Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Железо, определение кислоты в растворах солей

    Шестивалентный молибден, находясь в форме фосфорномолибденовой кислоты, легко восстанавливается ионами двухвалентного железа с образованием молибденовой сини. Это было использовано для разработки фотометрического метода определения молибдена (стр. 226), Показана возможность [262, 264] фотометрического титрования солей фосфорномолибденовой кислоты раствором соли двухвалентного железа с образованием фосфорномолибденовой сини. Установлено, что при избытке фосфата образуются бесцветные соединения, которые не восстанавливаются до молибденовой сини. [c.95]


    В качестве примера приведем определение содержания сульфата железа (II) в растворе соли Мора. В стакан с мешалкой переносят пипеткой точно отмеренный объем раствора соли Мора, добавляют серную кислоту, раствор перемешивают и погружают в него электроды платиновый (индикаторный электрод) и насыщенный каломельный (электрод сравнения). [c.261]

    Вторым важным и очевидным требованием для первой группы методов является отсутствие других компонентов, которые дают в этих же условиях продукт реакции, обладающий аналогичными физическими свойствами. Так, наиример, в присутствии ионов железа наряду с гидроокисью алюминия будет осаждаться также гидроокись железа. По весу полученного после прокаливания вещества нельзя непосредственно вычислить содержание алюминия. Наоборот, присутствие веществ, хотя и реагирующих сданным реактивом, но не дающих аналогичных по физическим свойствам продуктов, не мешает выполнению определения (отличие от второй группы методов, см. стр. 24). Так, например, в растворе соли алюминия может присутствовать соляная кислота хотя она реагирует с гидроокисью аммония, но получающийся продукт реакции растворим и поэтому (при введении достаточного избытка реактива) не мешает определению. [c.23]

    Выше рассмотрена классификация методов анализа в зависимости от типа реакции, на которой основано определение. Кроме того, различают методы объемного анализа по способу титрования. Наиболее прост метод прямого титрования, когда определяемый ион непосредственно реагирует с рабочим раствором. К таким методам прямого титрования относится, например, титрование едкой щелочи или углекислого натрия раствором соляной кислоты, титрование щавелевой кислоты или соли закисного железа раствором перманганата и т. п. Наряду с этим большое значение имеют непрямые методы определения из этих непрямых методов наиболее важны метод замещения и метод остатков. [c.280]

    При практическом использовании ионитов последние очищают от посторонних примесей (железа, органических веществ) путем обработки их растворами кислот и щелочей. Для получения определенных солевых форм ионитов применяют промывание их растворами солей, кислот и щелочей. Способ обработки ионитов выбирают в зависимости от их марки. В рассмотренных здесь работах по разделению ионов будут применяться лишь сильнокислотные катиониты в Н-форме и высокоосновные аниониты в С1-форме. В связи с этим в дальнейшем будут приведены способы подготовки ионитов только для указанных случаев. [c.210]


    Это процесс постепенного накопления повреждений материала под воздействием переменных напряжений и коррозионно-активных сред, приводящий к изменению свойств, образованию коррозионно-усталостных трещин, их развитию и разрушению изделия. Этому виду разрушения в определенных условиях могут быть подвержены все конструкционные материалы на основе железа, алюминия, титана, меди и других металлов. Опасность коррозионно-усталостного разрушения заключается в том, что оно протекает практически в любых коррозионных средах, включая такие относительно слабые среды, как влажный воздух и газы, спирты, влажные машинные масла, не говоря уже о водных растворах солей и кислот, в которых происходит резкое, иногда катастрофическое снижение предела выносливости металлов. Поэтому коррозионная усталость металлов и сплавов наблюдается во всех отраслях техники, но наиболее она распространена в химической, энергетической, нефтегазодобывающей, горнорудной промышленности, в транспортной технике. Коррозионно-усталостному разрушению подвергаются стальные канаты, элементы бурильной колонны, лопатки компрессоров и турбин, трубопроводы, гребные винты и валы, корпуса кораблей, обшивки самолетов, детали насосов, рессоры, пружины, крепежные элементы, металлические инженерные сооружения и пр. Потеря гребного винта современным крупнотоннажным судном в открытом океане приносит убытки, исчисляемые миллионами рублей. [c.11]

