Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Алюмосиликатный катализатор изомеризация

    Второе отличие этой реакции от реакции изомеризации в присутствии галоидных солей алюминия заключается в порядке реакционно-способности изомеров. При применении никель-алюмосиликатного катализатора порядок был следующий 2-метилпентан >м-гексан > 2,3-диметилбутан > 2,2-диметилбутан. [c.41]

    Никель-алюмосиликатный катализатор, который рассматривался в связи с изомеризацией парафинов, эффективен также и для изомеризации циклопарафинов [11]. [c.51]


    Другие наблюдаемые явления, нанример, изомеризация с образованием разветвленных цепей, получение ароматических углеводородов и др., вызваны вторичными реакциями, которые связаны с действием катализаторов на олефины [247, 249—251]. При 500° С парафины от Сд до а также твердый парафин (приблизительно С24) расщепляются в присутствии циркониево-алюмосиликатного катализатора в 5—60 раз быстрее, чем без катализатора при той же температуре. Хотя пропан, н-бутан и изобутан крекируются над катализатором несколько быстрее, чем термически, влияние катализатора проявляется достаточно сильно лишь в том случае, когда сырьем служат парафины g и выше. [c.327]

    При крекинге над алюмосиликатным катализатором протекают некоторые первичные реакции, из которых самыми важными, по-видимому, являются изомеризация и перенос водорода. Изомеризация может включать в себя  [c.331]

    Молекулярный водород но существу инертен при крекинге углеводородов над алюмосиликатным катализатором, который, в свою очередь, в очень малой степени вызывает изомеризацию парафинов. Когда же к алюмосиликатному добавлен или нанесен на него катализатор гидрирования-дегидрирования и в систему подается водород, каталитический комплекс становится бифункциональным и происходят глубокие превращения. Прямые цепи [c.346]

    На аморфном алюмосиликатном катализаторе при температуре 500 С, давлении 0,1 МПа величины кажущихся энергий активации для реакций изомеризации ксилолов составляют 60— 90 кДж/моль. Миграция метильной группы протекает по механизму внутримолекулярного 1,2-сдвига. [c.265]

    Бифункциональный механизм доказан на примере катализаторов содержащих только кислотные центры или центры дегидрирования или же на механической смеси центров обоих типов. Например, е одинаковых условиях (Т = 373 С, молярное соотношение водород н-гексан=5 1, пылевидные частицы) как на катализаторах платина/силикагель, платина/углеродный носитель, так и на алюмосиликатном (кислотном) катализаторе изомеризация гексана или гептана происходит в незначительной степени. В то же время механическая смесь этих пылевидных катализаторов довольно активна (табл. 6.2). [c.139]

    Из л-ксилола приблизительно с одинаковой скоростью образуются о- и л-кси-лол, из п- и о-ксилола с максимальной скоростью образуется л-ксилол. В частности при изомеризации на алюмосиликатном катализаторе при 0,1 МПа и 600 С (при допущении, что диспропорционированию подвергаются только диметил-бензолы, а этилбензол крекируется с образованием бензола и этилена) относительные скорости превращения составляют  [c.77]


    Изомеризация алкилароматических углеводородов. В мировой практике получили развитие два промышленных способа изомеризации алкилароматических углеводородов С при атмосферном давлении на алюмосиликатных катализаторах и при повышенном давлении на катализаторах, которые содержат металл, нанесенный на носители с кислотными свойствами. [c.92]

    Изомеризация над алюмосиликатными катализаторами осуществляется обычно при атмосферном давлении и 380—500 °С и сопровождается значительным коксо- и газообразованием, а также диспропорционированием компонентов исходного сырья. Этилбензол над такими катализаторами почти не изомеризуется, а подвергается реакциям диспропорционирования и крекинга, поэтому при повышенном его содержании в сырье он должен быть предварительно выделен. Возможна изомеризация сырья и с увеличенным содержанием этилбензола, но в этом случае процесс приходится проводить при более высокой температуре (до 550°С), что снижает продолжительность работы катализатора. [c.196]

