Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Водород хлористый реакция с ароматическими углеводородами

    Точно так же, как парафины способны при особых условиях вступать в обычные реакции ароматических углеводородов — хлорирование, нитрование и сульфирование, — они могут в присутствии хлористого алюминия реагировать по типу процессов Фриделя—Крафтса. Так, например, парафины реагируют с уксусным ангидридом или хлористым ацетилом с образованием кетонов, а с окисью углерода и хлористым водородом образуют альдегиды и хлорангидриды кислот [17]. [c.100]


    Реакциями алкилирования и арилирования принято называть химические процессы, ведущие к внедрению алкильных или арильных групп в различные органические молекулы. Алкилированием можно наращивать углеводородные цепи путем замены атомов водорода на разные радикалы, вводить заместители в ароматические молекулы и различные группы по кратным связям. Реакции алкилирования очень разнообразны. Их применяют для получения разветвленных углеводородов на базе алкилирования парафинов олефинами, а также для получения ароматических углеводородов с боковыми цепями и ряда других производных на базе реакций с хлористым алюминием и другими катализаторами. [c.648]

    Синтезы гомологов бензола алкилиро-ванием ароматических углеводородов. Большое значение имеет алкилирование ароматических углеводородов, т. е. введение в бензольное ядро алкильных радикалов при этом получаются различные гомологи бензола. Алкилирование осуществляется различными методами. Например, при действии на бензол хлористых алкилов в присутствии безводного хлористого алюминия (катализатор) атомы водорода ядра замещаются радикалами и с выделением галогеноводорода образуются гомологи бензола (реакция Фриделя — Крафтса, 1877). Например  [c.339]

    Хлористый алюминий катализирует реакции ароматических углеводородов с галогенсодержащими соединениями. Эти реакции сопровождаются образованием связей С—С и могут быть отнесены к числу реакций конденсации. Часто эти процессы проходят с выделением хлористого водорода или других простых молекул. Указанные реакции разделяют на две группы 1) алкилирование ароматических углеводородов 2) ацилирование ароматических углеводородов (синтез кетонов ароматического ряда). [c.154]

    Сходные представления высказывали и другие авторы, например Броун [44,45]. С химической точки зрения, говорит он, реакции между кислотами и основаниями могут иметь много общего с реакциями между основаниями и иными акцепторами, причем прочность комплекса (продукта реакции) зависит от силы основания. Так, молекулярный иод и хлористый водород взаимодействуют с ароматическим углеводородом с образованием неустойчивого соединения состава 1 1. [c.28]


    Комплексы ароматических углеводородов с катализаторами реакции Фриделя—Крафтса. В отсутствии хлористого водорода хлористый алюминий не растворяется и не взаимодействует каким-либо другим образом с ароматическими углеводородами [56]. Кроме того, бромистый алюминий легко растворяется в ароматических углеводородах, и имеется значительное количество данных, подтверждающих существование комплексов определенного типа. Однако литературные данные разноречивы и не позволяют сделать однозначный вывод о существовании комплекса [112, 223, 252, 253, 254, 300]. [c.431]

    Методы доведения до конца реакции хлорсульфирования. При хлорсульфировании ароматических углеводородов по двум реакциям, указанным выше, первая стадия реакции (введение сульфогруппы) идет быстро и до конца с выделением хлористого водорода. [c.521]

    Реакция Гаттермана—Коха , дающая возможность непосредственно ввести альдегидную группу в бензольное ядро, заключается во взаимодействии смеси окиси углерода и хлористого водорода с ароматическими углеводородами в присутствии хлористого алюминия и однохлористой меди. По-видимому, в условиях реакции под каталитическим влиянием однохлористой меди образуется хлористый формил, который в присутствии хлористого алюминия конденсируется с ароматическим углеводородом по реакции Фриделя—Крафтса  [c.298]

    Конденсация с выделением хлористого водорода (или органической кислоты). Реакцию Фриделя—Крафтса по введению кетогруппы в ароматическое кольцо (ацилирование) можно рассматривать как конденсацию с использованием в качестве конденсирующего средства хлористого алюминия. Она заключается во взаимодействии ароматического углеводорода с хлор-ангидридами кислот с выделением молекулы хлористого водорода. [c.254]

    Кроме спиртов и аминов, легко ацилируются и другие соединения с подвижными атомами водорода, например меркаптаны, фенолы. К реакциям ацилирования особого типа можно отнести и получение ароматических кетонов взаимодействием ароматических углеводородов с ангидридами или хлорангидридами кислот в присутствии хлористого алюминия (реакция Фриделя—Крафтса). [c.150]