    Сухую соль или 25 %-ный раствор в 5%-ной соляной кислоте (по объему) применяют для восстановления меди и железа при определении меди осаждением солью Рейнеке. [c.64]

    Fe. При фосфатировании мажефом стальное изделие помещается в его раствор, нагретый примерно до 100°С. В растворе происходит растворение с поверхности железа с выделением водорода, а на поверхности образуется плотный, прочный и малорастворимый в воде защитный слой фосфатов марганца и железа серо-черного цвета. При достижении толщины слоя определенной величины дальнейшее растворение железа прекращается. Пленка фосфатов защищает поверхность изделия от атмосферных осадков, но мало эффективна от растворов солей и даже слабых растворов кислот. Таким образом, фосфатная пленка может служить лишь грунтом для последующего нанесения органических защитных и декоративных покрытий — лаков, красок, смол. Процесс фосфатирования длится 40—60 мин. Для ускорения фосфатирования в раствор вводят 50—70 г/л нитрата цинка. В этом случае время фосфатирования сокращается в 10—12 раз. [c.142]

    Первая стадия протекает очень медленно. Вторая стадия также имеет небольшую скорость. Вследствие этого прямое титрование урана (IV) броматом калия оказалось непригодным для количественного определения. Однако титрование броматом калия возможно в том случае, если предварительно к раствору урана (IV), содержащему 20 соляной кислоты, добавить раствор соли железа [c.96]

    Выполнение определения. Навеску сплава 0,1 г растворяют в 10 мл смеси соляной и азотной кислот (3 1), раствор упаривают досуха. Сухой остаток растворяют в 3 мл соляной кислоты, раствор переводят в мерную колбу вместимостью 100 мл и доводят объем до метки водой. Содержание железа определяют по аналитической линии. 248,3 нм в пламени ацетилен-воздух. Градуировочный график строят, используя раствор соли х<елеза. [c.225]

    К анализируемому раствору, содержащему 80—100 мг кобальта, прибавляют 30 мл 0,2 N раствора едкого натра и 80 мл 3%-ного раствора перекиси водорода, кипятят 25 мин., вводят 30 мл 0,1 N раствора соли Мора в 6 Л серной кислоте и 15 мл 5 N раствора серной кислоты, перемешивают, охлаждают и оттитровывают избыток ионов двухвалентного железа 0,1 N раствором перманганата. Метод применим для определения кобальта в присутствии небольших (до 10% от содержания кобальта) количеств железа и никеля. [c.112]

    Определение в ацетатном растворе возможно в присутствии около 10 мг железа и 1 мг меди в 10 раствора, если измерять оптическую плотность при 550 мш. Поступают следующим образом [1129], Выпаривают раствор, содержащий от 1 до 10 мкг Со, почти досуха, прибавляют 1 мл концентрированной азотной кислоты и повторяют выпаривание досуха для окисления двухвалентного железа. К остатку прибавляют 5 мл воды, 0,25 мл раствора соляной кислоты (1 1) и 0,25 мл раствора азотной кислоты (1 10). Кипятят несколько минут до полного растворения твердых солей и прибавляют точно 0,5 мл 0,2%-ного раствора нитрозо-К-соли и 1 г ацетата натрия. pH полученного раствора должно быть около 5,5 (контроль индикатором бромкрезол-зеленым). Кипятят раствор 1 мин., прибавляют 1 мл концентрированной азотной кислоты и снова кипятят 1 мин. Раствор охлаждают до комнатной температуры, разбавляют до 10 мл и измеряют оптическую плотность при 420 ммк или при большей длине волны. В присутствии более чем 2 мг железа оптическую плотность раствора измеряют при 500—550 ммк, чтобы избежать ошибки, связанной с поглощением света желтым раствором. [c.140]


