Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Нефть азотистые соединения нафтеновые кислоты в ней

    Состоя в основном нз углеводородов, нефть может содержать сернистые соединения, кислородные соединения (нафтеновые кислоты и асфальто-смолистые вещества) и азотистые соеди-Ь- нения. [c.14]

    Нефть - темная, маслянистая жидкость, в состав которой входят углеводороды и минеральные примеси. Углеводородная часть нефти состоит из соединений парафинового, нафтенового и ароматического рядов. Парафиновые углеводороды (алканы) включают растворенные в нефти газообразные ( 1- 4), жидкие ( - j ) и твердые (выше С[5> гомологи метанового ряда, количество которых в нефтях находится в пределах 30-50%. Нафтены представлены моно-, би- и полициклическими структурами с боковыми цепями и без них, их содержится от 25 до 75%. Ароматические углеводороды (арены) имеют моноциклические (бензол, толуол, ксилолы), би- и полициклические (нафталин, антрацен и др.) структуры. Аренов, как правило, в нефти (10-20%) содержится меньше, чем алканов и нафтенов. Кроме того, нефть включает кислородные (нафтеновые кислоты, фенолы и др.), сернистые (сероводород, сульфиды, тиофен и др.) и азотистые (производные аминов, пиридина и др.) соединения. [c.341]


    Помимо углеводородов,в нефти присутствуют сернистые соединения (растворенный сероводород, меркаптаны, сульфиды, дисульфиды, тиофаны. тиофены), азотистые соединения (пиридиновые основания, амины), кислородсодержащие соединения (нафтеновые кислоты, фенолы и др.). Количество этих соединений во фракциях нефти, выкипающих до 300-350 С, обычно невелико и зависит от общего содержания серы, азота и кислорода в нефти. Надо иметь в [c.16]

    Помимо углеводородов в низкомолекулярной части нефти присутствуют также кислородные соединения — нафтеновые кислоты, фенолы и др. сернистые соединения — меркаптаны, сульфиды, дисульфиды, тиофаны и др., а иногда и азотистые типа пиридиновых оснований и аминов. Количество всех этих гетероатомных веществ, перегоняющихся в пределах до 300—350° С, как правило, невелико, так как основная масса кислорода, серы и азота концентрируется в высокомолекулярной части нефти. [c.19]

    Азотистые соединения легко выделяются из нефти с помощью серной кислоты. При перегонке некоторых азотистых нефтей уже при сравнительно низких температурах (200—250° С) замечается сильный запах аммиака. Предполагается, что он выделяется из аммиачных солей нафтеновых кислот. [c.104]

    Неуглеводородная часть нефти состоит из сернистых, кислородных и азотистых соединений. Сера, количество которой колеблется от 0,1 до 7,0%, входит в состав меркаптанов, сульфидов, дисульфидов жирного ряда. По содержанию серы нефти делятся на малосернистые (например, кавказские нефти) и много-сериистые (нефти Башкирии, Татарии). Кислородные соединения нефти составляют нафтеновые кислоты, смолы и асфальтовые вещества. Смолы и асфальты — продукты с высокой молекулярной массой придают нефти темную окраску, они химически неустойчивы и легко при нагревании разлагаются и коксуются. Азотистые соединения нефти представлены производными пиридина, хинолина и аминами. Б нефтях содержится до 1,5 и 2,2% кислорода и азота соответственно. [c.32]

    В неуглеводородную часть нефти входят разнообразные кислородные (фенолы, нафтеновые кислоты, гетероциклы), азотистые (производные пиридина и хинолина, амины) и сернистые (тиофен, тиоспирты и тиоэфиры) соединения. По содержанию серы нефти делятся на  [c.115]

