Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Биологически активные материал

    Масса биологически активного материала [c.256]

    Для оценки эффективности аффинной хроматографии су щественное значение имеет выход исследуемого белка на каждой стадии элюирования. В связи с этим все полученные фракции сохраняют до окончания эксперимента. Выход исследуемого белка может варьировать в широком диапазоне. Добавление белка-носителя приводит к увеличению выхода биологически активного материала, но может также повлиять на степень очистки, При вымывании лиганда с сорбента наблюдается уменьшение выхода сорбированного белка или кажущегося выхода выделяемого биологически активного материала. Степень отщепления лиганда оценивают по содержанию лиганда во фракциях, полученных при промывке сорбента до нанесения образца [8], или по отщеплению радиоактивной метки при использовании радиоактивно меченных лигандов. [c.186]


    Их селективность определяется биологической активностью материала, непосредственно связанного с рабочим электродом. [c.131]

    К экологическим свойствам относят токсичность (ядовитость) и канцерогенность (биологическая активность, вызывающая раковые заболевания), а также биоаккумуляцию (возможность накопления компонентов смазочного материала в живых организмах, главным образом — в крови и жировых тканях) — свойства, связанные с непосредственной опасностью для живых организмов пожаро- и взрывоопасность, стабильность состава и свойств в условиях хранения, транспортирования и применения, испаряемость, биоразлагаемость свойства, связанные как с экологи- [c.12]

    Со времени второго издания прошло 8 лет и возникла необходимость внести ряд дополнений и изменений. Основные изменения заключаются в том, что три главы по стереохимии мы объединили в одну, которая по-прежнему помещена после описания химии простых функциональных групп. Тем не менее, те, кто полагают, что раздел стереохимии должен следовать сразу за вводными главами, всегда могут читать главы в том порядке, в котором считают нужным. Материал, связанный с конформациями открытой цепи и насыщенных циклических соединений, значительно расширен, при изображении насыщенных щести-членных циклов там, где это уместно, использовалась конформация кресла наряду с прежней плоской структурой. Третье издание дополнено новой главой, содержащей сведения о четырех группах физиологически активных веществ в ней вводится и развивается понятие о взаимосвязи структуры и биологической активности соединений в фармакологической области, и, кроме того, кратко описано биосинтетическое происхождение природных веществ. [c.8]

    В работе изложены результаты исследований по разработке способа введения биологически активных компонентов в полимерную матрицу, обеспечивающего сохранение биологической активности вводимого соединения, изучения функциональных свойств модифицированных систем и структурно-морфологических превращений полимерной матрицы под действием процесса иммобилизации с целью создания биологически активного полимерного материала, обладающего комплексом требуемых свойств для использования в различных отраслях пищевой промышленности.  [c.214]

    Любое серьезное современное исследование в области создания биологически активных веществ включает элементы молекулярного дизайна. Из этого обширного и разнообразного материала мы выбрали для обсуждения лишь несколько представительных примеров, иллюстрирующих важнейшие тенденции развития этой области. [c.511]


    Основу фактического материала составляют результаты изучения отдельных фосфорорганических соединений, используемых в качестве пестицидов. Они касаются этиологии, патогенеза и профилактики интоксикаций при поступлении через кожу конкретных представителей этого класса соединений. Изученные вещества по своим свойствам (высокая биологическая активность, специфический механизм действия) явились исключительно удобной моделью для установления некоторых общих закономерностей. На примере фосфорорганических соединений оказалось возможным разработать некоторые методические подходы, выяснить особенности всасывания ядов в организм через кожу, обосновать необходимость совершенствования практики гигиенического нормирования с учетом поступления веществ этим путем и решить ряд других вопросов, имеющих не только частное значение. [c.3]

