Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Железо методы отделения

    Отделение от алкилсульфатов неомыляемых, сульфата натрия и железа методом экстракции. Синтетические жирные спирты, полученные методом прямого окисления жидких парафинов, подвергаются сульфированию серной кислотой по непрерывному способу. [c.118]

    Осаждение оксихинолином применяют для определения магния в присутствии алюминия и железа без предварительного отделения этих элементов, а также для определения магния в присутствии кальция. В первом случае магний осаждают оксихинолином из щелочного (N OH) раствора, содержащего виннокислые соли. Железо и алюминий образуют в щелочном растворе с виннокислым натрием устойчивые комплексные соединения, из раствора которых оксихинолин не осаждает этих элементов. Отделение от кальция основано на сравнительно хорошей растворимости оксихинолината кальция в горячем аммиачном растворе, в то время как оксихинолинат магния при этих условиях не растворяется. Последний метод не имеет особых преимуществ по сравнению с обычным методом отделения магния от кальция, так как и в этом случае требуется двукратное [c.398]


    Первая работа по распределительной хроматографии на целлюлозе была выполнена еще в 1949 г. [122] в процессе анализа сплавов, содержащих никель, кобальт, медь и железо. Тогда же был разработан метод отделения ртути от меди, висмута, свинца н кадмия. В дальнейшем Ф. Бар-стелл с сотрудниками [123] применил хроматографию на целлюлозе для выделения урана из руд. Впоследствии разработанная ими методика была использована для получения препаратов урана спектральной чистоты, для очистки урана от продуктов деления. [c.174]

    На стр. 400 описан метод определения железа с о-фенантролином. Этот метод [409, 474] может быть применен к анализу чистого плутония без отделения его при содержании железа не менее 0,01%. При более низких концентрациях железа необходимо отделение плутония, которое проводят методами экстракции или анионного обмена. [c.391]

    Вследствие незначительной растворимости тетрафторида урана и в особенности двойных фторидов урана-аммония, урана-натрия или урана-калия [173, 275], а также возможности отделения урана от больших количеств циркония, ниобия, тантала, бора, железа, ванадия и других элементов, образующих растворимые фторидные комплексы [275, 991], метод отделения урана (IV) в виде фторидов нашел достаточно широкое применение. Методика осаждения урана (IV) плавиковой кислотой приводится в разделе Весовые методы определения . [c.272]

    Фишер и Кунин [269] значительно усовершенствовали метод отделения урана от железа, ванадия и некоторых других элементов, добавляя в исследуемые растворы перед пропусканием их через анионит сернистую кислоту для восстановления Fe (III) и V (V), благодаря чему устранялась сорбция последних анионитом. [c.321]

    Применяя этот же метод совмещенной колонки для отделения урана от тория, Вильямс [1016] рекомендует связывать мешающий цирконий фосфатами, а избыток фосфата, в свою очередь,— трехвалентным железом. Метод применим для анализа миллиграммовых количеств урана. [c.333]

    На практике очень часто применяют различные варианты метода отделения шестивалентного молибдена от железа и ряда других элементов при помощи избытка едкой щелочи, а также аммиака или карбоната натрия [124, 209, 330, 530, 583, 626, 644, 714 899, 929, 979, 1092, 1205, 1280, 1451, 1528]. Более или менее удовлетворительные результаты получают при строгом соблюдении выработанных в каждом конкретном случае условий. [c.110]


    Клемент [928] разработал метод отделения молибдена от меди, свинца, хрома, никеля, железа и ванадия с использованием катионита в водородной форме (вофатит Р, амберлит Ш-120, дауэкс 50). Молибден переводят в цитратный анионный комплекс в слабокислом растворе. При пропускании через колонку с катионитом он полностью переходит в фильтрат, а катионы названных металлов поглощаются. При проверке метода на ферромолибдене, никель-молибденовом сплаве и рудах были получены удовлетворительные результаты. [c.133]