    Еще одним источником триметилбензолов являются побочные продукты, образующиеся при каталитической изомеризации ксилолов [66, 71]. В тяжелой фракции изомеризата содержится 14— 15% мезитилена, 51% псевдокумола, 9% гемимеллитола, около 2% дурола и изодурола и другие ароматические углеводороды Сэ и Сю [71]. В результате изомеризации над алюмосиликатным катализатором при 400—480°С выход ароматических углеводородов Сэ и выше составляет 4,0—13,5% от исходного сырья, увеличиваясь с повышением температуры процесса. Отдельные компоненты углеводородов Сэ в побочных продуктах изомеризации ксилолов содержатся примерно в таких количествах 5% суммы изомеров этилтолуола, 25% мезитилена, 65% псевдокумола и 5% гемимеллитола [66]. [c.266]

    Важнейшим направлением превращений при каталитическом крекинге являются реакции алканов, которые подвергаются реакциям деструкции и изомеризации. Последовательность реакций алканов на алюмосиликатном катализаторе может быть представлена в следующем виде. [c.135]

Таблица 4.1. Результаты изомеризации м-, п- и о-ксилола на алюмосиликатном катализаторе Таблица 4.1. Результаты изомеризации м-, п- и о-ксилола на алюмосиликатном катализаторе
    На основе экспериментальных работ по изомеризации ароматических углеводородов Сд на алюмосиликатном катализаторе были вычислены относительные скорости протекающих реакций в зависимости от парциальных давлений углеводородов и их концентраций [2, с. 140— 150]. В расчетах было сделано допущение, что диспропорциони-рованию подвергаются только диметилбензолы, и скорость их превращения одинакова, а этилбензол крекируется с образованием бензола и этилена. По-видимому, это допущение может быть сделано при использовании высокоактивного алюмосиликатного катализатора каталитического крекинга. Относительная скорость превращения углеводородов при парциальном давлении 0,1 МПа (1 кгс/см ) и 500 °С получается следующей (если скорость изомеризации о-кСи-лола в п-ксилол принять за единицу)  [c.154]

    В техническом ксилоле каталитического риформинга бензинов этилбензола может содержаться до 25 вес. %. Как указывалось выше, этилбензол на алюмосиликатных катализаторах не изомеризуется, а превраш ается в продукты диспропорционирования и крекинга. Поэтому весьма важно изучить влияние этилбензола, находя-ш егося в сырье, на изомеризацию диметилбензолов. [c.156]

    Процесс ВНИИ НП. Процесс изомеризации ксилолов, разработанный ВНИИ НП, проводят на алюмосиликатном катализаторе при атмосферном давлении, 380—480 °С и длительности рабочего цикла 70—100 ч [7, 13, 17]. В комплекс изомеризации входят установки выделения п-ксилола методом низкотемпературной кристаллизации и выделения этилбензола д о-ксилола ратификацией. В процессе изомеризации ксилолов на алюмосиликатном катализа- [c.176]

    При изомеризации с подачей в зону реакции водяного пара нужно использовать или высокостабильные алюмосиликатные катализаторы, или обычные алюмосиликаты должны быть предварительно [c.180]

    Роль носителя, являющегося, по общему мнению, инертным веществом, которое сообщает катализатору термическую стабильность, но не принимает активного участия в каталитической реакции, была критически рассмотрена в последнее время. Хют-тиг (1950) показал, что каталитическая активность окиси цинка и окиси железа в реакциях гидрирования — дегидрирования сильно увеличивалась, если приготовить смесь этих катализаторов. Применение смешанных алюмосиликатных катализаторов изомеризации и крекинга — другой пример кооперативного действия смешанных твердых катализаторов. Взаимодействие между окисью никеля и силикагелем с высокой поверхностью было изучено Шуитом и Де Буром (1951, 1953) и ван Воортхузеном и Фран-ценом (1951). В этой работе с помощью рентгеновского метода для некоторых образцов наблюдалось образование монтмориллонита никеля за счет внедрения окиси никеля в поверхностные слои силикагеля. Это взаимодействие между катализатором и носителем является причиной трудности восстановления водородом нанесенной окиси никеля. [c.26]


