Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Термодинамика, второй закон в открытых системах

    Энтропия, как показано в работах Л. Больцмана, Н. П. Пирогова, М. Смолуховского, является мерой вероятности состояния системы. Это открытие способствовало развитию статистической термодинамики, которая раскрывает физический смысл и границы применимости второго закона термодинамики. [c.99]

    В. РАСПРОСТРАНЕНИЕ ВТОРОГО ЗАКОНА ТЕРМОДИНАМИКИ НА ОТКРЫТЫЕ СИСТЕМЫ И ХИМИЧЕСКИЕ РЕАКЦИИ [c.64]


    Все рассмотренные выше термодинамические соотношения, раскрывающие смысл второго закона термодинамики, относятся к замкнутым системам. В открытых системах энтропия может изменяться в результате обмена вещества с внешней средой. Тогда в уравнении (235) появится дополнительный член, учитывающий изменение количества вещества (числа молей) в системе. Более подробно этот вопрос не будет здесь обсуждаться следует лишь упомянуть о том, что изучение открытых систем открывает возможность для применения второго закона термодинамики к живым организмам. Ранее вызывала сомнение сама возможность применения второго закона термодинамики к живым организмам, поскольку такие системы характеризуются сложными процессами (из почти бесструктурной клетки развивается сложно организованная система), связанными с понижением энтропии. В то же время в организме постоянно происходят необратимые процессы, вызывающие увеличение энтропии. Частично энтропия может передаваться во внешнюю среду в процессе теплообмена, в большей степени она переходит во внешнюю среду при обмене веществ. [c.241]

    Второй закон термодинамики выражает то наблюдение, что любая неравновесная система изменяет свое состояние в определенном, характерном для нее направлении. Для того чтобы состояние такой системы изменялось в противоположном направлении, необходимо подводить к ней энергию. Например, если выпустить из рук камень, он упадет на пол. Вода, помещенная в испаритель холодильника, превращается в лед. Блестящий гвоздь, оставленный под открытым небом, постепенно ржавеет. Для протекания каждого из этих процессов не нужен посторонний источник энергии такие процессы называются самопроизвольными. Для каждого самопроизвольного процесса можно представить себе обратный процесс. Например, можно вообразить, что камень поднимется с пола к нам в руки, лед начнет плавиться при температуре — 10°С, а ржавый железный гвоздь превратится в блестящий. Но никто не поверит, что такие процессы будут идти самопроизвольно. Если бы такое показали в кино, мы бы решили, что фильм пустили в обратную сторону. Жизненный опыт, приобретенный в многолетних наблюдениях за действиями природы, сводится к простому правилу процессы, самопроизвольно протекающие в одном направлении, не являются самопроизвольными в обратном направлении. [c.172]

    Существенно отметить, что нелинейная термодинамика коренным образом изменяет статус второго начала термодинамики. Действительно, оказывается, что при необратимых процессах вдали от равновесия открытой системы этот закон определяет не только необходимость разрушения старых структур, но и возмож- [c.350]


    Правило фаз, открытое в 1873 г. американским ученым В. Гиббсом, является следствием второго закона термодинамики и описывает условия равновесия в гетерогенных системах с любым числом компонентов. Это правило легко вывести, если учесть, что число степеней свободы — это, по существу, число переменных или параметров, которые остаются неопределенными при данном состоянии системы, поскольку их можно изменять, не меняя числа фаз. Вместе с тем в состоянии равновесия между параметрами устанавливаются жесткие связи, выражаемые определенным числом уравнений У. Если число уравнений меньше, чем число параметров П, то разность между ними, т. е. число неопределенных параметров, и есть число степеней свободы С. Таким образом, С = П—У. Кроме того, состояние равновесной, си-стемы определяется двумя внешними параметрами — температурой и давлением. Подсчет величин П и У приводит к важному уравнению  [c.86]

    В силу произвольности объема из (5.180) получим дифференциальное уравнение, соответствующее локальной формулировке второго закона термодинамики открытой системы, [c.84]

    Второй закон термодинамики в открытых системах 123 [c.123]

    Ранние попытки Бертло найти термодинамический критерий самопроизвольных химических реакций привели его в 1879 г. к ошибочному заключению, что самопроизвольны те реакции, в которых выделяется теплота. Открытие самопроизвольных реакций, в которых теплота поглощается, доказало неправильность этого вывода. Согласно второму закону термодинамики, процесс является самопроизвольным, если протекание его в изолированной системе приводит к увеличению энтропии системы. В данном разделе мы увидим, как из этой формулировки можно получить еще более полезные критерии самопроизвольных химических реакций. [c.58]

