Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Вольфрам в металлическом титане

    Начавшаяся примерно 100 лет тому назад научно-техническая революция (НТР), затронувшая и промышленность, и социальную сферу, также тесно связана с производством металла. Прежде всего она определялась появлением новых металлических материалов, содержащих редкие металлы (вольфрам, молибден, титан и др.). Создание на их основе коррозионностойких, сверхтвердых, тугоплавких сплавов резко расширило возможности машиностроения. Приведем несколько примеров нз истории техники того времени. [c.251]


    В зависимости от давления ацетилена и температуры могут быть получены различные нитевидные кристаллы графита. Однако температура подложки не должна быть ниже 900° С. На рост графитовых усов влияет как природа и состояние подложки (обычно металлы вольфрам, тантал, титан, рений и др.), так и условия обтекания ее потоком газа вследствие естественной конвекции. На металлических подложках, неоднократно использованных в опытах, нитевидные кристаллы растут реже, нежели на свежих. Особенно часто растут такие кристаллы на срезах металла, а также на неоднородностях поверхности. Если на поверхность металла нанести перед опытом царапину, то вдоль нее вырастут нитевидные кристаллы, как бы декорируя эту царапину. Когда на поверхности молибдена был осажден вольфрам с различной ориентацией, то наибольшее число нитевидных кристаллов графита выросло на поверхности с ориентацией <100>. [c.46]

    Анализ сложных по химическому составу минералов тантала и ниобия, содержащих титан, цирконий и вольфрам, отнимает очень много времени и требует самой высокой квалификации химика-аналитика, причем достоверность получаемых результатов невелика. Отсутствуют достаточно надежные и легко выполнимые методы выделения малых количеств ниобия и тантала при анализе горных пород, чистых металлов и сплавов, а также методы определения ниобия и тантала при их содержании около 10 % в металлических титане, цирконии, вольфраме и других металлах. Наиболее удовлетворительные результаты дают экстракционные и хроматографические методы разделения. [c.187]

    Пластичность металла определяется способностью металла не разрушаясь деформироваться так, что деформации остаются и после окончания действия нагрузки. Пластичность металлов имеет очень большое практическое значение. Благодаря этому свойству металлы поддаются ковке, прокатке, вытягиванию в проволоку (волочению), штамповке. Смещение заполненных атомами металла плоскостей в кристалле в определенных пределах не приводит к разрушению металлической связи. Механизм образования смещений связан с появлением и движением дислокаций. Хрупкими определенное время считались титан, вольфрам, хром, молибден, тантал, висмут, цирконий. Очищенные от примесей эти металлы — высокопластичные материалы, которые можно ковать, прессовать, прокатывать. В табл. 11.3 приведены значения относительного удлинения некоторых металлов, характеризующего их пластичность. [c.324]


    Окислительно-восстановительный электрод — это электрод, состоящий из инертного материала (металлические платина, золото, вольфрам, титан, а также графит), погруженного в водный раствор, в котором имеются окисленная и восстановленная формы данного вещества. [c.148]

    Сплав основного металла и металлического покрытия происходит на поверхности, подвергаемой диффузии. Размеры обрабатываемого изделия изменяются незначительно. Диффузионные покрытия применяют для многих металлов и сплавов, включая медь, молибден, никель, ниобий, тантал, титан и вольфрам, но особенно часто — для черных металлов. [c.104]