    Согласно V о 1 h а г d y 1 -° для определения хлор-ионов в присутствии родан-иона можно пользоваться также и окислением роданистоводородной кислоты азотной кислотой. При применении этого метода 2—3 г веш,есгва растворяют в 400—500 мл воды, нагревают на водяной бане и прибавляют небольшими порциями азотную кислоту, пока действие ее енге заметно. Раствор оставляют стоять на водяной бане, периодически добавляя воду (взамен испарившейся) до тех пор, пока проба с обесцвеченным при помощи азотной кислоты раствором соли окиси железа перестанет давать реакцию на родан. Затем подщелачивают аммиаком и упаривают на водяной бане до Vs объема раствора. Оставшаяся жидкость не содержит соединений родана и циана, в ней можно при помощи раствора серебра определить хлор-ион. [c.60]

    Ход определения. К раствору соли циркония в соляной кислоте, содержащему 40—100 мг циркония, прибавляют в избытке титрованный раствор ЭДТА, нейтрализуют до рНЗ, прибавляют 3 г ацетата аммония и приводят pH к 5,5 0,5. Затем разбавляют раствор до 200 мл, кипятят 2 мин, охлаждают, прибавляют 200 мг сульфосалициловой кислоты и титруют избыток ЭДТА раствором соли железа (III). [c.1158]

    Для определения железа к слабоподкисленному раствору соли железа (HI) добавляют щелочной раствор боргидрида натрия. Выпавший осадок растворяют в кислоте и титруют перманганатом. [c.478]

    Химический состав содержащихся в масле твердых загрязнений можно определять лабораторными методами количественного анализа и инструментальными методами. Обычно химические элементы, входящие в состав загрязнений, имеют небольшую концентрацию, что затрудняет применение, например, метода титрования. Для определения в масле содержания железа практическое применение находят главным образом колориметрический или фотоколориметрический методы. Эти методы основаны на способности водных растворов солей железа при реакции с сульфосалициловой кислотой давать окрашенные растворы, имеющие разную оптическую плотность в зависимости от содержания в них железа. [c.34]

    Определение содержания железа(П1) в растворе. К анализируемому раствору, содержащему соль железа (1П), приливают 30 мл 0,01 М раствора сульфосалициловой кислоты, 5 мл ацетатного буферного раствора и доводят объем раствора до 50 мл дистиллированной водой. Приготовленный раствор через 10 мин фотометрируют с выбранным светофиль-тр( М относительно раствора сравнения. Измерения повторяют пять раз и по средним значениям поглощения, пользуясь градуировочным графиком, находят содержание железа (П1) в анализируемом растворе. Методом наименьших квадратов находят доверительный интервал результата и стандартное отклонение. [c.72]

    Определение железа. Содержание железа определяют фотометрическим методом, основанным на образовании в щелочной среде комплексных анионов трисульфосалицилата железа. Предварительно строят градуировочный график зависимости оптической плотности А от концентрации ионов Ре +. В мерные колбы вместимостью 50 мл вводят 0,10 0,15 0,20 0,25 и 0,30 мг ионов Ре + (отбирают соответственно 1,0 1,5 2,0 2,5 и 3,0 мл раствора соли железа, содержащего Ре + 0,1 мг/мл, в каждую колбу добавляют 5 мл 10%-ного раствора сульфосалициловой кислоты, 5 мл 10%-ного раствора аммиака, разбавляют до метки дистиллированной водой и тщательно перемешивают. Измеряют оптическую плотность растворов на фотоэлектроколориметре с синим светофильтром (Я = 400 нм) в кюветах с толщиной слоя / = 30 мм, используя дистиллированную воду в качестве раствора сравнения. Строят график зависимости Л=/(сре + (в мг). [c.232]

    Из солей роданистой кислоты следует особо отметить соль трехвалентного железа Fe(S N)3, обладающую интенсивно-красной окраской. Образование этого соединения представляет собой чувствительную аналитическую реакцию для обнаружения иона трехвалентного железа или иона родана. Чувствительность этой реакции может быть еще усилена встряхиванием с эфиром, в котором роданид железа легко растворим. Роданид серебра AgS N в кислотах нерастворим реакция образования этого соединения используется для объемного определения серебра по Фольгарду (раствор соли серебра титруют роданидом калия). В качестве индикатора при этом применяют соль трехвалентного железа, которая после полного осаждения нона серебра вступает в реакцию с избытком роданида калия, образуя роданид железа красного цвета. Роданид аммония может быть легко получен при взаимодействии сероуглерода с ам.миаком в спиртовом растворе  [c.296]