    Кроме углеводородов, являющихся основной массой (80—90 /о и более) нефти и состоящих из представителей парафинового, нафтенового и ароматического рядов, нефти содержат иногда довольно значительное (10—20 /о) количество смол и родственных им веществ — в большинстве высокомолекулярных и содержащих кислород и серу небольшое количество нафтеновых кислот, азотистых оснований, сернистых соединений и очень небольшое количество (сотые доли процента) минеральных веществ. Огромное количество углеводородов отдельных классов, содержащихся в нефтях в самых различных соотношениях, и наличие наряду с этим изомерных соединений крайне затрудняют процесс их выделения и идентификации. [c.5]


    Все нефти и их дестиллаты состоят из углеводородов, в которых растворены смолисто-асфальтовые вещества, сернистые и азотистые соединения, а также нафтеновые кислоты. [c.54]

    Из числа углеводородов, входящих в состав нефтей, такие, например, как метан, этан, пропан, н-бутан, н-пентан, гептан и его изомеры, циклогексан, бензол, нафталин являются неполярными. Нафтеновые кислоты, фенолы, некоторые сернистые, азотистые соединения, а также ряд углеводородов асимметрического строения, а также, смолы, относятся к соединениям полярным. [c.60]

    Парафинистые нефти обыкновенно содержат мало гетерогенных соединений (азотистых и кислородных), в частности, в них гораздо ниже содержание нафтеновых кислот. [c.53]

    В состав сырой нефти часто в заметных количествах входят, помимо углеводородов, также и другие органические соединения. В целом ряде нефтей присутствуют органические карбоновые кислоты, которые рассматриваются в главе 48 под общим названием нафтеновых кислот. В некоторых нефтях найдены соединения фенольного характера i . Асфальтовые вещества нефти в главной массе состоят из сильно конденсированных кислородсодержащих соединений. В числе серусодержащих соединений встречаются не только сероводород и его органические производные, но также и более сложные сернистые соединения, включая сюда тиофен и его производные i . Некоторые нефти содержат относительно большие количества элементарной серы. Кроме тогО в нефти встречаются органические основания, в состав которых входят сложные азотистые соединения. В настоящее время интерес к этим азотистым соединениям вновь возродился, главным образом в результате ряда исследований в области их свойств и строения. Детальное описание этих веществ можно найти в главе 35. [c.42]

    Среднее содержание в нефтях углерода — 82,2 — 87,7%, водорода— 11,82— 14,1%. Помимо углеводородов, в нефти содержится небольшое количество нафтеновых карбоновых кислот (стр. 367), сернистых и азотистых соединений. В таблице 6 приведено среднее содержание основных классов углеводородов в различных нефтях (во фракциях с температурой кипения до 300 °С). [c.44]

    Неуглеводородная часть нефти состоит из сернистых, кислородных и азотистых органических соединений. Сера входит в состав меркаптанов, сульфидов, дисульфидов жирного ряда. По содержанию серы нефти делятся на малосернистые (например, кавказские нефти) и многосернистые (нефти Башкирии, Татарии). Кислородные соединения нефти составляют нафтеновые кислоты, смолы и асфальтовые вещества. Смолы и асфальты — продукты с высоким молекулярным весом придают нефти темную окраску, [c.471]

    В нефти содержится небольшое количество кислородных соединений, так называемых асфальтосмолистых веществ и нафтеновых кислот, которые представляют собой жидкие маслянистые, а иногда твердые вещества, плохо растворимые в воде и обладающие неприятным запахом. Присутствие нафтеновых кислот в маслах нежелательно, так как они, реагируя с металлами, образуют соли, что приводит к коррозии деталей двигателя. Асфальтосмолистые вещества относятся к сложным химическим соединениям, в молекулу которых, кроме углерода и водорода, могут входить кислород и сера. Они легко изменяются на воздухе, а также при воздействии температуры. Кроме того, в нефти содержится небольшое количество серы. Она встречается в ней в свободном состоянии и в виде органических соединений, так называемых меркаптанов, сульфидов, дисульфидов и т. д. Кроме углеводородов, кислородных сернистых и азотистых соединений, нефть содержит 0,1—0,3% мине ральных примесей. В небольших количествах в ней находится и вода [c.5]