    На различной устойчивости ацетилацетонатов и комплексонатов и разной растворимости их в органических растворителях основаны экстракционные методы отделения бериллия от мешающих элементов. Впервые ацетилацетонатная экстракция из растворов, содержащих комплексон III, была применена Адамом с сотр. [188] для предварительного отделения бериллия от алюминия, железа и других элементов при спектрофотометрическом определении бериллия непосредственным измерением оптической плотности хлороформного экстракта. [c.128]

    Алимариным и Гибало [575] разработан метод отделения бериллия от алюминия и железа и определения бериллия в бронзе, основанный на экстракции ацетилацетоната бериллия четыреххлористым углеродом. Ацетилацетонат бериллия в присутствии комплексона III полностью извлекается в органическую фазу при pH 9. Концентрация комплексона III не оказывает заметного влияния на степень извлечения бериллия. Экстракцию производят в три цикла. [c.128]

    Кобальт содержится в рудах, минералах, сплавах, сталях и других промышленных и природных материалах чаще всего вместе с железом, никелем, марганцем, медью, хромом, молибденом, вольфрамом, ванадием и некоторыми другими элементами. Поэтому большое значение имеют методы отделения кобальта от названных элементов. [c.60]

    Адсорбционная хроматография. Как адсорбент применяется окись алюминия, иногда целлюлоза. Главное внимание обращалось на разработку. методов отделения кобальта от никеля, меди, железа, урана, молибдена, марганца, ванадия, хрома и некоторых других элементов. Характеристика предложенных методов приведена в табл. 17. Хроматографирование на окиси алюминия применяется для качественного анализа катионов метод основан на различной сорбируемости окисью алюминия [c.78]

    Методы отделения и очистки скандия от примесей. Получение чистых соединений скандия — весьма сложная задача. Это связано с тем, что скандий практически не имеет собственных руд и извлекается из комплексного сырья, содержащего много сопутствующих элементов в количествах, значительно превосходящих его содержание. Особенно большие трудности возникают при отделении от скандия РЗЭ иттриевой подгруппы, алюминия, железа, циркония, гафния и тория. Это связано с близостью ионных радиусов и ряда других свойств (см. табл. 6). [c.18]

    Широкое распространение получил экстракционный метод отделения железа (ГП) в в iдe Н[РеС14] от многих других ионов, например от кальция, стронция, бария, алюминия, редкоземельных и многих других элементов. Тетрахлоридный комплекс железа экстрагируют этилацетатом или диэтиловым эфиром. [c.267]

    Алюминий в присутствии NH4 I можно осадить в виде гидроокиси водной суспензией амидохлорида ртути lHgNHj [1180] при комнатной температуре (осадок отфильтровывают на следующий день). Метод позволяет отделить алюминии от марганца. Описан метод отделения алюминия от двухвалентных металлов, а в присутствии гидроксиламина также от железа с использованием амидохло- [c.48]

    Предложено также отделять In от А1 в виде сульфида из раствора с pH 2,5, содержащего монохлоруксусную кислоту [220]. Отделение цинка в виде сульфида дает лучшее отделение от алюминия, чем при осаждении аммиаком [611]. Пильц [1063] отделяет железо в виде FeS после восстановления Fe (III) тритиокарбонатом натрия или аммония. Метод связан с применением редкого реагента и не обладает преимуществом по сравнению с другими методами отделения. Железо можно отделять от алюминия в виде сульфида из растворов, содержащих винную кислоту [1155]. [c.171]

    Метод эмиссионной фотометрии пламени применен для определения натрия (и калия) в железохромовых катализаторах после отделения железа электролизом [1190]. Другие методы отделения железа, например осаждением пиридином гидроксида железа(1П), непригодны вследствие мешающего влияния на определение натрия. При определении 0,15—6,2% NajO погрешность не превышает 3%. [c.173]

    Этим методом плутоний достаточно полно отделяется от урана, железа, хрома и ряда других элементов, и, на 90—957о от етро-Ai KTOB деления. Нептуний на всех операциях сопутствует плутонию и требует специального метода отделения. [c.269]