    Сопоставление данных настоящей статьи с данными по изомеризации монометилнафталинов на синтетическом алюмосиликатном катализаторе, приведенными в работе [4], показывает, что на синтетическом алюмосиликатном катализаторе изомеризация монометилнафталинов проходит также по последовательной схеме. Однако содержание диметилнафталинов в катализате превышает вдвое содержание нафталина, хотя по реакции диспропорционирования монометилнафталинов должно получаться равное число молекул этих веществ. [c.65]

    Скорость распада заметно увеличивается с увеличением молекулярного веса. Наличие пзоолефинов и изопарафинов в продуктах крекинга нормальных парафиновых углеводородов, вероятно, является следствием вторичных реакций превращения образовавшихся олефинов, так как неносредственной изомеризации метановых углеводородов, как отмечается в литературе, в присутствии алюмосиликатных катализаторов не происходит. К вторичным реакциям следует также отнести и образование ароматических углеводородов, содержание которых повышается по мере увеличения молекулярного веса исходного углеводорода и углубления процесса. [c.47]

    Каталитическая изомеризация. Изомеризация олефинов над кислыми катализаторами предполагает миграцию пары электронов совместно с водородом или алкильной группой. В первом случае перегруппировка приводит к смещению двойной связи, во втором — к перестройке углеродного скелета молекулы. Например, изомеризация пентена-1 в пентен-2 в присутствии активированной окиси алюминия при 357° С [12] ив метил-бутены-2 в присутствии алюмосиликатного катализатора при 400° С [8] может происходить в соответствии с правилами 3 и 4  [c.235]

    Способность алюмосиликатных комплексов вызывать ноли меризацию надежно доказана для температур от 150 до 350° i Еще до начала применения каталитического крекинга Гэйер получил полипропилены в присутствии алюмосиликатного катализатора при 340° С и при атмосферном давлении [237]. Бутены могут полимеризоваться при температуре выше 210° С, но при давлении 7 ати эта реакция происходит уже при 175° С [257, 268]. При температурах каталитического крекинга термодинамические факторы являются неблагоприятными для полимеризации полимеры, по-видимому, подвергаются изомеризации и насыщению.. [c.333]

    Избирательность. Широкое применение каталитических процессов требует подбора катализаторов, избирательно ускоряющих процесс превращения сырья в желательном направлении. Например, крекинг углеводородов сопровождается реакциями дегидрогенизации, изомеризации, полимеризации, циклизации и др. Подбором катализатора и технологических параметров осуществляют процесс в нужном направлении с преимущественным выходом желаемых продуктов. Принцип избирательности используют при выборе алюмосиликатных катализаторов различного строения и структуры, учитывая при этом относительное значение выходов и качеств целевых продуктов. Например, для превращения низкокипящего термически стабильного сырья прил1еняют высокоактивные синтетические катализаторы раз- чожение же тяжелых смолистых дистиллятов осуществляют на менее активных катализаторах. Некоторые природные катализаторы [c.15]

    Цеолиты пригодны и для дегидрирования парафиновых углеводородов при этом они устраняют некоторые побочные реалции, Нс1блюдаемые при использовании алюмохромовых катализаторов. Цеолит СаХ как катализатор дегидрирования отличается от всех других катализаторов тем, что позволяет осуществлять дегидрирование без сонутствующей реакции дегидроциклизации. В газовой фазе, получающейся при дегидрировании на цеолите СаА, имеется значительно больше непредельных углеводородов, чем в случае применения алюмосиликатного катализатора. Кроме того, на СаА практически не идет реакция изомеризации, как это бывает на алюмосиликатном катализаторе. [c.100]