    Основа магнитной ленты представляет собой пластиковый материал обычно на основе сложных полиэфиров или же ацетат целлюлозы, который не подвержен химическому воздействию воды. Единственный документально подтверженный случай повреждения полиэфирной ленты, аналогичной используемым в качестве основы магнитных лент, связан с механическим разрушением изоляционной ленты при 7-летней экспозиции [10]. Причиной разрушения послужили морские организмы, поселившиеся на прутке под лентой. Найти данные о поведении в морской воде лент из ацетата целлюлозы не удалось, но в той же работе [10] сообщалось о полном разрушении волокон из ацетата целлюлозы морскими организмами за 1—5 лет. Испытания проводились на малой глубине в условиях высокой биологической активности. [c.478]

    В равновесии с водой при нормальных температуре и давлении такие топлива содержат в зависимости от состава 2—3 % воды. Влияние воды в первую очередь проявляется в уменьшении механической прочности материала (этот эффект обратим). Долговременное воздействие приводит к гидролизу полимера и пластификаторов, нитрации и окислению стабилизаторов, а также гидролизу и окислению баллистических модификаторов, т. е. к необратимым реакциям, В присутствии биологически активных агентов происходит погружение углеводородов и нитратов. Скорость вымывания растворимых солей невелика. Алюминий, добавляемый в небольших концентрациях для подавления резонансного горения и повышения отдаваемой энергии, не подвергается быстрому воздействию солёной воды из-за пассивации металла нитратами и медленной диффузии солей через коллоид. [c.494]

    Современная теория капиллярности. К 100-летию теории капиллярности Гиббса, под ред. Л. И. Русанова и ф. Ч. Гудрича, Л., 1980. Б. Б. Дамаскин. ЭЛЕКТРОКАТАЛИЗ, ускорение электрохим. р-ций вследствие изменения природы материала электрода или модифицирования его пов-сти.Обусловлен зависимостью от материала электрода теплот адсорбции и степеней заполнения адсорбированными конечными или промежут. продуктами р-цин. Чаще всего наблюдается на платиновых металлах, их сплавах, никеле и др. типичных катализаторах. Так, скорость катодного выделения Нг возрастает на 10—12 порядков при замене ртутного электрода платиновым. При Э. можно регулировать скорость и направление электрохим. р-ции, изменяя электродный потенциал. Иногда Э. наблюдается при введении в электрохим. сист. биологически активных [c.698]

    Очистка и разделение белков (наряду с аминокислотным анализом) — основные области применения ионообменной хроматографии. Верно и обратное — в очистке любого белка этот вид хроматографии почти всегда занимает центральное положение. Поэтому при изложении общих соображений о выборе параметров хроматографического процесса в предыдущих разделах этой главы мы имели в виду прежде всего хроматографию белков. Был приведен соответствующий справочный и методический материал, отмечены аспекты, связанные с сохранением биологической активности и возможностью появления артефактов кажущейся утраты ферментативной активности и [c.301]

    Препарат из трупного материала представляет собой смесь из нескольких форм, из которых пять имеют 22 кДа, другие являются димерами, а остальные — фрагментами, образующимися при протеолизе. Это приводило к тому, что у 30 % больных, получавших препарат, против гормона вырабатывались антитела, сводившие на нет его биологическую активность. [c.138]

    Более широко используются в медицине, биотехнологии, косметике хитин и его производные. Несмотря на аналогию в строении, хитин отличается от целлюлозы по ряду свойств. Реакционноспособная аминогруппа во многом определяет свойства этого биополимера. В медицине хитин и его производные используются как вспомогательные вещества в технологии производства лекарственных средств, для создания полимерных изделий медицинского назначения, в качестве биологически активных веществ и как стоматологический материал. [c.391]

    Сопоставление свойств соединений органического и неорганического мира позволяет, как мне кажется, сделать вывод, что особое качество живой материи прежде всего обусловлено белками Они в той же мере являются носителями активного начала всего живого, в какой ДНК -носителями потенциального начала Исключительная роль природных аминокислотных последовательностей в процессах жизнедеятельности и структурировании макромолекулярных комплексов, органелл, клеток, тканей, органов и целых организмов заключается в присущей только им способности к структурной самоорганизации собственных молекул В зависимости от внешнего окружения белковые цепи могут находиться в двух равновесных состояниях в виде флуктуирующего статистического клубка и в форме компактной трехмерной структуры Первое состояние лишено специфических черт живого и своим поведением мало отличается от синтетических полимеров в растворе Аминокислотные последовательности обретают свои исключительные свойства - становятся белками - лишь во втором равновесном состоянии, когда цепи свертываются и принимают фиксированные формы, обладающие биологической активностью [c.56]