    Анализ обш их свойств биологических систем на основе уравнения (У.2.3) помог объяснить внешнее противоречие между поведением организмов и вторым законом классической термодинамики. Действительно, рост и развитие организмов сопровождаются усложнением их организации и с точки зрения классической термодинамики выглядят как самопроизвольное уменьшение энтропии живых систем, что, конечно, явно противоречит второму закону. Однако это противоречие лишь кажуш ееся, поскольку направление самопроизвольных процессов определяется увеличением энтропии лишь для изолированных систем, а отнюдь не для открытых, какими являются биологические системы. В реальных условиях развитие организмов, сопровождаюш ееся уменьшением обш ей величины их энтропии, происходит при условии [c.125]

    Поэтому в открытых системах, которые во всяком случае при dS <0 являются неравновесными, -может в целом или локально возрастать упорядоченность (энтропия — мера неупорядоченности, dS kin W), т. 0. возникать и существовать без нарушения второго закона термодинамики новые структуры, некоторые из которых могут оказаться устойчивыми [81. [c.79]

    Из первого и второго законов термодинамики следует, что изменение энергии 7 открытой системы в равновесных условиях есть [c.8]

    Рассматриваемая двухфазная система является закрытой, а каждая из фаз открытой системой, для которой обобщенное уравнение первого и второго законов термодинамики запишется в виде [c.29]

    Правило фаз, открытое Гиббсом [61], основывается на втором законе термодинамики и устанавливает соотношение между числом фаз, компонентов и степеней свободы, могущих изменяться независимо, в равновесных системах. Под степенью свободы понимаются независимые параметры состояния системы, находящейся в равновесии, могущие принимать в некотором интервале произ- [c.193]

    Непосредственное применение второго закона классической термодинамики к открытым системам, в которых протекают неравновесные процессы, встречает ряд трудностей. [c.123]

    В открытых системах уравнением, отражающим второй закон термодинамики, является уравнение Гиббса  [c.22]

    Основной итог начального периода развития биофизики — это вывод о принципиальной приложимости в области биологии основных законов физики как фундаментальной естественной науки о законах движения материи. Важное общеметодологическое научное значение для развития разных областей биологии имеют полученные в этот период экспериментальные доказательства закона сохранения энергии (первый закон термодинамики), утверждение принципов химической кинетики как основы динамического поведения биологических систем, концепции открытых систем и второго закона термодинамики в биологических системах, наконец, вывод об отсутствии каких-либо особых живых форм энергии. Все это во многом повлияло на развитие биологии, наряду с достижениями биохимии и успехами в изучении [c.8]

    Согласно второму закону термодинамики вводят величину, называемую энтропией, которая в изолированной системе всегда возрастает при достижении равновесия до своего максимального значения. Закон увеличения энтропии в изолированных системах является критерием эволюции на пути достижения конечного равновесного состояния. Однако в открытой системе в равновесном состоянии не происходит никаких направленных процессов, кроме случайных флуктуаций около положения равновесия, что равносильно прекращению существования биологической системы. [c.118]


    Однако в классической термодинамике расчеты энергетических эффектов основаны на сравнении значений характеристических функций в начальном (неравновесном) и конечном (равновесном) состояниях системы. При этом из рассмотрения выпадают фактор времени и характер переходных процессов, что делает невозможным непосредственный термодинамический анализ кинетических особенностей переходных процессов в открытых биологических системах. Классическая термодинамика не могла объяснить и свойства биологических систем, в которых самопроизвольно протекающие процессы ведут к уменьшению их энтропии, что, как казалось, противоречит второму закону термодинамики. [c.5]

    Эти замечания абсолютно верны, но в действительности они естественным образом подводят к необходимости рассмотрения энергетики сократительных систем в рамках термодинамики необратимых процессов, которая восходит к первому и второму законам термодинамики и является модификацией основных термодинамических соотношений специально для неравновесных систем. Вместо того чтобы рассматривать только начальное и конечное состояния при различных переходах в системе, неравновесная термодинамика учитывает в явной форме сам процесс перехода. В отличие от классической термодинамики, в которой неявно предполагается, что мышца действует как закрытая система, это предположение не подразумевается и не является необходимым в неравновесной термодинамике, которая превосходно приспособлена к исследованию открытых систем. [c.289]