    Для фазового анализа широко применяются химические методы. При этом используется обычно различная (избирательная) растворимость отдельных фазовых компонентов материала. Так, например, в фазовом анализе глин определяют содержание глинистого вещества (водного силиката алюминия и железа), полевого шпата (алюмосиликатов ш,елочных или щелочноземельных металлов) и кварца. Сначала глину обрабатывают в определенных условиях соляной или серной кислотой в результате глинистое вещество разлагается, а кварц и полевой шпат остаются без изменения. Отфильтровав раствор солей алюминия и железа, выделившуюся при разложении силиката аморфную кремневую кислоту переводят в раствор, нагревая с раствором соды. Взвесив нерастворимый остаток, можно по потере в весе вычислить количество глинистого вещества. После этого остаток обрабатывают плавиковой или борофтористоводородной кислотой, которые легко разлагают полевой шпат и очень медленно действуют на кварц. [c.14]

    Существует несколько способов определения аммиака в аммонийных солях. Наиболее применимо определение, ири котором раствор, содержащий аммонийные соли, обрабатывают избытком едкой щелочи. Выделяк> ишйся аммиак отгоняют, собирая отгон в рабочий титрованный раствор соляной или серной кислоты, иосле чего титруют остаток кислоты щелочью. Этот способ может применяться во всех случаях, независимо от присутствия в анализируемом растворе посторонних кислот, щелочей, солей aлкJMиния и железа и т. д. Однако отгонять аммиак надо в перегонном аппарате, что занимает довольно много времени. Поэтому для анализа препаратов аммонийных солей, по содержащих свободных кислот и мешающих солей, применяют другой способ. [c.341]

    Методика определения. Навеску феррохрома (0,5—1,0 г) растворяют при нагревании в 30—40 мл Н2 04 (1 4), добавляют после растворения несколько капель aзoтнoii кислоты для окисления большей части иоиов железа (II) и кипятят раствор до удаления окислов азота. Раствор переносят в мерную колбу емкостью 100 мл, разбавляют водой до метки. Аликвотную часть (25 мл) помещают в электролизер и устанавливают разность потенциалов 0,8—0,9 в. Отсутсшие диффузионного тока указывает, что в растворе ие содержится ионов железа (И). В этом случае необходимо добавить (по каплям) немного, приблизительно 0,02 н. раствора соли Мора. Затем титруют 0,004 и. раствором Се(504)2 сначала при потенциале от +0,8 до +0,9 в до тех пор, пока гальванометр ие покажет отсутствия тока. После этого устанавливают разность потенциалов +0,5 в и титруют раствором 0(804)2 до появления диффузионного тока от избытка ионов Се ". [c.369]

    Приборы и реактивы. (Полумикрометод.) Прибор для определения электропроводности растворов. Стаканы на 50 мл. Сахар (порошок). Поваренная соль кристаллическая. Ацетат натрия. Хлорид аммония. Цинк гранулированный. Индикаторы лакмусовая бумага, спиртоной раствор фенолфталеина, метиловый оранжевый. Спирт метиловый. Глюкоза. Окись кальция. Полупятиокись фосфора. Растворы соляной кислоты (2 и 0,1 н.), серной кислоты (2 и 4 н., 1 1), уксусной кислоты (2 и 0,1 н., концентрированный), едкого натра (2 и 4 н.), трихлорида железа (0,5 н.), сульфата меди (II) (0,5 н.), дихлорида магния (0,5 н.), сульфата натрия (0,5 н.), силиката натрия (0,5 н.), хлорида бария (0,5 н.), хлорида кальция (0,5 н.), нитрата серебра (0,1 н.), иодида калия (0,1 н.), карбоната натрия (0,5 н.), хлорида аммония (0,5 н.), перманганата калия (0,5 н.), сульфата калия (0,5 н,), трихлорида алюминия (0,5 н.), хлорида цинка (0,5 н.), аммиака (0,1 н.), ацетата натрия (2 н.). [c.55]