    Материал в книге сгруппирован по классам химических соединений. Описанию отдельных лекарственных препаратов в каждой главе предпосланы обш,ая характеристика истории, современное состояние и тенденции развития поиска, закономерности связи между строением и биологической активностью, определено по возможности место новых медикаментов в ряду других лекарственных средств этого типа, используемых в СССР. [c.4]

    Как видно из схемы, всосавшиеся аминокислоты в первую очередь используются в качестве строительного материала для синтеза специфических тканевых белков, ферментов, гормонов и других биологически активных соединений. Некоторое количество аминокислот подвергается распаду с образованием конечных продуктов белкового обмена (СО,, Н,0 и МНз) и освобождением энергии. Подсчитано, что в организме взрослого человека, находящегося на полноценной диете, образуется примерно 1200 кДж в сутки за счет окисления около 70 г аминокислот (помимо пищевых, также эндогенных аминокислот, образующихся при гидролизе тканевых белков). Это количество составляет около 10% от суточной потребности организма человека в энергии. Количество аминокислот, подвергающихся распаду, зависит как от характера питания, так и от физиологического состояния организма. Например, даже при полном голодании или частичном белковом голодании с мочой постоянно выделяется небольшое количество азотистых веществ, что свидетельствует о непрерывности процессов распада белков тела. Аминокислоты, как и белки, не накапливаются и не откладываются в тканях (наподобие жиров и гликогена), и у взрослого человека при нормальной обеспеченности пищевым белком поддерживается довольно постоянная концентрация аминокислот в крови (см. главу 16). [c.429]

    Значительные затраты энергии на предварительное замораживание материала, конденсацию паров при низких температурах и вакуумирование обусловливают высокую энергоемкость процесса сублимационной сушки расход энергии на 1 кг удаляемой влаги в несколько раз больше, чем при других методах сушки. Первоначальная стоимость сушильных установок также весьма велика. По этим причинам сублимационную сушку применяют только для обезвоживания очень ценных термолабильных веществ, сохраняющих свои свойства (например, биологическую активность) только при низких температурах. [c.677]

    Этот подход синтеза перфторолефинов и их производных позволяет успешно получать различные гетероциклические соединения, включая биологически активные. Кроме того, они важны и для теоретического изучения природы С-Р связи, основанного на экспериментальных данных синтеза. Анализ накопленного информационного экспериментального материала до насто- [c.37]

    Поскольку всякая подготовка кормового материала к скармливанию обязательно в какой-то мере разрушает кормовые ингредиенты, особенно биологически активные вещества, то ясно, что для корма ценнее всего свежая дробленая древесная зелень, так как при такой обработке отрицательным фактором является только кратковременная аэрация при относительно низкой температуре во время дробления. [c.280]

    В настоящее время известен ряд работ (I-3J, в которых авторы описывают устройства и способы получения таких биокатали-эаторов. Однако провести сравнительный анализ устройств и выбрать из них наиболее эффективное из-за отсутствия технических характеристик установок, а главное, из-за различия биологически активного материала, используемого в этих работах, невозможно. [c.167]

    Для использования в пищевых отраслях наиболее перспективным методом иммобилизации, обеспечивающим получение биологически активного материала (БАМ), является ковалентное присоединение БАД к полимеру, основанное на образовании химической связи между функциональными группами молекулы БАД, не определяющими его каталитическую активность, и реакционно-способными группами полимерного носителя. Ковалентное связывание БАД с полимером предотвращает миграцию БАД в пищевую среду и обеспечивает возможность многократного использования БАМ. Однако образование ковалентной связи осуществляется, как правило, с применением токсичных растворителей, активаторов и высоких температур, что приводит к инактивации многих БАД и образованию побочных продуктов реакции. ГГоследнее недопустимо при получении БАМ, предназначенных для пищевых отраслей промышленности. [c.215]