    Отложения с наружной стороны низкотемпературных поверхностей нагрева мазутных парогенераторов, например с пластин регенеративных воздухоподогревателей, с трубок водяных экономайзеров, содержат сернокислые соли железа, никеля, ванадия, меди и свободную серную кислоту. Коррозионные образования в трубках пароперегревателей кроме окислов железа содержат хром, марганец, молибден и другие вещества. Эти материалы отличаются исключительной стойкостью, и обычно их удается перевести в раствор лишь нагреванием в смеси серной и фосфорной кислот. Сплавление с содой, едкими щелочами, пирофосфатом или гексаметафосфатом натрня практически не приводит к разложению этого материала. Отложения из парогенераторов высокого давления содержат в различных соотношениях окислы железа и алюминия, кремниевую кислоту, фосфаты железа, алюминия и кальция, металлическую медь, а иногда соединения цинка и магния. В качестве менее существенных примесей, а иногда и следов в накипи присутствуют марганец, хром, олово, свинец, никель, молибден, титан, вольфрам, стронций, барий, сурьма, бор, ванадий и некоторые другие элементы. При обычном анализе ограничиваются определением фосфатов, кремниевой кислоты, железа, меди, алюминия, натрия, кальция, магния и сульфатов. [c.411]

    При анализе образцов металлического плутония сильно влияло железо, содержание которого составляло 0,02—0,08%. Так как железо титруется вместе с плутонием, то определение его следует проводить другим подходящим методом. В данной работе железо определяли фотометрически. Определению мешают хром, титан, молибден, вольфрам, уран и ванадий. Нитрат-ионы мешают определению за счет их восстановления в редукторе. При отделении плутония от примесей необходимо учитывать полноту выделения. [c.183]

    Разработаны методы определения кобальта в металлических никеле [88, 109, 584, 775, 957, 1002, 1082, 1188, 1200, 1417, 1518], натрии [1321, 1458], меди [686], магнии [343, 830], алюминии [1395], цирконии и титане [343, 927, 1071, 1081, 1445, 1499], свинце [186], висмуте [233], уране [1387], стеллите [73], победите [357], в сплавах кобальт — платина [1488], хром — кобальт [96], вольфрам— кобальт [520], в карбидах вольфрама и титана [1208] и других объектах [227]. [c.198]

    Среди металлических материалов исключительное полол<ение занимают сплавы на основе железа. Сплавы железа с содержанием углерода до 2% принято называть сталью, а свыше 2% — чугуном. Используемые в настоящее время в промышленности стали обычно делят на углеродистые и легированные. Создание новых н интенсификация существующих промышленных процессов заставляет все больше использовать легированные стали, которые обладают повышенной коррозионной стойкостью. Массовая доля средне- и высоколегированных сталей в настоящее время составляет почти 20% от общего количества производимых промышленностью черных металлов. Для легирования используют такие элементы, как никель, хром, молибден, вольфрам, ванадий, кобальт, марганец, медь, титан, алюминий. Сплавы железа с хромом составляют основу нержавеющих сталей, среди которых [c.136]

    Значительный интерес представляют металлонаполненные полимеры [57] (металлополимеры), где наполнителями служат порошкообразные металлы или металлические волокна (алюминий, никель, сталь, олово, кадмий, бериллий, бор, вольфрам, титан, лакированные железо и медь, магний н т. д.). Такие металлополимеры отличаются высокой прочностью (особенно в случае применения волокон), термостойкостью, тепло- и электропроводностью. Прочность в некоторых случаях обусловлена химическим взаимодействием полимера с металлом (образование комплексов за счет я-электронов двойных связей, реакция карбоксильных групп с окислами на поверхности металла и т. д.) наряду с физическим взаимодействием. Некоторые полимеры этого типа вследствие своей дешевизны и доступности заменяют цветные и драгоценные металлы в производстве вкладышей подшипников, изделий с высокой теплопроводностью и низким коэффициентом термического расширения, другие применяются в радиотехнике, для защиты от радиации (свинцовый наполнитель), при изготовлении магнитных лент, каталитических систем (наполнитель — платина, палладий, родий, иридий) и т. д. [c.475]