    Бове, Стивенсон и Роллефсон [24] предложили метод отделения плутония от урана и продуктов деления соосаждением четырехвалентного плутония с гидроокисью железа из ацетатных растворов с pH 5—6. Совместно с плутонием в осадок увлекаются цирконий и ниобий. Для их отделения проводят осаждение гидроокиси железа из окислительной среды. На этой операции шестивалентный плутоний остается в растворе. [c.279]


    В. М, Звенигородская и Л. П. Рудина [157, 184] использовали трудную растворимость тетрафторида урана для определения общего содержания урана. Предложенный ими метод основан на предварительном восстановлении шестивалентного урана до четырехвалентного солями двухвалентного железа в присутствии значительного избытка плавиковой кислоты. Так как образующиеся в результате реакции ионы трехвалентного железа связываются в прочный растворимый комплексный анион [РеРе ], а четырехвалентный уран выпадает в осадок в виде нерастворимого тетрафторида, то восстановление шестивалентного урана очень быстро завершается полностью. Разработанный метод, получивший название фторидного, нашел применение главным образом для отделения урана от мешающих элементов и последующего его определения другими методами, В связи с этим подробное описание метода приводится в разделе Методы отделения . [c.65]

    Основное значение соосаждения—выделение невесомых количеств веш.ества. Однако соосаждение получило значительное применение также и для улучшения полноты выделения осаждаемого элемента. При отделении урана от других элементов соосаждение применяется довольно часто. Так, например, в первой половине этого раздела изложен трилонофосфатный метод отделения урана, в котором для полноты осаждения урана вводится в раствор сернокислый титан, с фосфатом которого очень полно соосаждается фосфат уранила [157]. Л. С. Василевская и Т. В. Дейкина [157] при выделении урана из пород, содержаш.их значительные количества фосфата кальция, рекомендуют осаждать уран при помош,и фосфатов совместно с алюминием и железом. П. А. Волков [184] для обеспечения большей полноты выделения урана (IV) в виде фосфата осаждает его совместно с фосфатом тория или циркония. Ю. А. Чернихов и [c.284]

    Гор и Шолл [408] констатировали, что определение микро-количеств кремнезема в биологических тканях представляет собой одну из наиболее трудных проблем аналитической химии. Гравиметрический метод определения по потере массы 51р4, когда зола биологического образца обрабатывается смесью НР и Н2504, дает завышенные результаты. Сообщалось, что обычный колориметрический метод определения кремния дает неточные результаты в присутствии фосфора и железа, а в биологических объектах как раз присутствуют и фосфор, и железо. Гор и Шолл описали улучшенный метод отделения фосфорной кислоты от кремнезема и последующего определения кремнезема молибдатным методом после восстановления до молибденовой сини. По рекомендуемой ими процедуре можно определять вплоть до 2 мкг кремнезема из навески образца, равной 2 г. [c.1092]

    Цианид калия осаждает белый осадок, растворимый в избытке осадителя этот раствор мутнеет через некоторое время после сильного разбавления при кипячении осаждается белая гидроокись [335]. Индий осаждается неколичественно в форме трудноотфильтровываемого осадка [357]. Метод отделения индия от двухвалентного железа, основанный на связывании последнего избытком K N и кипячении, дает неудовлетворительные результаты [326, 357]. Синильная кислота не осаждает индия из уксуснокислых растворов его солей [335]. [c.37]

    Точным и быстрым методом отделения ртути, удобным при определении ее в рудах и других материалах, является отгонка ртути с последующей конденсацией паров на металлической амальгамирующейся поверхности. Возгоняют ртуть прокаливанием ртутьсодержащих образцов с каким-либо восстановителем. В качестве восстановителя используют железные опилки (железо, восстановленное водородом). Возгоняемая ртуть осаждается на золотой крышке и взвешивается в виде амальгамы золота. [c.63]