    Концентрированная серная кислота, применяемая для промышленной очистки масел, является важным деасфальтирующим реагентом основное действие ее направлено на удаление из нефти асфальтово-смолистых веществ, непредельных соединений и части полициклических ароматических углеводородов. По скорости взаимодействия с серной кислотой отдельные группы соединений, содержащихся в маслах, распределяются примерно в следующем порядке азотистые соединения > асфальтены и смолы > олефины > фенолы > ароматические углеводороды > нафтено-ароматические углеводороды > нафтеновые кислоты > нафтены > > парафины, [c.258]

    Кислый гудрон, образующийся при очистке масел и других продуктов прямой гонки нефти, содержит, кроме непрореагировавшей серной кислоты, сернистого газа и сульфата железа, значительные количества органических соединений. В состав органической части гудрона принципиально могут входить компоненты нейтрального, основного и кислого характера углеводороды, нейтральные смолы, асфальтены, карбены и карбоиды, асфальто-оксониевые соединения, нейтральные сернистые соединения, азотистые основания, нафтеновые (и жирные) кислоты, асфальтогеновые кислоты, кислые эфиры серной кислоты, сульфоновые кислоты [245]. [c.260]


    Непредельных углеводородов с ненасыщенными свя.зями в цепи, как правило, в сырых нефтях нет. Имеются только отдельные нефти с незначительным содержанием непредельных углеводородов. Помимо углеводородов, в низкомолекулярной части нефти присутствуют также гетероатомные органические соединения кислородные (в основном нафтеновые кислоты, фенолы и др.), сернистые (меркаптаны, сульфиды, дисульфиды, тиофаны и др.), а иногда и азотистые (типа пиридиновых оснований и аминов). [c.15]

    Нефтяные продукты и дистилляты, получаемые при первичной перегонке нефти и термоконтактных процессах, не являются готовыми (товарными) продуктами, так как содержат вещества, затрудняющие их применение и хранение (смолы, асфальтены, нафтеновые кислоты, твердые углеводороды, непредельные углеводороды, сернистые и азотистые соединения, минеральные примеси и пр.). Выделение этих вредных примесей и составляет задачу химической очистки нефтяных продутов и дистиллятов. [c.265]

    Первоначально были высказаны предположения, что оптическая деятельность нефти связана с характером некоторых ее второстепенных компонентов. Ближайшие исследования не подтвердили, однако, этих предположений. Так, например, после того как было установлено, что естественные нафтеновые кислоты являются оптически деятельными, естественно было поставить вопрос, не ими ли обусловливается и оптическая деятельность нефти. Оказалось, однако, что активность нефтепродуктов сохраняется даже после тщательной обработки их щелочью, т. е. после удаления нафтеновых кислот. Равным образом очистка нефтепродуктов от сернистых соединений, а также полное отсутствие в некоторых из них азотистых соединений нисколько не отражались на их оптической деятельности. Отсюда можно сделать вывод, что носителями оптической деятельности нефтей являются не второстепенные, а основные их компоненты, т. е. углеводороды. [c.64]

    Нефть представляет собой очень сложную смесь большого количества углеводородов (в среднем около 90% и выше) и небольшого количества кислородных соединений, главным образом нафтеновых кислот, сернистых и азотистых соединений. Хотя процентное содержание углерода и водорода в нефти из различных [c.586]

    Прочие реакции серной кислоты скомнонен-тами нефтяных фракций. Имеющиеся в составе нефти азотистые соединения взаимодействуют с серной кислотой, образуя сульфаты, переходящие в кислый гудрон. Нафтеновые кислоты частично растворяются в серной кислоте, а частично сульфируются, причем карбоксильная группа нафтеновых кислот при сульфировании не разрушается. Продукты взаимодействия нафтеновых и серной кислот ослабляют эффективность действия серной кислоты на другие соединения, поэтому целесообразно перед сернокислотной очисткой предварительно удалить из очищаемого продукта нафтеновые кислоты. [c.379]