    В 1945 г. Шредингер написал книгу Что такое жизнь с точки зрения физики , оказавшую существенное влияние на развитие биофизики и молекулярной биологии. В этой книге внимательно рассмотрено несколько важнейших проблем. Первая из них — термодинамические основы жизни. На первый взгляд имеется решительное противоречие между эволюцией изолированной физической системы к состоянию с максимальной энтропией, т. е. неупорядоченностью (второе начало термодинамики), и биологической эволюцией, идущей от простого к сложному. Шредингер говорил, что организм питается отрицательной энтропие1и>. Это означает, что организмы и биосфера в целом не изолированные, но открытые системы, обменивающиеся с окружающей средой и веществом, и энергие . Неравновесное состояние открытой системы поддерживается оттоком энтропии в окружающую среду. Вторая проблема — общие структурные особенности органиа-мов. По словам Шредингера, организм есть апериодический кристалл, т. е. высокоупорядоченная система, подобная твердому телу, но лишенная периодичности в расположении клеток, молекул, атомов Это утверждение справедливо для строения организмов, клеток и биологических макромолекул (белки, нуклеиновые кислоты). Как мы увидим, понятие об апериодическом кристалле важно для рассмотрения явлений жизни на основе теории информации. Третья проблема — соответствие биологических явлений законам квантовой механики. Обсуждая результаты радиобиологических исследований, проведенных Тимофеевым-Ресовским, Циммером и Дельбрюком, Шредингер отмечает, квантовую природу радиационного мутагенеза. В то же время применения квантовой механики в биологии не тривиальны, так как организмы принципиально макроскопичны. Шредингер задает вопрос Почему атомы малы Очевидно, что этот вопрос лишен смысла, если не указано, по сравнению с чем малы атомы. Они малы по сравнению с нашими мерами длины — метром, сантиметром. Но эти меры определяются размерами человеческого тела. Следовательно, говорит Шредингер, вопрос следует переформулировать почему атомы много меньше организмов, иными словами, почему организмы построены из большого числа атомов Действительно, число атомов в наименьшей бактериальной клетке [c.12]

    Несмотря на всю неоспоримость приведенных выше фактов, эволюционисты пытаются искажать истину, отрицая очевидное. Они утверждают, что второй закон термодинамики действителен только для закрытых систем , а открытые системы не подчиняются силе этого закона. [c.130]

    Но, с другой стороны, живые организмы являются системами открытыми, поэтому, используя энергию обмена, могут сами заряжаться до более высокого потенциала и с этой точки зрения имеет место противоречие второму началу термодинамики. Так, зеленые растения для повышения энергетического потенциала используют солнечную энергию, а животные — энергию, поступающую с пищей. Таким образом, хотя энтропия самого организма может изменяться в любом направлении, т. е. она может уменьшаться за счет непрерывного поглощения свободной энергии из окружащей среды, энтропия системы организм — среда, взято в целом, несомненно увеличивается. Это дает основание для общего вывода длж живых организмов, как и для тел неживой природы, полностью выполняются законы термодинамики. [c.75]

    После успехов в области термодинамики наметились новые перспективы в кинетической теории материи связь между температурой газа и кинетической энергией движения молекул позволила Дж. Максвеллу создать метод исследования систем, состоящих из очень большого числа частиц. Максвелл вводит понятие вероятности и устанавливает свой знаменитый закон распределения скоростей. Работы Дж. Гиббса и Л. Больцмана способствовали быстрому развитию новых отраслей естествознания — статистической механики и статистической термодинамики. Больцман исследовал второе начало с точки зрения молекулярно-кинетических представлений и нашел функцию (Я-функция), обладающую тем свойством, что она в неравновесной системе при столкновении молекул уменьшается, но принимает постоянное значение, когда достигнуто равновесное состояние, отвечающее закону Максвелла. Эта функция отличается от энтропии только знаком. М. Планк выразил результат открытия Больцмана в сжатой форме энтропия пропорциональна логарифму вероятности данного состояния. Так успешно объединяются чисто термодинамические концепции с молекулярно-кинетическими. Выдающиеся исследования Гиббса приводят к созданию стройной теории термодинамических потенциалов и теории равновесия фаз, оказывая сильное влияние на все последующее развитие физической химии. [c.5]

    Второе положение — постулат о существовании температуры, или нулевой закон термодинамики. Свое второе название этот постулат приобрел в связи с тем, что вопрос об особых свойствах температуры возник в связи с обоснованием второго начала термодинамики уже после открытия обоих начал. Между тем логически он им предшествует. Отсюда и название — нулевой закон. Речь идет о следующем. 1 .1личне теплообмена между системами можно установить многими методами экспериментально физики. Системы, пе обменивающиеся теплотой, — это системы, находящиеся в тепловом равновесии. Однако в макроскопической физике условия равновесия всегда записывают в виде равенства некоторых обобщенных сил Рк —Рк"- [c.11]

    Изменение энтропии в открытых системах. Применение второго закона к биологическим системам в его классической формулировке приводит, как кажется на первый взгляд, к парадоксальному выводу, что процессы жизнедеятельности идут с нарушением принципов термодинамики. В самом деле, усложнение и увеличение упорядоченности организмов в период их роста происходит самопроизвольно. Оно сопровождается уменьшением, а не увеличением энтропии, как следовало бы из второго закона. Ясно, что увеличение энтропии в необратимых самопроизвольных процессах должно происходить в изолированных системах, а биологические системы являются открытыми. Проблема поэтому заключается в том, чтобы понять, как связано изменение энтропии с параметрами процессов в открытой системе, и выяснить, можно ли предсказать общее направление необратимых процессов в открытой системе по изменению ее энтропии. Главная трудность в решении этой проблемы состоит в том, что мы должны учитывать изменение всех термодинамических величин во времени непосредственно в ходе процессов в открытой системе. Постулируется, что общее изменение энтропии открытой системы может происходить независимо либо за счет процессов обмена с внешней средой с1е5, либо вследствие внутренних необратимых процессов [c.70]

