускные формы пигментов в виде порошков, гранул и паст. Научно-исследовательским институтом органических полупродуктов и красителей разработана 1акая выпускная форма, представляющая собой 60—80%-ный концентрат на низкомолекулярном полиэтилене. К основным преимуществам выпускных форм следует отнести резкое увеличение интенсивности окраски за счет высокой дисперсии пигмента, хорошее распределение пигментов в полимерах, повышение чистоты тона и отсутствие пыления при дозировке. Установлено, что низкомолекулярный полиэтилен, содержащийся в выпускной форме пигмента, не оказывает влияния на физикомеханические, химические и диэлектрические свойства полимеров. Выпускные формы пигментов позволяют более полноценно использовать грубодисперсные пигменты, такие, как фталоциа-ниновый зеленый и ряд кубовых (кубовый ярко-фиолетовый К, кубовый ярко-зеленый Ж, кубовый голубой К, кубовый ярко-оранжевый ЖХ и др.), имеющие высокую термо- и светостойкость. Внедрение выпускных форм пигментов осложняется отсутствием стабильного чистого низкомолекулярного полиэтилена с молекулярным весом порядка 2000—5000. [c.189]

    Высокочастотный разогрев вещества основан на превраще-ннн энергии электрического поля высокой частоты в тепловую в результате рассеяния энергии при колебательном движении полярных групп. Нагреваемый материал помещают в зазор высокочастотного конденсатора, где и происходит его разогрев мощность, преобразуемая в теплоту, определяется как Я = 5,5- 10 8tgбf 2 (где е — диэлектрическая проницаемость tgб — тангенс угла диэлектрических потерь / — частота переменного тока Е — напряженность электрического поля). Ряд материалов, особенно на основе кремнийорганических связующих, отличающихся высокими диэлектрическими свойствами, а также полиолефины, фторопласты и другие промышленные полимеры нагревать токами высокой частоты не удается. Высокочастотный нагрев наиболее эффективен для новолачных фенолоформальдегидных пресс-материалов и аминопластов и менее эффективен для резольных материалов. [c.258]

    Обычно чем больше значение константы ро, тем выше равновесная степень набухания при ограниченном набухании. Набу-.хаиие полимерных изделий приводит ие только к увеличению их объема и размеров, искажению формы, но н к ре.зкому снижению прочности. Изменение свойств полимера прн набухании в значительной степени зависит от природы полимера и растворителя, с которым он соприкасается. Так, действию паров воды н водных растворов кислот, солей н других веществ наиболее подвержены полимеры с полярными функциональными группами, например целлюлоза, белкн н др. Равновесное содержание влаги Б полимере (в % к его массе при данной влажности воздуха) минимально у полиолефинов (полиэтилен — 0,1%), более значительно у аминопластов и полиамидов (капрон—до 4%), очень высокое у белкой (10% и более). Влажность существенно влияет на свойства полимеров, особенно прн высокой температуре, в частности снижает прочность, диэлектрические показатели, прозрачность. [c.399]

    Фенолоальдегидные смолы и композиции на их основе имеют ряд важных особенностей по сравнению со многими другими см0 лами, включая и полиолефины. Это большая термостойкость, хо рошие адгезионные и клеющие свойства при неплохих диэлектрических характеристиках [12—15]. К тому же фенолоальдегидные смолы относятся к числу наиболее дешевых синтетических смол. [c.65]

    Важнейшие электрические свойства ПЭТФ приведены в табл. 3. Вследствие наличия в ПЭТФ большого количества полярных групп его диэлектрическая проницаемость и тангенс угла диэлектрических потерь достаточно велики по сравнению, например, с полиолефинами, однако вследствие очень низкого водопоглощения электрические свойства ПЭТФ значительно лучше, чем у полиамидов. На рис. 15 приведена зависимость удельного [c.192]

    ПМП по своим электрическим свойствам незначительно отличается от других полиолефинов. Его диэлектрическая проницаемость (2.12) ниже, чем у ПП (2,25) и ПЭНП (2,28). Частотная зависимость тангенса угла диэлектрических потерь и температурная зависимость тангенса угла диэлектрических потерь при различных частотах приведены на рис. 4.19 и 4.20. Основные электрические свойства ПМП приведены ниже  [c.78]


Смотреть страницы где упоминается термин Диэлектрические свойства полиолефинов: [c.107]    [c.198]    [c.61]    [c.3]   
Полиолефиновые волокна (1966) -- [ c.53 , c.54 ]




ПОИСК





Смотрите так же термины и статьи:

Диэлектрические свойства

Полиолефины и полистирол диэлектрические свойства

Полиолефины свойства



© 2025 chem21.info Реклама на сайте