    Прочие реакции серной кислоты с компонентами нефтяных фракций. Имеющиеся в составе нефти гзотистые соединения взаимодействуют с серной кислотой, образуя сульфаты, переходящие в кислый гудрон. Нафтеновые кислоты частично растворяются в серной кислоте, а частично сульфируются, причем карбоксильная группа нафтеновых кислот при сульфировании не разрушается. Продукты взаимодействия нафтеновых 1 серной кислот ослабляют эффективность действия серной кислогы на другие соединения, поэтому целесообразно перед сернокислотной очисткой предварительно удалить из очищаемого продукта нафтеновые кислоты. Условия очистки. Технологический режим сернокислотной очистки зависит от ее назначения. Дли очистки, имеющей целью удаление смолистых веществ из мaзo ныx масел, повышение качества осветительных керосинов, удаление сернистых соединений, применяют 93% кислоту. При деароматизации используется 98% кислота или олеум. Легкая очистка бензина, предназначенная для улучшения цвета или удаления азотистых оснований, проводится серной кислотой с концентрацией 85% г ниже. Применение разбавленной кислоты там, где это возможно, предпочтительнее, так как кислый гудрон образуется в меньших количествах, ослабляются процессы полимеризации. [c.317]

    Причем в бензиновой фракции (до 478 К) практически присутствуют только классы СпНгп+г, СпНгп и СпНгп-б. В керосиновом и дизельном дистиллятах (473—623 К) вместе с указанными (только с Си—С1б) значительную долю составляют би- и трициклические углеводороды. Помимо углеводородов в низкомолекулярной части нефти присутствуют в незначительных количествах также кислородные (нафтеновые кислоты, фенолы), сернистые (меркаптаны, сульфиды) и азотистые соединения. [c.29]

    Нами совместно с B. . Вышемирским был определен и.с.у. кислых и основных компонентов нефтей Западной Сибири (табл. 15) [3]. Оказалось, что во всех исследованных нефтях и.с.у. азотистых оснований значительно тяжелее и.с.у. нефтей в целом. Азотистые основания представляют собой смесь гетероциклических соединений, в основном производных пиридина, хинолина и акридина. Обогащение их тяжелым изотопом углерода, вероятно, обусловлено термодинамическим эффектом, так как связи = N и С = С имеют повышенные значения термодинамических изотопных факторов [4 . Кислоты нормального строения и изокислоты обладают существенно разным и.с.у. Во всех нефтях нормальные кислоты имеют более тяжелый и.с.у. по сравнению как с нефтями в целом, так и с суммой нафтеновых кислот и изокислот. Как известно, для УВ наблюдается обратная картина. [c.59]

    Производные азота содержатся в крекинг-бензинах в незначительных количествах, главным образом, в виде производных пиридина и других азотистых органических оснований. Азотистые соединения отмываются слабыми растворами неорганических кислот, образуя соли, и могут быть регенерированы из кислотных растворов. Браттон и Бэйли [5а] выделили из калифорнийского крекинг-бензина метил-, диметил- и триметилпиридины, хинолин и хинальдин. В противоположность дестиллатам прямой гонки в крекинг-бензинах найдены только ароматические азотистые основания. Азотистые соединения присутствуют, главным образом, в крекинг-бензинах, полученных из нефтей нафтенового и асфальтового оснований. [c.309]