    Из газообразных токсических веществ чаще других встречаются в лаборатории сероводород, хлористый водород, окислы азота, хлор и некоторые другие. Многие из этих веществ применяются в лабораторном практикуме как исходные или конечные продукты. Кроме того, газообразные токсические вещества часто образуются как побочные продукты в ходе основной реакции (окислы азота — при нитровании ароматических углеводородов, сероводород и фосфористый водород — при получении ацетилена из карбида кальция, мышьяковистый водород — при растворении технического цинка в соляной кислоте и т. д.). [c.15]

    Работы по катализу Сабатье начал с изучения реакций присоединения водорода к непредельным соединениям вскоре он распространил гидрогенизационный катализ на ароматические углеводороды, кислород- и азотсодержащие соединения. Известно, каким большим количеством методов восстановления располагала органическая химия до работ Сабатье и в то же время как ограничены были возможности этих методов. Восстановление амальгамой натрия, натрием и спиртом, цинком в кислой и щелочной средах, йодистым водородом и другими реагентами требовало соблюдения большого числа различных условий и все-таки, как правило, сопровождалось многими побочными реакциями. Реагентов, восстанавливающих только одну систему и не затрагивающих другие системы, не существовало. Техника проведения реакций была сложной. Процесс восстановления часто требовал затраты дефицитных реактивов (олово, хлористое олово, иод и др.). После исследований Сабатье возможности восстановления или гидрогенизации органических соединений стали неизмеримо шире. Реакции Сабатье отличались удивительной простотой. Методика выполнения экспериментов заключалась по существу в пропускании смеси паров органического вещества с водородом через трубку, содержащую мелко раздробленный металл в качестве катализатора. [c.27]

    Алкилирование ароматического ядра, катализируемое AI I3 и другими электрофильными катализаторами, а. Хлористый алюминий обладает необычайным свойством катализировать реакции ароматических углеводородов с галоидными соединениями. Так, бензол реагирует с бромистым этилом при комнатной температуре, причем выделяется хлористый водород и образуется этилбензол (Фридель и Крафте, 1877 г.) [c.327]

    Прямое введение альдегидной группы —СНО в ароматическое кольцо называется формилированием. В синтезе Гаттермана — Коха формилирова-ние происходит при реакции ароматического углеводорода с окисью углерода в присутствии хлористого водорода и хлористого алюминия. При проведении этой реакции под атмосферным давлением необходимо также присутствие хлорида меди (I), но для реакции при повышенном давлении катализатора не требуется. [c.261]


    В противоположность этому легко и гладко протекает взаимодействие продуктов хлорирования парафиновых углеводородов с ароматическими углеводородами (реакция Фриделя—Крафтса) и их дегидрохлорирование с образованием олефинов. При первой реакции возможно п ютекание двух видов взаимодействия, которые приводят к образованию целевого продукта. Поэтому подобная реакция дает удовлетворительные результаты. Наряду с обычной реакцией Фриделя—Крафтса, при которой хлористый алнил ведет себя обычным образом, возможно также дегидрохлорирование с образованием олефина. Однако в присутствии хлористого водорода и безводного хлористого алюминия этот о 1ефин в равной степени гладко алкилирует ароматический углеводород. [c.234]

    Существуют два типа окислительных реакций непредельных углеводородов 1) прямая атака двойных или тройных связей электрофиль-пыми реагентами, например озоном, фотосенсибилизированным молекулярным кислородом, органическими перкислотами, свободными гидроксильными радикалами, активированной светом перекисью водорода или различными неорганическими перекисями, способными образовывать неорганические перкислоты, перманганатом, неорганическими окислами, такими как четырехокись осмия, пятиокись ванадия, окись хрома и двуокись марганца, солями ртути, иодобензоатом серебра, диазоуксусным эфиром и подобными веществами 2) косвенная атака метиленовых групп, смежных с двойными и тройными связями и с ароматическими ядрами, такими реагентами, как молекулярный кислород, органические перекиси, двуокись селена, тетраацетат свинца,хлористый хромил, трет-бутил-хромат, бромсукцинимид и т. д. Первый тип реакций протекает по ионному механизму, второй — по свободнорадикальному механизму. Некоторые из этих реакций будут рассмотрены в следующих разделах. [c.347]