    Радикальным методом защиты магистральных газопроводов от КР является кажущийся, на первый взгляд, парадоксальным отказ от катодной защиты, однако это может привести к снижению надежности магистральных газопроводов вследствие общей коррозии трубопровода. Кроме того, как это было показано рядом исследователей, в ряде грунтов растрескивание может происходить и без катодной поляризации труб. С точки зрения традиционной карбонатной теории, КР может быть предотвращено с помощью точного контроля величины поляризационного потенциала на всем протяжении трубопровода. Однако на практике этот способ трудно осуществить. Как было показано многочисленными исследованиями, проведенными в нашей стране и за рубежом, различные участки одного и того же подземного со- оружения имеют неодинаковый потенциал [202]. Предложения о повышении потенциала на поверхности трубопровода или использовании прерывистой катодной защиты [142, 217] не дали положительных результатов [136] из-за экранирования токов катодной защиты пузырьками водорода под отслоившейся изоляцией [141, 142, 217]. Рекомендации и патентные решения о подкачке потенциала под отслоившейся изоляцией с помощью локальных цинковых протекторов, являющихся частью комбинированного защитного покрытия, не осуществимы в большинстве случаев из-за образования на поверхности цинка в растворах солей угольной кислоты труднораспю-римых соединений, приводящих к снижению разности потенциалов гальванопары железо - цинк , а в определенных условиях даже к изменению полярности гальванопары [144]. [c.96]

    Избыток кремния приводит к небольшому уменьшению сопротивления КР, однако сопротивление при этом остается относительно высоким [51]. Добавки марганца и хрома к сплавам серии 6000 регулируют размер зерна и увеличивают как прочность, так и пластичность [115]. Сплавы, имеющие добавки хрома и марганца, имеют минимальную чувствительность к межкристаллитной коррозии в растворах типа соль — кислота и соль — пероксид водорода, особенно в присутствии небольших количеств примесного элемента железа [115]. Медь также способствует повышению прочности сплава, однако при содержании>0,5 % Си сопротивление сплава к коррозии понижается [116]. Хотя сплавы системы А1 — Мд — 51 имеют высокое сопротивление общей коррозии и КР [51, 115], определенные отклонения от стандартной термической обработки могут сделать эти сплавы чувствительными к КР в состоянии естественного старения Т4. Это имеет место, когда температура под закалку слишком высока, а скорость закалки невысокая [51, 117]. Даже в этих условиях КР на поперечных образцах сплава 6061-Т4 происходило только на высоконапряженных пластически деформированных образцах и отсутствовало при испытании образцов на растяжение, напряженных на 75 % ог предела текучести. Искусственное старение закаленного с низкой скоростью сплава 6061-Т4 до состояния Тб устраняло тенденцик> к КР [51]. [c.233]

    Определение персульфата можно производить также оттнтро-выванием избытка раствора треххлористого титаиа, совершенно свободного от железа, раствором соли трехвалентного железа в атмосфере уг.пекнслого газа. Наконец, можно ацидометрически определять содержащуюся в персульфате серную кислоту- после нагревания перекисного соединения. Однако в случае разложения [c.459]

    Широко применяется последовательное титрование при разных pH, особенно при анализе смеси алю.миния и железа. Сначала при pH 1—2 титруют железо с индикатором сульфосалициловой кислотой. Затем создают pH 5—6, и избыток комплексона П1 оттитровывают раствором соли железа с тем же индикаторо.м. Описано множество аналогичных методов с применением других индикаторов для железа или же титрованиел алюминия другими методами. Иногда определяют сумму алюминия и железа, затем в другой аликвотной части определяют железо, а содержание алюминия находят по разности. Однако при этом не следует применять те методы, в которых разница между величинами pH, рекомендуемыми для определения Ре и А1, незначительна. Например, в работе [509] железо титруют прн pH 2 салициловой кислотой, а затем титруют алюминий при pH 3 с индикатором медь + ПАН. При определении алюминия и хрома в одном растворе использовано различие в прочности их комплексонатов при различных pH и в зависимости от продолжительности нагревания, так как комплексонат хрома образуется только после довольно длительного кипячения.В табл. 10 приведены способы определения алюминия в присутствии других металлов. [c.77]