    Применение метода интегрально-структурного анализа с использованием данных ПМР-спектроскопии позволило выявить среди азотистых соединений основного и нейтрального характера структуры, средние молекулы которых построены из 1—2 структурных единиц и представляют собой гетероароматические ядра, сконденсированные с несколькими ароматическими и нафтеновыми циклами и имеющие, как лравило, алкильное обрамление с наибольшей длиной заместителя у нафтенового кольца. Эти структурные единицы макромолекул идентичны но строению соединениям с более низкой молекулярной массой, обнаруженным как в исследуемых нефтях, так и в нефтях других месторождений. С использованием комплекса физико-химических методов разделения и анализа, включающих жидкостно-адсорбцион-яую хроматографию со ступенчатым способом элюирования, установлен структурно-групповой состав основной массы азотистых соединений, содержащихся в концентратах ряда исследованных нефтей. Среди азотистых оснований всех нефтей, как правило, преобладают азаарены, включающие алкилзамещенные структуры бензонроизводных пиридина с максимумом, приходящимся на хинолины. Для них характерно присутствие также основных соединений с N8- и N02-функциями, которые, по данным масс-спектрометрии, были отнесены к производным тиазола и пиридинокарбоновой кислоты соответственно. [c.176]

    Мы не считаем необходимым подвергать подробному рассмотрению различные теории, предложенные для объяснения происхождения нефти. В настоящее время пришлось отказаться от многих старых теорий, как например от теории неорганического (карбидного) происхождения нефти, так как органическое происхождение ее считается теперь почти доказанным. Помимо доказательств геологического характера, теория органического происхождения нефти находит подтверждение также в самой природе ее, в особенности благодаря присутствию в ней оптически активных веществ, нафтеновых кислот, сернистых и азотистых соединений Отсутствие окиси углерода, водорода и олефинов в естественном газе, а также непредельных соединений в нефти, как это было уже отмечено Быше, повидимому, указывает на то, что образование нефти обусловлено процессами, протекающими при низких температурах. Нет необходимости приписывать наличие ароматических углеводородов в нефти синтетическим процессам, имеющим место при высокой температуре, так как существование этих соединений может быть объяснено реакциями перераспределения водорода, протекающими при низких температурах. Lind считает возможным, что происхождение нефти отчасти может быть обусловлено синтетическими процессами, являющимися результатом действия альфа-радиации радиоактивных минералов однако ото предположение опровергается составом нефти и естественного газа [c.48]

    Далее, имеются указания на присутствие в нефти оснований, содержащих нафтеновые цжлы с 5 угле1 дными атомами, в частности полициклических соединений, состоящих из пятичленных и шестичленных ядер. Аналогично общепринятому термину нафтеновые кислоты эти нафтеновые азотистые соединения могут быть названы нафтеновыми основаниями . Действительно, можно обнаружить определенное соотношение между нафтеновыми основаниями и соответствующими им углеводородами. [c.888]

    Кислородные соединения нефти представляют собой в основном производные нафтеновых углеводородов — нафтеновые кислоты. Найдены также фенолы и предельные карбоновые кислоты. Сера в нефти находится или в свободном, растворенном виде, ил1г в виде соединений с открытой цепью (меркаптаны, сульфиды, дисульфиды), или в виде гетероциклических соединений (тиофан1л и, возможно, тиофены). Отмечалось также наличие сероводорода. Азотистые соединения нефти представляют собой, главным образом, производные пиридина, хинолина и их гидрированные формы, а также продукты разложения гемина крови и хлорофилла растений — слоя ные соединения, на.чываемые порфир и н а м и. [c.14]

    Исследования первичных смол показали, что в целом они представляют собой смесь непредельных, метановых, нафтеновых н ароматических углеводородов, фенолов, крезолов, ксилснолов, двух-и трехатомных фенолов, карбоновых кислот, альдегидов, кетонов, эфиров, спиртов, различных сернистых и азотистых соединений, а также высоко.молекулярных смолистых веществ, аналогичных асфальто-смолистым веществам нефти. [c.422]

    Ароматические или бензольные УВ — циклического строения, называемые аренами. 4) Кислородные, сернистые и азотистые соединения, называемые гетероэлементами. К ним относятся нафтеновые и жирные кислоты, фенолы, эфиры, тиофан, пиридин. Указанные высокомолекулярные соединения входят в состав асфальтово-смолистой части нефти. Чем больше гетероэ- [c.77]