    В производстве тугоплавких металлов (вольфрам, титан и другие) применяется метод порошковой металлургии, заключающийся в восстановлении металла из окислов в форме порошка. Тугоплавкие сплавы производятся прессованием металлических порошков с последующим спеканием в электрических печах. Температура спекания порошка обычно составляет 2/3 от температуры плавления металла. Температура плавления смесей порошков также бывает ниже плавления чистых металлов. Таким образом, применяя порошковую металлургию, удается понизить температуру, требуемую для получения тугоплавких сплавов, что и является крупным преимуществом порошкового метода. [c.420]


    В последнее время получены обширные сведения о влиянии различных металлических расплавов на прочность графита [25]. Обнаружены следующие виды взаимодействия 1) отсутствие смачивания и соответственно влияния на прочность (олово, галлий) 2) сильная коррозия — интенсивное растворение в таких расплавах как молибден, вольфрам 3) проявление своеобразной самозащиты в случаях образования прочных карбидов, препятствующих дальнейшему контакту углерода с расплавом (титан, цирконий) 4) значительное понижение прочности графита при контакте с жидким алюминием и натрием. В случае алюминия эффект [c.167]

    Галлий вызывает ко ррозию большинства твердых металлов. Корродирующее действие галлия распространяется и на такие металлы, как таллий, бериллий, титан, молибден и др. Установлено, что единственными металлами, не поддающимися его воздействию при повышенных температурах, являются вольфрам и тантал. Коррозионное воздействие эвтектического сплава галлий — олово — цинк на другие металлы меньше, чем у галлия, но при повышенных температурах этот сплав также вызывает кор-розию металлов и в связи с этим не может быть использован в атомной технике в качестве жидко-металлической ореды для отвода тепла. [c.38]

    Ряд патентов, принадлежащих фирме Дюпон , посвящены полимеризации и сополимеризации этилена [131], пропилена 1132], различных диенов [133] и бицикло-(2,2,1)-гептена-2 [102, 103, 110] на координационных катализаторах Циглера. В этих патентах описаны соответствующие катализаторы, состоящие из соединений одного или более элементов, таких, как титан, цирконий, церий, ванадий, ниобий, тантал, хром, молибден или вольфрам, причем по крайней мере часть металла имеет валентность, равную 3 и ниже (преимущественно 2), или связана с достаточным количеством восстановителя, способного восстанавливать многовалентный металл до низшей валентности. Подходящими восстановителями могут служить реактивы Гриньяра, алкилы или арилы металлов, металлический цинк и металлы, расположенные в ряду напряжений выше цинка, а также гидриды металлов. [c.103]

    Металлические покрытия, нанесенные на бериллий, молибден, вольфрам, титан, тантал, цирконий, ниобий, торий и уран, служат для облегчения пайки, в качестве защитной меры против окисления при повышенных температурах (чаще свыше 300 и 450°С, для вольфрама свыше 600°С), а для некоторых из этих металлов (молибдена, вольфрама, тантала, ниобия) —для понижения теплопроводности. Эти виды обработки приобрели большое значение в связи с требованиями космонавтики. [c.389]

    Другой путь увеличения добычи металлического сырья-это горнопромышленные работы под водой. Из так называемых россыпных месторождений, находящихся на глубине меньше 130 м ниже уровня моря, можно добывать обогащенные морские отложения, в которых содержатся благородные и тяжелые металлы-олово, золото, платина, железо, вольфрам, хром и др. На склонах континентов, в морских отложениях и металлсодержащих илах Красного моря, в японских и индонезийских водах, в красных глинах океанских глубин, хранящих наибольшие количества алюминия на нашей планете, и, возможно, даже в подводных скалах скрыты внушительные запасы различного металлического сырья. Поднимаемые со дна океана комки подводного грунта величиной с фасоль или репу (так называемые железные и марганцевые тихоокеанские конкреции) содержат в среднем около 25% марганца и железа, а также никель, медь, кобальт и титан в концентрациях от 1,5 до 3,5%. Общие запасы таких конкреций должны составлять более 1500 млрд. т, причем ежегодно дополнительно образуются 10 млн. т. Полагают, что в этих небольших комочках никеля, марганца и кобальта содержится больше, чем во всех вместе взятых известных месторождениях этих металлов на суше. [c.29]