    Сив нее при интенсивном перемешивании вводили трехкратное (по массе) количество 20—25%-ной перекиси водорода. Окисление заканчивалось через 1 ч. После остывания смесь выливали в тройной объем воды. Всплывавший органический слой декантировали, промывали водой до нейтральной реакции и сушили над прокаченным хлористым кальцием. Растворенные в водном слое сульфоны трижды экстрагировали петролейным эфиром, все вытяжки петролейного эфира объединяли, промывали и сушили над прокаленным хлористым кальцием. Суль-фЪны тиофенов, ароматические углеводороды и неокисленные перекисью водорода сернистые соединения разделяли хро матографически на окиси алюминия или на силикагеле. [c.125]

    Другие ароматические альдегиды. Хороший метод синтеза гомологов бензальдегида был разработан Гаттерманом ои основан на действии окиси углерода и сухого хлористого водорода на ароматические углеводороды в присутствии хлористого алюминия и хлористой меди. При этом СО и НС1 реагируют как (неизвестный) хлораигидрид муравьиной кислоты НС0С1, а весь процесс представляет собой, собственно говоря, особый случай синтеза ароматических г- етонов по Фриделю — Крафтсу (ср, стр. 631). В результате этой реакции альдегидная группа обычно вступает в пара-положение к заместителю в бензольном ядре  [c.627]

    Так, толуол при —78 °С образует с хлористым водородом комплекс в мольном соотношении I 1, причем реакция легко обратима. Тот факт, что на этой стадии не происходит образования связи между атомом углерода кольца и протоном из НС1, подтверждается данными по реакции с D 1, Хлористый дейтерий, так же как и НС1, дает я-комплекс, но его образование и распад не приводят к замещению атомов водорода кольца на дейтерий. Это показывает, что связь С—D в комплексе не образуется. Ароматические углеводороды образуют я-комплексы также с галогенами и ионами Ag+ хорошо известны я-комплексы с пикриновой кислотой (2,4,6-тринитрофено-лом), представляющие собой устойчивые кристаллические соединения, температура плавления которых может быть использована для характеристики углеводородов. [c.139]

    Гомологи бензойного альдегида могут быть получены реакцией Гаттермана—действием на ароматические углеводороды окиси углерода и сухого хлористого водорода в присутствии хлористого алюминия и хлористой меди окись углерода и хлористый водород реагируют при этом как хлорангидрид муравьиной кислоты НС0С1  [c.465]

    Формальдегидная конденсация может повидимому иметь значение для образования хлористого бензила и его замещенных в ядре. Ароматические углеводороды при пропускании хлористого водорода, после того как в них суспендирован триоксиме-тилен (или 40%-ный формалин) в присутствии 2пС12 или Н ЗО , замещают один из своих водородных атомов на группу СН2С1. Эта иитересиая реакция протекает вероятно по схеме (для бензола)  [c.410]

    Хлористый алюминий, с некоторыми из применений которого в конденсациях органических молекул (с отщеплением галоидово дорода) мы познакомились в предыдущей главе и (отчасти во II и IV) вообще приводит молекулы органических соединений в состояние с более ослабленными связями между углеродом и водородом. Таким образом, действуя на ароматические углеводороды, хлористый алюминий содействует их расщеплению на водородные атомы и ненасыщенные радикалы, из которых последние могут соединиться в молекулу с ббльшим числом ароматических ядер, чем было в начальном продукте. Вследствие благоприятного влияния катализатора эта реакция дегидрогенизации проходит при более низкой температуре, чем вышеуказанные конденсации, например в свинцовой бане. [c.501]

    Впервые окисление бензола в фенол осуществлено Фриделем в 1888 г. путем продувания воздуха через кипящий углеводород, смешанный с галогенидом алюминия. Выходы фенола были ничтожны. Фридель полагал, что хлористый алюминий, расшатывающий С — Н-связь ядра при реакциях алкилирования или галогенирования ароматических углеводородов, помогает и в данном случае ходу реакции, т. е. дает возможность легкого внедрения кислорода между ядром и водородом. Но это оправдалось лишь частично. Очевидно, между реакцией замены водородного атома ядра и реакцией внедрения кислорода между ядром и водородом есть существенная разница. Последующие попытки жидкофаз-иого окисления бензола в фенол с тех по р и в сущности до настоящего времени не привели к желаемым результатам. Эмануэль и Денисов [263] указывают на принципиальную возможность жидкофазного окисления бензола в фенол, но прежде чем осуществить эту задачу, необходимо найти пути для устранения обнаруженного ими самоторможения реакции, которое заключается в накоплении продуктов, ингибирующих процесс в результате замены активных радикалов на малоактивные. Применение давления, а также стремление стабилизировать фенол в процессе реакции добавлением щелочей тоже пока не дали должного эффекта [264]. [c.354]