    Содержание фенолов на порядок меньше, чем нафтеновых кислот,— 0,05%. Из фенолов в нефти найдены орто-, пара- и метакрезолы, ксиленолы и др. Среди азотистых соединений (в нефти содержится 0,1—0,4% азота) обнаружены порс )ирины, гомологи пиридина, хинолина и др. Содержание серы в нефтях изменяется от 0,1 до 1% и более. Главная часть серы в нефтях связана со смолами, остальная — с различными сернистыми соединениями. [c.42]

    При использовании информации об органических веществах в гидрогеохимических исследованиях можно выделить направления аналитических работ в связи с кругом решаемых задач. В проблеме генезиса и формирования подземных вод представляет интерес создание методов определения уже известных (высокомолекулярные жирные кислоты, спирты, алканы, изонреноиды) и поиски новых хемофоссилий , органических молекул биологического происхождения, сохраняющихся в геологическом времени мало изменившимися по сравнению с первоначальной структурой. При решении вопросов нефтяной гидрогеологии, связанных с миграцией и концентрацией углеводородов в залежи нефти, а также с нефтепоисками существенный интерес представляют совершенствование высокочувствительных методов определения различных -рупп углеводородов, в первую очередь наиболее растворимой группы моноядерных ароматических углеводородов. Наряду с углеводородами для поисковой гидрогеохимии необходимы надежные методы определения кислот различных рядов (нафтеновых, высокомолекулярных жирных кислот), наиболее растворимых азотистых соединений, характерных для нефтей. Особый интерес, видимо, представляют выявление и разработка методов анализа сернистых соединений в водах. Решение этих аналитических задач моЖет способствовать раскрытию механизмов их образования и связи с такими региональными процессами, как сульфатредук-ция и накопление в водах нефтяных месторождений высоких концентраций низкомолекулярных жирных кислот. [c.55]

    Обобш,ение большого числа определений органического вещества в подземных водах показало, что можно выделить ряд по-1 азателей, имеющих сравнительно широкое распространение во всех изученных до настоящего времени районах. К таким показателям относятся повышенные содержания бензола и его гомологов (характерно в основном для залежей легкой нефти и газоконденсата), летучих фенолов (характерно для залежей легкой нефти, газа и газоконденсата). Для залежей нефти, как правило, свойственны повышенные содержания органических веществ, извлекаемых из вод хлороформом (битумные вещества), а также для вод гидрокарбонатно-натриевого тина [4] характерны повышенные содержания нафтеновых кислот. Воды нефтяных месторождений часто характеризуются высоким относительным содержанием в битумной фракции азотистых соединений, устойчивых но отношению к воздействию щелочи, но сравнению с общим содержанием азотистых битумных соединений. [c.92]

    Физические и химические свойства кефтяных продуктов. Нефть и продукты ее перегонки имеют сложный химический состав. Они содержат смесь углсЕодородов ряда парафинов (С Н2 2)> т. е. насыщенных углеводородов, олефинов — непредельных углеводородов (ряда этилена Hj = Hj), нафте-нов — циклических углеводородов (полиметиленов Hj ) помимо этого, нефтяные масла содержат также от 1,5 до 5% нафтеновых кислот. Легкие к средние масла (соляровое, веретенное) могут содержать 1,5—2% смоляных веществ в машинных и цилиндровых дистиллятах количество нейтральных смоляных веществ, которые придают цвет дистиллятам, достигает 4—10%. В состав этих продуктов входят также сера, азотистые соединения и другие вещества, они могут содержать и примеси, образующиеся под влиянием солнечных лучей (окислением). [c.112]