    Результат титрования при анализе стандартного образца № 38 ферросилиция свидетельствует о том, что около 2/з кремния перешло в раствор в виде 51 +. Металлические медь, алюминий, ванадий, молибден, вольфрам, марганец кобальт и никель в результате взаимодействия с 0,25-н. раствором хлорного железа переходят соответственно в Сц2+, АР+, У +, Мо +, / + Мп2+, С02+ и N 2+. Аналогично происходит взаимодействие этих металлов с раствором хлорного железа, если эти металлы входят в состав сплавов на основе железа. При взаимодействии металлического алюминия и марганца с раствором хлорного железа частично выделяется водород. Титан, цирконий, кремний, фосфор и хром, содержащиеся в некоторых сплавах на основе железа, переходят соответственно в Т1 +, 2г +, 51 +, Р + и Сг + ниобий, вероятно, переходит в N5 +. Углерод, входящий в состав сплавов на основе железа, пе реагирует с раствором хлорного железа. [c.99]

    В приведенном ниже методе никель удаляют экстракцией его диэтилдитиокарбамата хлороформом (в качестве растворителей можно также использовать хлористый и треххлористый этилен). Алюминий определяют с помощью алюминона. Со, Си, Мп, Мо, V, РЬ, 2п, С(1, Зп и 51 не мешают определению, так как они либо удаляются вместе с никелем, либо не взаимодействуют с алюминоном. Вольфрам, титан и хром не удаляются в виде карбаматов и мешают определению (рис. 31). В присутствии этих элементов необходимо проводить дополнительные операции по их выделению, например при растворении металлического образца в азотной кислоте можно осадить вольфрам в виде вольфрамовой кислоты. Методика, приведенная ниже, пригодна также для определения алюминия в меди, кобальте и марганце. Точность определения 5—15 у А1 в 12—50 мг никеля в среднем составляет 3% (максимальная ошибка 10%). [c.216]

    К третьей группе следует отнести те металлы, которые пока еще не удается получить из водных растворов в металлическом состоянии [7]. Это молибден, вольфрам, уран, ниобий, титан, тантал. Для металлов третьей группы характерна повышенная реакционная способность по отношению к среде и образование поверхностных соединений. На окисленной поверхности дальнейшее восстановление металла резко затрудняется и значительно облегчается восстановление ионов-водорода. В силу этого металлы третьей группы выделяются на катоде в виде тонкого слоя окиси или гидроокиси. Поэтому электролитически не удается получить эти металлы в металлическом состоянии. [c.14]

    Новые задачи в деле борьбы с коррозией возникают не только в связи с усложнением условий службы металла. Это связано и с тем, что номенклатура и число широко применяемых металлов с ходом технического прогресса сильно возрастают. Если на заре человеческой культуры применялись чаще благородные металлы золото, медь (бронза), олово, свинец и лишь ограниченно железо, то позднее основное распространение получают менее благородные, железные сплавы. В настоящее время наиболее важное значение имеют сплавы на основе железа (сталь, чугун). Одновременно с этим самое широкое применение находят сплавы алюминия, магния, по природе своей гораздо менее устойчивые к коррозии. Дальнейшие запросы техники выдвигают проблему практического использования, а значит, и защиты от коррозии таких металлов, как титан, цирконий, вольфрам, молибден, германий, индий, рений, уран, торий и ряд других. Наконец, всеобъемлющее значение приобретает борьба с коррозией вследствие непрерывного и все более бурно увеличивающегося из года в год общего запаса металлических материалов в виде эксплуатирующихся человечеством металлических конструкций. [c.10]