    Биологическая активность материала не затрагивается суб- чимацией, так что питательная ценность продукта не снижается. [c.87]

    В статье изложены результаты исследований по разработке способа введения биологически активного компонента (пепсина) в полимерну ю ма17)ицу поливинилового спирта, обеспечивающего сохранение биологической активности вводимого соединения, изучения функциональных свойств полученных систем и структурно-морфологических превращений полимерной матрицы в процессе иммобилизации Разработанный биологически активный полимерный материал обладает комплексом свойств, необходимым для его использования в различных отраслях пищевой промышленности [c.213]

    Несмотря на важность проблемы создания биологически активного полимерного материала (БАПМ) на основе поливинилового спирта систе- [c.213]

    В книге изложены основы органической химии лекарственных нешеств ко торые нашли применение в практической медицине в 20-м веке Отражен.I эволюция химии лекарственных веществ, рассмотрена современная стратегия синтеза фармакологически ценных соединений, оспещена методология поиск.1 среди них э( )фективных лекарственных препаратов Основной материал книги - синтезы известных лекарственных веществ - систематизирован по классам и структурным группам химических соединений Приведены современные представления о механизмах лекарственного дейстпия биологически активных веществ [c.2]

    Одним из способов повышения биологической стойкости материала может быть введение в его состав ядовитых для организмов веществ — биоцидов. Например, для повышения стойкости к биокоррозии поливинилацетатной дисперсии, а также различных материалов на ее основе, в том числе и грунтовки — модифиатора ржавчины Э-ВА-01 ГИСИ, автор предложил использовать катании — поверхностно-активное вещество, относящееся к классу катионоактивных четвертичных солей. Изучение его как биоцида, проведенное на кафедре физиологии и биохимии растений ГГУ, показало его отличную способность подавлять жизнедеятельность многих в идов грибов. Грунтовка —модификатор ржавчины Э-ВА-01ГИСИ, в составе которой есть катапин, получила название грунтовки Э-ВА-019ГИСИ. [c.77]

    Стоимость защиты стали от коррозии в морских условиях очень высока, однако нередко эти затраты бывают отчасти излищними. Можно назвать две причины подобной перезащиты . Во-первых, объемный и непривлекательный вид продуктов коррозии, создающий впечатление значительного разрушения металла, хотя действительные скорости коррозии материала при продолжительной эксплуатации известны сравнительно плохо. Скорости коррозии, приводимые в литературе, получены, как правило, в краткосрочных испытаниях и представляют средние значения за весь период экспозиции. Известно, однако, что коррозия углеродистой стали в морских условиях обычно протекает очень быстро в начальный период, а затем выходит на стационарный режим, характеризуемый линейной зависимостью. Этот линейный участок зависимости коррозионных потерь от времени и определяет стационарную скорость коррозии — наиболее важный параметр для оценки срока службы стальной конструкции в морской воде. Во-вторых, чрезмерные защитные меры связаны с плохо изученным влиянием биологической активности среды на скорости коррозии металла. Сплавы на основе железа, по-видимому, в наибольшей степени подверл<ены воздействию морских организмов среди всех металлов, однако эти биологические факторы практически игнорируются коррозионистами. В классических курсах коррозии влияние биологической активности на коррозионные процессы либо не упоминается совсем, либо считается несущественным и изолированным явлением. [c.441]

    До сих пор мы ограничивались рас-смотрением общей поверхностной кор-розии, т. е. средней глубины проникно-вения коррозии, рассчитанной по поте- рям массы образца. Для углеродистой стали этот параметр непосредственно связан с уменьщением временного сопро-тивления материала и, таким образом, является хорошим показателем изменения прочности конструкции. В тех слу-чаях когда наибатьшие неприятности могут быть связаны с перфорацией конструкции или контейнера, важным параметром коррозии становится глубина питтинга. Поэтому интересно рассмотреть и влияние биологической активности на скорость питтинговой коррозии. Некоторые результаты, полученные в ходе [c.445]