    Стрелоу [606] разработал метод отделения бериллия от железа, алюминия (а также тория, циркония и др.) с использованием катионита AG-50WX8 из - 0,2 N солянокислых растворов. Анализируемый раствор пропускают через колонку (/ = 19—20 см, d = 1,9—2,0 см) с 20 г смолы в Н+-форме. Бериллий десорбируют 375 мл IN H I или 425 мл , 2N HNO3. Для вымывания алюминия необходимо 500 мл 3N H I, а для вымывания железа — 300 мл 2N H I. Отделение бериллия от железа, особенно, если последнее присутствует в концентрации более 60 мг, эффективнее протекает, если в качестве элюента используется 1,2Л HNO3. [c.138]

    Горюшиной и Арчаковой [387] разработан метод отделения бериллия в виде арсената ог алюминия (1 8), железа (1 15), меди (1 50), а также от Са, М , 2п, N1, Со, Мо, 2г и Т1 (в присутствии перекиси водорода) с использованием комплексона III. Фосфор не мешает при отношении ВеО Р2О5 =1 5. [c.156]

    Известен метод отделения бериллия от алюминия и железа, основанный на летучести основных ацетата и формиата бериллия. Оксиацетат и оксиформиат возгоняются в вакууме без разложения. Возгонкой получают очень чистый оксиацетат бериллия, содержащий не более 5-10 % примесей. Железо и алюминий при возгонке оксиацетата и оксиформиата находятся в нелетучем остатке. Цинк мешает отделению, так как ацетат его летуч. [c.163]

    Рябчиков и Бухтиаров [608] применяют к анализу бронз хроматографический метод отделения алюминия и железа при помощи катионита СБС, использовав различную устойчивость оксалатных комплексов этих элементов и бериллия. [c.173]

    Наиболее селективный метод отделения кобальта от почти всех других элементов заключается в осаждении гексанитро-кобальтиата калия, таллия, серебра и др. Метод и.меет большое значение для анализа руд и сплавов кобальта, когда необходимо отделить кобальт от никеля, железа, марганца, меди и других эле.ментов. [c.61]

    Часто применяются методы адсорбционной, осадочной, ионообменной и бумажной хроматографии. Описан ряд методов отделения кобальта, главным образом от никеля, меди, железа и некоторых других элементов, с использованием в качестве адсорбентов окиси алю.миния, целлюлозы, пермугитов. Большее распространение имеют ионообменные методы разделения на колонках с анионитами. В 9jV растворе соляной кислоты образуются хлоридные анионные комплексы кобальта, меди, цинка и железа, поглощающиеся ионообменной смолой никель и марганец проходят при этом через колонку. При последующей обработке AN соляной кислотой элюируется кобальт, а железо, медь и цинк остаются на анионите. Описаны также катионообменные методы в это.м случае поглощенный катионито.м кобальт элюируют с.месью органических растворителей с соляной кислотой, напри.мер ацетоно.м, метилизопропилкетоном и др. [c.62]

    При обычном способе кислый раствор нейтрализуют сначала гидроокисью аммония и карбонатом а.ммония до полной нейтрализации всей свободной кислоты, зате.м разбавляют кипящей водой, прибавляют ацетат натрия и кипятят до полного выделения основных ацетатов железа. Полное отделение воз.можно только при повторном осаждении. Другой метод [516, 740] состоит в удалении избытка свободной кислоты выпаривание.м в присутствии хлорида калия, который прибавляют для образования двойной соли с хлоридо.м железа. Далее растворяют почти сухие соли в воде и поступают, как в предыдущем случае. Железо, титан и цирконий. полностью отделяются от кобальта однократны.м осаждение.м, хотя некоторое количество железа остается в растворе. Предложен также. метод [1080], в котором [c.66]

    Другие методы. Отделение кобальта от железа фторидом натрия [296] основано на образовании плотного кристаллического осадка 5NaF 2рерз при прибавлении раствора фторида натрия к не содержащему свободных минеральных кислот раствору соли железа. Осадок занимает небольшой объем. Кобальт полностью остается в растворе. Метод реко.мендуется применять при анализе железных руд на кобальт. [c.70]