    Растворителем чаще всего служит абсолютный эфир, поскольку он хорошо растворяет хлористый водород и другие компоненты реакции и устойчив в условиях реакции. Однако в зависимости от природы исходных продуктов в ряде случаев применяют и другие растворители 2з, бб например смесь эфира с хлороформом, хлороформ, ароматические углеводороды и др. Реакция Геша была осуществлена и без растворителя Ч [c.198]

    Шорлеммер одним из первых в 60-х годах прошлого века реакции металептического замещения водорода на хлор применил Б практических целях, а именно для определения природы нефтяных парафинов и перехода от последних к активным хлористым алкилам [348]. Бейльштейн в те же годы нашел пути получения хлорзамещенных ароматических углеводородов с местонахождением хлора отдельно в боковой цепи и в ядре [349]. Густавсон позже открыл реакции каталитического галогенирования ароматических углеводородов [350]. [c.367]

    Легко соединяясь с кислородом, серой или хлором, а также — с магний-комплексами окись углерода не образует устойчивых соединений с галоидовородными кислотами. Однако, при взаимодействии хлористого водорода с окисью углерода все же происходит обычное для с присоединение НС1 и образование непрочного хлористого формила Н-С0-С1, который в присутствии хлористой меди и хлористого алюминия вступает в реакцию с ароматическими углеводородами, образуя альдегиды (метод Гаттермана-Коха). Эта реакция идет также и при замене окиси углерода пентакарбонилом, железа [c.52]

    Как показали работы Бланка вместо моно- и дихлорметиловых эфиров для осуществления этих реакций можно пользоваться параформальдегидом в присутствии конденсирующих агентов (Zn I.2 Sn l и др.) с одновременным пропусканием в реакционную смесь хлористого водорода. В качестве промежуточной стадии, повидимому, имеет место образование дихлорметилового эфира или нестойкого хлорметилового спирта, реагирующего далее с ароматическим углеводородом  [c.19]

    Под реакцией алкилирования понимают замену одного или нескольких атомов водорода в ароматическом ядре на алкильную группу. Этот процесс осуществляется взаимодействием ароматических углеводородов с олефинами (этилен, пропилен, бутилен и другие), хлористыми алкилами (хлористый метил, бромистый этил) или спиртами в присутствии таких катализаторов, как безводный А1С1з, Н2304, Н3РО4 и другие. [c.527]

    Обычно реакцию Гаттермана-Коха проводят, применяя эквимолекулярные количества хлористого алюминия и ароматического углеводорода. Для проведения реакции при атмосферном давлении эту смесь непрерывно насыщают сухим хлористым водородом желательно также присутствие таких добавок, как полухлористая медь. Высокое парциальное давление окиси углерода (30— 70 ат), по-видимому, повышает выход и уменьшает продолжительность реакции, необходимую для нолучешш удовлетворительных результатов. Реакцию обычно осуществляют при сравнительно низкой температуре (25—60°). [c.33]

    Теория карбоний-ионов объясняет основные особенности каталитического-крекинга, за исключением образования ароматических углеводородов из-соединений с прямой цепью и дегидрогенизации нафтеновых углеводородов, подобных декалину, сопровождающейся выделением молекулярного водорода.. Образование ароматических углеводородов частично можно считать результатом полимеризации и дегидрогенизации путем переноса водорода. Дегидрогенизация, сопровождающаяся выделением молекулярного водорода и наблюдаемая при крекинге высокомолекулярных нафтеновых углеводородов, протекает лри невысокой дегидрогенизационной активности катализатора такой же, например, как у у-окиси алюминия с сильно развитой поверхностью. Аналогичные реакции ароматизации и дегидрогенизации наблюдались в присутствии хлористого алюминия и до настоящего времени не получили удовлетворительного объяснения. Вероятно, наиболее слабым местом теории является отсутствие ясного представления о способе пницииро-вания реакций крекинга парафиновых углеводородов. Для выяснения этого вопроса требуется проведение серьезных исследований. [c.430]


Смотреть страницы где упоминается термин Водород хлористый реакция с ароматическими углеводородами: [c.222]    [c.643]    [c.97]    [c.38]    [c.82]    [c.315]    [c.637]    [c.647]    [c.134]    [c.80]    [c.435]    [c.82]    [c.82]    [c.424]   
Безводный хлористый алюминий в органической химии (1949) -- [ c.599 , c.606 , c.607 ]




ПОИСК





Смотрите так же термины и статьи:

Ароматические углеводороды, реакции

Реакция ароматических углеводородов с водородом

Хлористый водород



© 2025 chem21.info Реклама на сайте