    Аморфные алюмосиликаты. В связи с тем что превращения оле финов существенно влияют на состав продуктов каталитическоп крекинга нефтяных фракций, была изучена изомеризация олефи нов в присутствии аморфного алюмосиликатного катализатор крекинга [44, 47, 48]. [c.162]

    Сопоставим теперь расчетные и экспериментальные величины. Наиболее обстоятельно изучены экспериментально равновесные составы смесей ксилолов. В [36] собраны данные различных авторов по экспериментальным равновесным составам ксилолов при жидкофазной изомеризации. В присутствии различных кислотных катализаторов (А1С1з—НС1, А1Вгз—НВг,. ВРз—НР) при 50 °С ксилолы не образуют этилбензол при этом получали 12—16% о-, 65—72% м- и 15—19% я-ксилола. При 100—120 °С их количества составляли соответственно 18—19,. 60—61 и 20—22%. Из сравнения этих данных с расчетными (см. табл. 42) видно, что в экспериментальных исследованиях достигалось практически равновесное содержание о-ксилола при несколько завышенном по сравнению с равновесным содержанием. и-ксилола. Это указывает на то, что при низких температурах превращения о-ксилола протекают с большей скоростью,, чем других изомеров. Образование этилбензола из ксилолоа наблюдается в присутствии твердых катализаторов и при повышенных температурах. Изучая превращения ароматических углеводородов Се в присутствии алюмосиликатного катализатора при 515 °С, авторы [36] смогли достичь равновесия только по п-ксилолу и этилбензолу, очевидно, как из-за кинетических затруднений, так и по причинам, рассмотренным выше. Вообще для высокотемпературных процессов характерно достижение равновесного содержания я-ксилола. [c.206]

    При крекднге над алюмосиликатным катализатором, кроме реакций распада и уплотнения, протекают следующие реакцирх, кото))ые едва наблюдаются при термическом крекинге дегидрирования, изомеризации и слояшой полимеризации (перепоса водорода). [c.449]

    Первый в СССР комплекс получения ароматических углеводородов Се—Сэ из технического ксилола, включающий установку изомеризации ксилолов на алюмосиликатном катализаторе при атмосферном давлении (процесс ВНИИ НП), освоен в ПО Ново-полоцкнефтеоргсинтез . Этилбензол, о-ксилол и псевдокумол выделяются методом четкой ректификации, п-ксилол — методом низкотемпературной кристаллизации. [c.269]

    Изомеризация происходит иод влиянием катализаторов кислот-но о типа. Среди них наиболее активен хлористый алюминий, способный вызывать реакцию в жидкой фазе уже при 50 °С. В при-су ствии гетерогенного алюмосиликатного катализатора требуется более высокая температура (400—500 °С), и процесс проводят в -азовой фазе. В последнее время получили распространение и цеолитные катализаторы. В любом случае реакция протекает че-ре 1 промежуточное образование о-комплексов, образующихся из арзматического соединения и протона, генерируемого катализатором. Дальнейший процесс состоит в образовании я-комилекса и миграции метильной группы к соседнему углеродному атому с последующей отдачей протона  [c.72]

    Паталах Л. С., Бродский А. М., Мамедалиев Г. В., Исследование кинетических закономерностей изомеризации jti-ксилола в кипящем слое алюмосиликатного катализатора, Нефтехимия, 7, № 1, 19 (1967). [c.575]

    По такому же механизму подвергаются изомеризации и другие полиалкилбензолы. Не исключено, что в жестких условиях каталитического риформинга, при высоких температурах, изомеризация полиалкилбензолов и, в частности, ксилолов может частично протекать также по другой кислотноткатализируемой реакции, аналогично идущей на алюмосиликатных катализаторах крекинга [89]. [c.48]

    Кажущиеся энергии активации реакций изомеризации индивидуальных дн-метглбензолов на алюмосиликатном катализаторе при 300—500 °С близки и равны около 84 кДж/моль. [c.78]