    При определении алюминия в боксите предложен аналогичный метод, но с использованием в качестве титранта раствора USO4 [877]. В этом случае в эквивалентной точке окраска раствора меняется от зеленой до сине-фиолетовой. Переход окраски менее четкий, чем при титровании цинком. Алюминий в нефелиновых концентратах можно определять также обратным титрованием раствором соли железа с сульфосалициловой кислотой после разложения образца сплавлением с едким натром [138]. [c.195]

    Однако недостатком этого метода является то, что при непосредственном титровании растворов урана (IV) вследствие медленного протекания реакции конечная точка получается очень нечеткой. В связи с этим к раствору урана (IV) предварительно прибавляют раствор соли железа (III) для окисления урана (IV) до урана (VI) и затем уже титруют образовавшееся в эквивалентном количестве железо (II) в присутствии фосфорной кислоты, необходимой для связывания железа (III) [668]. Связывание как введенного избытка железа (III), так и железа (III), образующегося в процессе титрования, позволяет увеличить разницу между окислительно-восстано-вительными потенциалами систем Сг (Viy r (III) и Fe (III)/Fe (И) и тем самым дает возможность проводить титрование при комнатной температуре с хорошей конечной точкой. Определение ведут в достаточно больших объемах для ослабления окраски образующихся солей Сг (III). [c.91]

    Более надежно можно выделить небольшие количестпа висмута из меди совместным осаждением с гидроокисью железа. Если техническая медь содержит мало железа, то к раствору меди прибавляют соль железа в заведомом избытке но отношению к предполагаемому количеству висмута. При определении висмута [1082] к раствору 10—20 г электролитной меди в азотной кислоте прибавляют кристаллик сульфата закиси железа, раствор разбавляют, добавляют аммиак до щелочной реакции, кипятят, добавляют 0,75 г карбоната аммония п немного фосфата натрия. Осадок, содержащий весь висмут, растворяют в соляной кислоте и раствор насыщают сероводородом. Осадок сульфидов дпгерируют теплым сульфидом аммония. Остаток, содержащий висмут, свинец и медь, растлоряют в азотной кислоте и осаждают висмут карбонатом аммония. Осадок растворяют и определяют висмут электролизом. Следы свинца, содержахциеся в этом растворе, ие метают, так как они осаждаются на аноде в виде двуокиси. [c.26]

    Флашка и Пюшель [201 ] отмечают возможность последовательного комплексонометрического титрования индия, кадмия и цинка в присутствии железа. К анализируемому раствору прибавляют аскорбиновую кислоту для восстановления трехвалентного железа, аммиак и цианид калия и титруют индий раствором динатриевой соли этилендиаминтетрауксусной кислоты. Затем прибавляют умеренные количества формальдегида для разрушения цианидных комплексов кадмия и цинка и титруют последние элементы раствором динатриевой соли этилендиаминтетрауксусной кислоты. Результаты определений не приведены. [c.101]

    Растворы соединений других элементов взаимодействуют со всеми производными дитиофосфорной кислоты следующ им образом. Белый осадок вольфрамовой кислоты, образующийся при добавлении соляной кислоты к раствору вольфрамата натрия, медленно восстанавливается всеми реагентами до вольфрамовой сини, а желтый солянокислый раствор ванадата аммония довольно быстро переходит в зеленый. Соли уранила и титана не дают реакций окрашивания. Серебро, двухвалентная ртуть, свинец, одновалентный таллий, кадмий, мышьяк выделяются в виде белых, а висмут и олово — желтых аморфных осадков. Сурьма образует осадки желтого или слабо-желтого цвета. Одновалентная ртуть и трехвалентное железо дают черные, а иедь желто-зеленые осадки. Соли никеля образуют муть сиреневого цвета, растворимую в этиловом эфире с образованием красно-фиолетового раствора. Соли кобальта образуют соединения грязно-оранжевого цвета, растворимые в эфире с образованием оранжевого раствора. Соли многих других элементов не дают осадков или окрашивания. Таким образом, большинство изученных производных дитиофосфорной кислоты можно считать селективными реагентами на молибден, поскольку при определенных условиях они образуют с молибденом характерное малиновое или красное окрашивание. [c.79]