    Непредельные соединения, образовавшиеся в процессе перегонки нефти, полимеризуЮтся под действием кислоты и удаляются с кислым гудроном. Асфальто-смолистые вещества частично растворяются в кислоте без изменений, частично уплотняются за счет реакций конденсации и полимеризации и осаждаются с кислым гудроном. Азотистые соединения почти полностью переходят в кислый гудрон в виде сульфатов. Сернистые соединения извлекаются в незначительных количествах. Нафтеновые кислоты растворяются и сульфируются. Из углеводородной части дистиллята в большей степени удаляются полициклические ароматические углеводороды с короткими боковыми цепями [2.1, 2.2]. Увеличивая концентрацию и количество кислоты, можно добиться почти полного удаления смолистых веществ и ароматических углеводородов. Однако такое бесцветное и переочищенное масло будет нестабильным [c.36]

    Сильно загрязняются природные водоемы также нефтью и сточными водами нефтеперерабатываюших заводов, содержащими различные продукты переработки нефти (нафтеновые кислоты, сернистые соединения, меркаптаны, азотистые соединения, смолистые вещества, а также органические и неорганические соли, фенолы и их производные, сероводород и его соли, соединения мышьяка и свинца, кислоты, щелочи и пр.). [c.11]

    Существуют различные методы выделения нефтяных сульфокислот в относительно чистом виде. В процессах переработки нефти, например при получении белых масел, когда желательно выделить сульфокислоты, исходное сырье подвергают предварительной обработке небольшим количеством серной кислоты или одним из селективных растворителей. Эта операция имеет целью удаление присутствующих асфальтовых веществ, легко полимеризующихся и окисляющихся углеводородов и ряда сернистых и азотистых соединений. Затем масло обрабатывается основным количеством кислоты, обычно олеума, и отстаивается. После удаления нижнего слоя кислого гудрона в верхнем слое остаются в виде раствора в масле красные сульфокислоты. Из этого раствора, как указывается в ряде патентов , сульфокислоты могут быть выделены путем промывания щелочью или извлечены растворителями, например метиловым или этиловым спиртом. Истинные сульфокислоты могут образовываться при действии олеума на насыщенные углеводороды с разветвленной цепью или на нафтеновые и даже на нормальные парафиновые углеводороды. В последнем случае парафины, повидимому, сначала окисляются до олефинов, которые затем превращаются [55] в сульфатосульфокислоты. [c.96]

    Нефть представляет один из природных источников большого количества органических соединений. В нашей кавказской (Баку) нефти содержится до 90% циклических (нафтеновых) углеводородов и совсем мало ациклических, жирных. Уральская нефть содержит много ароматических углеводородов. Вообще всякая природная нефть имеет очень сложный состав. В нее входят в значительных количествах разнообразнейшие углеводороды парафины, олефины, циклопарафины, ароматические углеводороды в небол1>-ших количествах нафтеновые кислоты, азотистые основания, органические сернистые соединения и др. Поэтому выделение из нефти, нянример парафиновых углеводородов, представляет весьма трудную задачу. [c.37]

    Автор изучил на колонке свечение отдельных составных частей нефти и нашел, что ил сами высокомолекулярные смолы, ни их растворы в бензине не люминесннруют. Твердые уг.ле-водороды светятся бе.лыл светом, легконлавкпе — голубым их свечение переходит в фиолетовое свечение масляных углеводородов. Легкие углеводороды не светятся. Азотистые соединения нефти светятся буро-красным нветом. Флуоресценция органических кислот и нафтеновых кислот голубовато-фиолетового цвета разных оттенков и неодинаковой иптепсивности. [c.28]


Смотреть страницы где упоминается термин Нефть азотистые соединения нафтеновые кислоты в ней: [c.173]    [c.175]    [c.13]    [c.1154]    [c.48]    [c.60]   
Химия углеводородов нефти и их производных том 1,2 (0) -- [ c.1167 ]




ПОИСК





Смотрите так же термины и статьи:

Кислота азотистая

Нафтеновые кислоты



© 2025 chem21.info Реклама на сайте