    Местное действие. К. и его соединения способны вызывать кожные аллергические реакции в виде дерматитов эртематозно-напулезного тина. Профессиональные дерматиты нередко встречаются у работников гончарной промышленности. Их возникновение связывают с сенсибилизирующими свойствами К. Так, при обследовании рабочих, имевших контакт с глиной, к которой с целью обесцвечивания добавлялся оксид К.(П) в количестве 0,01—0,11 %, бьшо выявлено, что из 12 рабочих, у которых ко времени обследования или в недалеком прошлом имелись явления дерматита, компрессные пробы с 5 % К. у 9 оказались резко положительными. При обследовании рабочих на заводе, производившем цементированные карбиды (в технический порошок входят вольфрам, тантал, титан, углерод и металлический К.), были выявлены 20 больных дерматитами с локализацией преимущественно на открытых участках кожи. У 6 из них были поставлены компрессные пробы со всеми перечисленными металлами у всех больных они оказались положительными только с К. (по силе сенсибилизирующего действия на кожу К. значительно уступает никелю и хрому). [c.458]

    В качестве восстановителя применяют раствор хлорида олова (II) в фосфорной кислоте [67]. При определении серы в сульфатах бария, магния, цинка, натрия [63, 68], а также при анализе сульфидных руд, тиосульфата и других серусодержащих материалов [69] раствор хлорида олова(П) и.фосфорной кислоты предварительно нагревают до удаления хлористого водорода. Восстановление этой смесью детально изучено, и усовершенствован способ приготовления реагента для восстановления [70]. Для восстановления серы рекомендовано также применять металлические титан, хром, молибден, ванадий или вольфрам в присутствии фосфорных кислот и их солей [71]. Чаще других металлов рекомендуется применение металлического хрома в присутствии фосфорной кислоты, этот восстановитель применен для определения серы в феррохроме, металлическом хроме [14] и хлориде титана (IV) [72]. Широко распространен метод восстановления серы смесями иодистоводород-ной и фосфорноватистой кислот [73], иодистоводородной кислоты и гипофосфита натрия в присутствии, уксусной [64], муравьиной [74] и хлористоводородной [75—77] кислот. Кроме того, рекомендована смесь иодистоводородной и муравьиной кислот и красного фосфора [78], а также смесь сульфата титана (111) и фосфорной кислоты [79]. [c.214]

    В литературе имеется одно сообщение об аллергических дерматитах, развившихся в результате контакта с металлическим кобальтом. В 1945 г. S hwartz, Pe k и Blair сообщили о проведенном ими обследовании на заводе, производившем цементированные карбиды, часть которых перерабатывалась в режущие инструменты. Материал в виде порошка, в состав которого в определенных пропорциях входили вольфрам, тантал, титан, углерод и металлический кобальт, формовался и прессовался для нужных форм в электрической печи. Было выявлено около 20 больных дерматитами, локализовавшимися преимущественно на открытых участках кожи. У шести из них были поставлены компрессные пробы со всеми перечисленными металлами и у всех больных они оказались положительными только с кобальтом. [c.156]

    Для кадмия, олова, свинца, осаждающихся почти без перенапряжения (поляризации), приходится изыскивать специальные условия. В противном случае получаются грубокристаллические некомпактные осадки, совершенно не обладающие защитными свойствами. Металлы, разряд и выделение которых сопровождается высоким перенапряжением, — железо, никель, кобальт, хром — осаждаются в виде мелкокристаллических компактных осадков. Такие металлы, как молибден, вольфрам, титан, тантал и ниобий, вообще не удалось выделить из водных растворов в чистом виде. Они выделяются только в виде оксидов, гидроксидов или очень тонких (до 0,3 мкм) металлических пленок. [c.364]