    Хорошим методом количественного определения нитрогруппы, так же как азогруппы, является метод титрования хлористым титаном 55). Нитросоединения восстанавливаются в кислом растворе (концентрированная соляндя кислота) посредством горячего титрованного раствора Ti lз, титр которого устанавливается посредством раст юра соли окиси железа, определенного содержания (из железноаммиачных квасцов) индикатором служит роданистый калий. Восстановление производится в токе СОа и протекает быстро по уравнению  [c.61]

    Анодное растворение сталей и чугунов в различных растворах кислот и солей связано с пассивацией их поверхности.. - В настоящее время пассивное состояние металлов объясняют пленочной и адсорбционной теориями, которые не противоречат, а лишь дополняют друг друга [200, 227, 282 - 286]. Пленочная теория пассивности исходит из возможности образования на поверхности железа при определенных значениях потенциала пленки, состоящей из труднорастворимого ( Се20з и легкорастворимого оксида Например, начало пассивации железа в раство- [c.72]

    Броматометрическое титрование рекомендовано для определения мышьяка в рудах, концентратах и минералах [356, 1047], в сплавах с висмутом и селеном 1342], в селеномышьякопых продуктах [266], в сталях, сплавах и рудах, содержащих сурьму [987], черновом свинце [182], полупроводниковых соединениях бора с мышьяком [340], арсениде галлия [1083], инсектицидах [1080], металлах, растворимых в кислотах [988], растворах солей железа [96], продуктах, содержащих платиновые металлы [219]. [c.43]

    Элементный мышьяк растворяют в избытке 0,05—0,1 N К Сг О в сернокислой среде (2,0—2,5 N H2SO4). После его растворения прибавляют избыток стандартного раствора соли Мора, вводят несколько капель раствора фенил-антраниловоп кислоты или дифениламина в качестве индикатора и оттитро-вывают избыток железа(П) раствором КаСг О до появления розовой окраски. Ошибка определения мышьяка 0,2—0,3%. [c.44]

    К фильтрату после отделения Se и Те прибавляют равный объем НС1 (уд. вес 1,19), мышьяк осаждают гипофосфитом натрия (2—3 г) при кипячении в течение 5—10 мин. Осадок элементного мышьяка отфильтровывают на стеклянный фильтрующий тигель, промывают горячей водой и переносят вместе с тиглем в колбу для титрования. Приливают 20—30 мл 0,05 N раствора Kj fjOt, 50—60 мл H2SO4 (1 Ю) и перемешивают до растворения мышьяка. Добавляют 15—25 мл 0,05 N раствора соли Мора и избыток железа(П) титруют раствором Kj fjO в присутствии фенилантраниловой кислоты в качестве индикатора до розовой окраски. Ошибка определения мышьяка 0,2—1%. [c.118]

    Определение кобальта после осаждения в виде соединения o6(NH4)з(As04)5 [350]. Осадок указанного состава образуется при следующих условиях. К Ю мл приблизительно 0,05 М раствора соли кобальта прибавляют пятикратное количество раствора мышьяковой кислоты, затем 20 мл 30%-ного раствора уксусной кислоты, нагревают смесь до кипения и прибавляют по каплям раствор гидроокиси аммония до появления слабого запаха (pH около 7—8). Далее приливают этанол, отфильтровывают осадок и промывают его разбавленным этанолом и затем теплой водой. Осадок растворяют в 25 мл серной кислоты (1 2,5), далее добавляют 25 мл бензола, 3 мл N раствора иодида калия и титруют выделившийся иод 0,1 N раствором тиосульфата натрия до обесцвечивания органического слоя. Метод пригоден для определения кобальта в железных сплавах после отделения железа в виде РеАз04. [c.116]


Смотреть страницы где упоминается термин Железо, определение кислоты в растворах солей: [c.564]    [c.155]    [c.63]    [c.389]    [c.24]    [c.90]    [c.106]    [c.180]    [c.61]    [c.83]   
Объёмный анализ Том 2 (1952) -- [ c.138 ]




ПОИСК





Смотрите так же термины и статьи:

Железа соли

Железо кислотах

Железо растворах солей

Определение железа в растворе

Определение железа в растворе его соли

Раствор солей

растворах кислот в растворах солей



© 2024 chem21.info Реклама на сайте