    При выборе материалов для продолжительной экспозиции в океане необходимо учитывать склонность к разрушению под действием биологических факторов и вследствие химического взаимодействия с морской водой. Для оценки влияния этих факторов проводились натурные пспытания различных полимерных и композиционных материалов в океане продолжительностью до 15 лет. Испытания проводились на пластиковых материалах в фор.ме листов, прутков, пленок и тросов. За исключением, как правило, пластиков на основе производных целлюлозы, эти материалы не подвергались разрушающему воздействию со стороны морских микроорганизмов. Однако любой материал может подвергнуться воздействию морских точильщиков. Если это происходит, то повреждение обычно имеет вид мелких поверхностных ямок. Проникновению точильщиков может способствовать близкое расположение других материалов, сильно подверн4енных поражению точильщиками (например, дерева). Вероятность появления в материале точильщиков возрастает в областях повышенной морской биологической активности на теплом мелководье она выше, чем в более холодных глубинных водах, а в донных отложениях выше, чем в воде над дном. Согласно некоторым данным материалы с твердыми поверхностями или, наоборот, с гладкими воскообразными поверхностями, менее подвержены воздействию точильщиков. Наблюдались, однако, и исключения из этого общего правила. [c.468]

    После ослабления водородных связей вследствие намокания, для дальнейшего разрушения бумаги, вплоть до распада материала, требуется воздействие механических или биологических факторов. Механические нагрузки, необходимые для разрыва, зависят от прочности бумаги на разрыв во влажном оостоянии. Этот параметр изменяется в зависимости от типа волокна и связующего. Биологическое разрушение бумаги (точнее, целлюлозы) морскими точильтциками или микроорганизмами определяется в основном местом экспозиции. Обычная бумага скорее всего будет разрушена при экспозиции в прибрежной зоне на глубине менее 200 м или на любой глубине при расстоянии около 1 м от дна, т. е. в областях наибольшей биологической активности. Однако под слоем ила бумага и другие материалы на основе целлюлозы могут сохраняться без разрушений по 200 лет и более (см. ниже). [c.473]

    Матрицей называют твердую основу неподвижной хроматографической фазы. Она имеет вид сплошных или пористых гранул последние часто представляют собой прострапствеииую сетку линейных полимеров. Для придания материалу матрицы необходимых для хроматографии свойств его модифицируют. Модификация люжет представлять собой химическое присоединение ( присадку ) поио-геиных групп, гидрофобных молекул, биологически активных веществ или фиксацию путем адсорбции тонкого слоя растворителя. Хотя особенности хроматографического процесса определяются в основном характером модификации, физико-химические параметры матрицы могут существенно влиять на свойства неподвилчной фазы. К таким параметрам относятся следующие размеры и форма гранул и их нор диапазон разброса этих размеров механическая прочность материала матрицы характер его смачивания и набухания в элюенте химическая стойкость и инертность в условиях хроматографической элюции реакционная способность, обеспечивающая возможность химической модификации матрицы. [c.48]

    Важнейшим типом реакций АОЭ является нуклеофильное винильное замещение (8нУт). Хотя имеется значительное число работ, посвященных синтезам гетероциклов с широким спектром биологической активности на основе различных олефинов (см. обзоры [1 ]), в них в качестве нуклеофуга выступают главным образом диметиламиногруппа, метилтиогруппа либо атом галогена. В то же время накопившийся за последние 10 лет в литературе обширный материал по реакциям SnYIii функционально замещенных алкоксиэтиленов нуждается в систематизации и обобщении. [c.127]

    Препаративная тонкослойная хроматография ПТСХ используется для разделения и выделения материалов в количествах, больших чем в обычной аналитической ТСХ. Величина пробы может меняться от 10 мг до более чем 1 г. В препаративной ТСХ разделяемые материалы часто наносятся на пластинку не в виде пятен, а в виде длинных полосок. После проявления конкретные компоненты могут быть выделены путем соскабливания слоя сорбента с пластинки в нужной области и последующего вымывания разделенного материала с сорбента с помощью сильного растворителя. Материал, выделенный из слоя, мох<ет требовать дальнейшей очистки методом ТСХ или другими хроматографическими методами, если его чистота недостаточна для идентификации и определения структуры с помощью элементного анализа или спектрометрии, для изучения биологической активности или применения в химическом синтезе или для использования в качестве стандартного материала при сравнении с неизвестными образцами. [c.131]