    Алюмосиликатные катализаторы благодаря своей изомеризацион-лой активности способны образовывать большое число структурно и стереохимически измененных углеводородов, столь широко представленных в нефтях. Эти катализаторы могут в ряде случаев сохранять ез изменений реликтовые структуры, так как процессы изомеризации и деструкции протекают в основном в соединениях, имеющих ратные связи и обладающих поэтому значительно большей реакцион- [c.194]

    Согласно органической теории, источником углеводородов нефти являлись компоненты дисперсно) о органического вещества сапропелевой природы. Процесс происходил в главную фазу нефтеобразования (ГФН), на глубине, при 100—200°С, термически или термокаталитически под воздействием глии. Глины, являясь природными алюмосиликатными катализаторами, стимулируют реакции дегидратации спиртов и декарбоксилирования кислот в углеводороды, изомеризации и полимеризации алкенов, деструкции и перераспределения (диспропорнионирования) водорода и многие другие. Тем не менее один из наиболее сложных вопро- [c.35]

    Каталитической очистке от непредельных углеводородов подвергают обычно бензины, полученные каталитическим крекингом, пропуская пары беЕкчина через слой алюмосиликатного катализатора. Очистка проводится иа обычных установках каталитического крекинга без изменения их схемы и замены катализатора. На некоторых нефтеперерабатывающих заводах сооружены блоки из трех установок каталитического крекинга с движущимся катализатором, две из которых служат длт превращения тяжелых фракций в легкие, а третья — для каталитической очистки бензина. Температура процесса составляет 425—475°С. При этой температуре превращениям подвергаются только непредельные углеводороды главными реакциями являются разрыв углерод-углеродных связей, изомеризация, полимеризация, а также насыщение двойных связей и образование аренов. В результате очистки содержание непредельных углеводородов снижается, а ароматических — растет. Октановое число бензина повышается на 5—7 пунктов. [c.322]

    Наиболее активными углеводородами в условиях контакта с алюмосиликатным катализатором являются непредельные. Полимеризация олефинов начинается при комнатной температуре с повышением температуры возникает обратимая реакция полимеризации — деполимеризации, равновесие которой при температурах промышленного процесса сдвигается в сторону разложения. Весьма характерны для непредельных углеводородоп в присутствии катализатора реакции изомеризации как двойной связи, так и самой молекулы, прпчем скорость изомеризации возрастает с увеличением молекулярного веса углеводорода .  [c.154]

    Изомеризация над алюмосиликатвыми катализаторами. Изомеризация диметилбензолов над алюмосиликатными катализаторами сопровождается реакциями диспропорционирования метильных групп, [c.152]

    Процесс XIS . Процесс изомеризации ксилолов XIS, разработанный японской фирмой Maruzen Oil a. Ltd., осуществляется при атмосферном давлении на алюмосиликатном катализаторе [2, с. 140— 152 26, 41—44]. Отличительная особенность процесса — подача водяного пара в зону реакции до 1,5 моль на 1 моль сырья для снижения парциального давления паров углеводородов. Изучение [c.179]

    Процесс I I. Процесс изомеризации ксилолов, разработанный английской фирмой Imperial hemi al Industries, проводят на алюмосиликатном катализаторе при атмосферном давлении. Первая промышленная установка изомеризации по этому методу была введена в эксплуатацию в 1955 г. Принципиальная схема процесса I I не-отличается от других процессов изомеризации, проводимых на алюмосиликатных катализаторах [41, 45]. Этилбензол не изомеризуется, а подвергается реакциям диспропорционирования с образованием бензола и ароматических углеводородов С . Диметилбензолы изомери ются с образованием смеси, близкой к термодинамически равновесной при этом получаются продукты диспропорционирования — толуол и триметилбензолы. [c.183]


Смотреть страницы где упоминается термин Алюмосиликатный катализатор изомеризация: [c.107]    [c.108]    [c.111]    [c.119]    [c.10]    [c.82]    [c.92]    [c.153]    [c.154]    [c.165]    [c.180]    [c.183]   
Гетерогенный катализ в органической химии (1962) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Катализаторы изомеризации



© 2025 chem21.info Реклама на сайте