    Разделение ацетилацетоном. Ацетилацетон реагирует практически со всеми металлами, образуя устойчивые внутрико.мп-лексные соединения, не растворимые в воде, но растворимые полярных органических растворителях [1101]. Предложен метод отделения небольших количеств кобальта от железа экстракцией ацетилацетоната кобальта четыреххлористым углеродо.м из аммиачных растворов, содержащих этилендиаминтетрауксусную кислоту [20]. Вместе с кобальтом в неводный слой переходят также ацетилацетонаты меди, никеля, свинца, кадмия, цинка и марганца. Отделение бериллия от кобальта и многих других элементов основано на том, что из водного раствора с pH 9, содержащего ко.мплексон III и ацетилацетон, хлороформом извлекается только ацетилацетонат бериллия [19]. Экстрагирование ацетилацетоната трехвалентного кобальта описано в работе [225]. Разработана методика определения кобальта, основанная на предварительной экстракции ацетилацетонатов железа и кобальта [512]. Предложен способ выделения следовых количеств кобальта и других элементов из золы биологических материалов экстрагирование.м ацетилацетоно.м [680]. [c.78]

    Методы отделения кобальта от мешающих элементов (или наоборот) перед заключительным определением здесь менее многочисленны, чем при анализе руд и сплавов кобальта на железной основе. Обычно кобальту сопутствует в значительных количествах только какой-либо один элемент, составляющий основу сплава содержание других элементов невелико. Так, при определении кобальта в никеле или в сплавах с высоким содержанием последнего применяют следующие методы предварительного отделения или маскирования посторонних элементов. Железо экстрагируют в виде хлорида изопропиловым эфиром [1188], осаждают окисью цинка [109] или маскируют цитратом аммония [1417]. Медь связывают тиомочевиной [1417]. Для отделения кобальта от большей части никеля пользуются экстракцией роданидных [775], антипирин-[1518] или дианти-пирилметанроданидных [88] комплексов кобальта, осаждением диэтилдитиокарбамината [1200] или 1-нитрозо-2-нафтолата кобальта, поглощением хлоридного комплекса кобальта анионитом [1082]. В одной из работ рекомендовано [1002] перед [c.198]

    Легкость, с которой растворимые соли титана подвергаются гидролизу с образованием нерастворимой титановой кислоты, является основанием старейшего метода отделения титана от алюминия, железа, хрома и пр. окислы этих металлов сплавляют с пиросульфатом калия, плав растиоряют в холодной воде и раствор нагревают до кипения. Титан при этом полностью осаждается в виде зернистой легко отфильтровываемой метатитановой кислоты, между тем как другие металлы остаются в виде сульфатов в растворе  [c.596]

    Этот метод используется в основном для отделения железа. Хлоридный комплекс л елеза экстрагируют диэтиловым эфиром [110, 447, 684, 882, 890, 985, 1046, 1238, 1285], метилизобутилкето-ном [63, 412, 745, 1288], изопропиловым эфиром [1056] или амилацетатом [1252] изб—7IVH 1. Железо окисляют предварительно до трехвалентного состояния. Во многих случаях количественное отделение железа не требуется, удаляют лишь основную его массу, а оставшиеся следы маскируют при помош и K N и три-этаноламина. Метод отделения железа в виде хлоридного комплекса использован при анализе чугуна [63, 110, 447, 1056, 1239, 1252, 1288], цемента [307] и других материалов. [c.49]


Смотреть страницы где упоминается термин Железо методы отделения: [c.172]    [c.175]    [c.118]    [c.133]    [c.336]    [c.17]    [c.173]    [c.318]    [c.85]   
Фотометрическое определение элементов (1971) -- [ c.162 , c.163 ]

Колориметрические методы определения следов металлов (1964) -- [ c.470 , c.471 ]




ПОИСК





Смотрите так же термины и статьи:

Железо отделение

Методы отделения



© 2025 chem21.info Реклама на сайте