    При рассмотрении фактического материала мы обращали внимание на перспективные направления поиска препаратов, обладающих высокой биологической активностью, и синтез гетероциклических соединений, имеющих перфторалкильные группы. К таким исходным соединениям могут быть отнесены производные дитиоугольной кислоты и гетероциклические соединения на их основе. Среди последних уже найдены эффективные пестициды на основе К-(тиозалин-2-ил)-Н-2-фенилмочевины 181, которые получают обработкой 2-имино-4,4-бис (трифторметил )-5 (тетрафторэтилиден)- [ 1,3] -тиазолина 180 арилизоцианатами [91]. [c.125]

    Рассмотренный в данной главе материал показывает значительный интерес исследователей к вопросам синтеза гетероциклических соединеыний на базе доступных перфторолефинов и их производных. Нами предпринята попытка проведения анализа накопленного материала с целью привлечения внимания химиков к этому бурно развивающемуся разделу органической химии и для помощи специалистам, работающим в области создания новых препаратов для медицины и сельского хозяйства. Собран и систематизирован материал по методам синтеза гетероциклических соединений, содержащих перфторалкильные группы. Показана доступность значительного числа гетероциклов, что, на наш взгляд, будет способствовать широкому испытанию многих новых соединений, содержащих атомы фтора, на биологическую активность. Однако мы надеемся, что ряд новых соединений гетероциклического ряда может быть использован и для создания комплексонов, потенциально важных для экстракции и разделения ионов металлов, высокотемпературных диэлектриков и теплоносителей и т.п. [c.190]

    Представленный в данной главе материал позволяет констатировать значительный интерес к разработке новых методов и подходов в синтезе фторсодержащих гетероциклических соединений и широкое использование специфических особенностей перфторированных органических соединений, особенно перфторолефинов и полифторароматических соединений, для создания новых предпосылок развития и углубления наших представлений о возможностях органического синтеза. Причем, что самое важное для перспективы их широкого использования, эти подходы базируются на доступных и дешевых исходных материалах промышленной химии фтора. Бурный рост фторорганической химии в последние годы привел к открытию новых фторсодержащих гетероциклических соединений уникального строения, у многих из которых были обнаружены специфическая биологическая активность и эффективность в качестве медицинских препаратов и пестицидов. Это в значительной степени стимулирует интерес к такого рода соединениям, и можно надеяться на разработку еще более совершенньк оригинальных методов получения гетероциклических структур, что, несомненно, обогатит синтетическую органическую химию арсеналом новых методологий и позволит осуществлять целенаправленный синтез необходимых структур и моделей. Сложной проблемой является высокая стоимость введения фтора в органические молекулы. Учитывая уникальные свойства, придаваемые фтором, которые нельзя достигнуть при введении других элементов, по мере развития химии и технологии фторорганического синтеза и соответствующего снижения стоимости применение фтора в этом направлении будет, безусловно, постепенно расширяться. [c.285]

    Отдельные попытки обобщения сведений по реакциям фуроксанов предпринимались в разное время [1—7]. Однако систематизация материала не соответствовала его сложности. В раиних обзорах уровень знаний не позволял обобщить имевшиеся разнородные данные. Часть обзоров касалась только узких областей (по типам соединений или по типам реакций). Обзоров по биологической активности фуроксанов нли по их практическому применению не было вообще. [c.8]


Библиография для Биологически активные материал: [c.180]   
Смотреть страницы где упоминается термин Биологически активные материал: [c.325]    [c.96]    [c.325]    [c.96]    [c.124]    [c.214]    [c.106]    [c.487]    [c.166]    [c.281]    [c.13]   
Полимеры медико-биологического назначения (2006) -- [ c.189 ]




ПОИСК







© 2025 chem21.info Реклама на сайте