    Окисление полициклических аро" матических углеводородов, особенно нафталина, в паровой фазе с окисляющим газом, преимущественно воздухом, при 250— 350° при 450— 550° смесь проводят над малоактивным катализатором, который снаружи охлаждают, и, наконец, над совершенно холодным высокоактивным катализатором нафталин окисляется во фталевый ангидрид Окисление алифатических и ароматических углеводородов метана в формальдегид, метилового спирта в формальдегид, изопропилового спирта в ацетон, бензола в малеиновую кислоту, нафталина во фталевую кис--лоту, антрацена в антрахинон Окисление бензина и керосина или их смеси улучшают введением в,001 — 0,085% одного или нескольких металлорганических соединений, которые дают в камере сгорания каталитически активный металл, окись металла или карбонат осо- бенно пригодны селен, сурьма, жышьяк, висмут, кадмий, теллур, торий, олово, барий, бор, цезий, лантан, калий, натрий, тантал, титан, вольфрам и цинковые соли дикетонов, например пропионил- ацетонат, а также металлические соединения нафтеновых кислот, мо-иоалкильных эфиров салициловой, фталевой или малоновой кислоты, крезола или других фенолов, меркаптаны, ацетоуксусный эфир, высокомолекулярные насыщенные и ненасыщенные жирные кислоты и ал- илкарбоновые кислоты [c.228]

    ЖАРОСТОЙКАЯ СТАЛЬ - сталь, отличаюЕцаяся жаростойкостью. Стойка против интенсивного окисления на воздухе или в других газовых средах при т-ре выше 550° С. Используется с конца 19 в. Жаростойкость обусловлена наличием на поверхности Ж. с. плотной и тонкой пленки окислов, достаточно прочно сцепленной с осн. металлом. Пленка состоит преим. из окислов легирующих элементов — хрома, кремния и алюминия, термодинамически более стойких, чем окислы железа. Содержание этих элементов определяет класс Ж. с. (табл. 1). Хром, являясь осн. легирующим элементом Ж. с., повышает жаростойкость пропорционально увеличению его содержания (рис.). Никель способствует образованию аустенитной структуры (см. Аустенит). Стали с такой структурой легче обрабатывать, они отличаются хорошими мех. св-вами. Добавки кремния (более 2%) и алюминия (более 0,5%) ухудшают мех. св-ва стали. Титан, ниобий и тантал связывают углерод в карбиды, предотвращая выделение карбидов хрома, которое обедняет близлежащую металлическую основу хромом и приводит к уменьшению жаростойкости. Молибден и вольфрам (в небольших количествах) незначительно повышают жаростойкость, но уменьшают склонность стали к ползучести при высокой т-ре. Если молибдена содержится более 3—4%, жаростойкость стали резко ухудшается из-за образования нестойких и рыхлых его окислов. Церий и бе- [c.420]

    ПИРОМАТЕРИАЛЫ (от греч. лир -огонь) — материалы, получаемые в результате химической кристаллп.за-ции нз газовой фазы прп повышенных т-рах. П. подразделяют на пиролитические, образующиеся при термической диссоциации газообразных соединений, и газофазные (реакции ме к-ду двумя и более соединениями). Их получают в виде покрытий (см. Газофазные покрытия), композиционных материалов и порошков. Практически все хим. элементы, большинство важнейших тугоплавких соединений п мпогие вещества с особыми фпз. св-вами получают в виде П. Различают П. углеродные (важнейшие сажа, пирографит, эпитаксиальные слои на алмазах) металлические (важнейшие йодидные титан, цирконий и гафний, фторидные — вольфрам, карбонильные — железо, никель, молибден и вольфрам) тугоплавкие (важнейшие карбиды титана, вольфрама, ниобия, тантала, кремния и бора, нитриды титана, ниобия, алюминия и бора, окислы алюминия, циркония, титана, крем- [c.177]

    Со многими металлами, имеющими изоморфную кристаллическую структуру, размер атомов, близкий к размеру атома тантала, а также близко расположенными к нему в ряду электроотрицательностн, таитал образует непрерывные твердые растворы. К этим металлам, в частности, относятся ниобий, вольфрам, молибден, ванадий, Р-титан и др. Ограниченные твердые растворы и металлические соединения тантал образует с алюминием, бериллием, золотом, кремнием, никелем, т. е. металлами, которые значительно отличаются по размерам атомов и электроотрицательностн С литием, калием, натрием, магнием и некоторыми другими элементами тантал практически не образует ни твердых растворов, ни соединений. [c.335]

    Хорошим критерием чистоты металла является примесная проводимость, которую при низких температурах можно измерить непосредственно в виде остаточного сопротивления. По его величине можно судить о том, что еше очень мало металлов получено в очень чистом состоянии. Это относится именно к тем металлам, для которых есть очень хорошие методы очистки, т. е. электролиз для легкоплавких металлов или же высокотемпературная обработка для тугоплавких. Таким является вольфрам, который можно получить термической диссоциацией хлорида. Напротив, титан и цирконий показывают еше очень большую величину остаточного сопротивления, даже когда они получены из иодидов. Иодидный метод особенно эффективен, если речь идет об удалении таких неметаллических примесей, как кислород, азот и углерод. Часто не замечали того, что этот метод малоэффективен для металлических примесей — в большинстве случаев они также переходят из иода в иодид и поэтому попадают в очишенный образец. Поразительные изменения, происходяшие при удалении кислорода из титана и циркония, привели к тому, что часто переоценивают влияние кислорода на свойства. С другой стороны, остаточные сопротивления могут дать и заниженные данные о чистоте, потому что при подготовке образца для измерения легко снова внести небольшие количества кислорода. Это наблюдалось Фастом в случае титана и циркония, а также следует из данных Уайта и Вудса для ванадия, когда после прокаливания в вакууме остаточное сопротивление увеличилось [6]. [c.347]

    Металлофосфорные покрытия осаждаются на многих металлических поверхностях. Однако, если поверхность каталитически неактивна (медь, вольфрам, титан и другие), то возникает необходимость ее модифицирования, например, путем обработки в растворе хлорида палладия. [c.57]

    Переходные металлы IV—VI групп — титан, цирконий, гафний, ванадий, ниобий, тантал и при высоких температурах хром, молибден и вольфрам — образуют монокарбиды типа Na l с металлической проводимостью. Это объясняется передачей четырех электронов от атома металла к атому углерода и переходом остальных валентных электронов металла в свободное состояние. Ионы металла и углерода приобретают внешнюю конфигурацию р , которая и обусловливает структуру типа Na l. Металлическая проводимость карбидов Ti , Zr и Hf обусловлена тем, что эти карбиды представляют дефектные твердые растворы с дефицитом углерода, т. е. с избытком атомов металла. [c.184]

    Хотя в технике в наше время в гораздо больших масштабах используются сплавы металлов, однако и непосредственное применение чистых металлов неуклонно продолжает возрастать. В последние два-три десятилетия особенно увеличился ассортимент Н01вых технически важных металлов. Не так давно на такие металлы, как кобальт, молибден, ниобий, вольфрам, титан, цирконий, тантал, индий, германий и ряд других, можно было смотреть как на сравнительно редкие, не имеющие широкого практического применения. Сейчас все эти металлы имеют уже большое значение в технике и интерес к их свойстам, в том числе и Koippo-знойным, все время возрастает. Для правильного понимания коррозионных свойств металлических сплавов необходимо знать коррозионные свойства чистых компонентов. Поэтому далее мы дадим общую коррозионную характеристику наиболее важных для техники чистых металлов. Коррозионные свойства сплавов будут рассмотрены позже. [c.430]


Смотреть страницы где упоминается термин Вольфрам в металлическом титане: [c.561]    [c.309]    [c.180]    [c.481]    [c.566]    [c.390]   
Колориметрические методы определения следов металлов (1964) -- [ c.803 ]




ПОИСК





Смотрите так же термины и статьи:

Вольфрам в металлическом вольфраме

Металлический вольфрам



© 2025 chem21.info Реклама на сайте