    В 50-е годы XIX в. почти одновременно были открыты второе начало термодинамики и законы биологической эволюции. Суть термодинамики была с предельной четкостью выражена Клаузиусом Энергия мира постоянна. Энтропия мира стремится к максимуму . Основные законы биологической эволюции были сформулированы в знаменитой книге Дарвина О происхождении видов . В последующих исследованиях очень скоро стал ясен фундаментальный характер понятия эволюции для науки о жизни. Оказалось, что законы эволюции раскрываются как в процессе возникновения жизни, так и в развитии человеческого зародыша, становлении видов и экологических сообществ. Однако во второй половине XIX в. оставался по существу открытым вопрос о совместимости классической (универсальной ) термодинамики и представления о временной эволюции как о спонтанном образовании все более сложных структур. В самом деле, согласно принципам классической термодинамики энтропия всякой замкнутой системы возрастает со временем и достигает своего максимального значения, когда система приходит в состояние теплового равновесия, т. е., будучи предоставленной самой себе, система всегда стремится достичь состояния с минимальной степенью упорядоченности, допускаемой начальными условиями. Кажется, что это противоречит возможности непрекращающегося процесса струк-турообразования. [c.4]

    Энтропия, как показано в работах Л. Больцмана, Н. Н. Пирогова, М. Смолуховского, является мерой вероятности состояния системы. Это открытие способствовало развитию статистической термодинамики, которая раскрывает физический смысл и границы применимости второго закона термодинамики. Статистическая термодинамика исходит из того, что одно макросостояние системы может быть осуществлено большим числом микросостоянийс любым распределением частиц по координатам и скоростям, причем любое микросостояние считается равновероятным. Число микросостояний, с помощью которых определяется данное макросостояние, называется термодинамической вероятностью состояния системы. Термодинамическая вероятность может выражаться очень большим числом. В статистике Больцмана ее подсчитывают следующим способом. [c.114]

    Характеристические функции и термодинамические потенциалы. Второй закон термодинамики и понятие об энтропии были введень в физику первоначально при рассмотрении наиболее простого вида систем — систем изолированных, т. е. лишенных обмена энергией или веществом с окружающей средой. Только для таких систем направление самопроизвольного течения процесса и предел такого его течения, т. е. условия равновесия, могли быть выражены однозначно через изменения энтропии. Однако на практике (и в природных процессах, и в технике) большей частью приходится иметь дело с системой, взаимодействующей с окружающей средой. Энтропия мало подходит для характеристики процессов в этих условиях. Но только в 70-х годах прошлого века в результате работ Гиббса, Массье, Гельмгольца и других были открыты термодинамические функции, изменения которых при тех или других условиях существования системы давали возможность в простой форме определить направление самопроизвольного течения процесса и условия равновесия. Познакомимся с важнейшими из них. [c.290]

    И (2.32). Изменение энтропии произвольной системы состоит из двух компонент, причем внутренний вклад должен быть всегда положительным diS 0). Изменение энтропии за счет процессов притока и оттока может быть как положительным, так и отрицательным. Таким образом, система, способная отдавать энтропию среде, или, иными словами, поглощать отрицательную энтропию (негэнтропию), может уменьшать свою энтропию. Поведение энтропии в открытой системе может, таким образом, принципиально отличаться от поведения энтропии в изолированной системе. В открытых системах могут без нарушения второго закона термодинамики образовываться и су-и ествовать структуры. Пониманием особенностей открытых систем и их биологического значения мы обязаны Берталанфи и Шредингеру [19, 20], а также Пригожину и Виаму [37]. Последовательная теория открытых систем была разработана Пригожиным [38, 39]. Наконец, Пригожин и Гленсдорф [23] обобщили эту теорию на случай нелинейных систем. [c.27]

    В работе представлены методологическое обоснование теории, термодинамическая, статистическая модель сложного вещества. Предложены релаксационные, нестационарные, марковские модели физико-химических процессов. Теория подтверждена экспериментом на примере процессов пиролиза, поликонденсации и термополиконденсации. Анализируются отличительные особенности термодинамики многокомпонентных систем, подчеркивается особая роль энтропии в формировании их разнообразия. Рассмотрена специфическая для вещества энтропия разнообразия, рост которой является источником эволюции вещества. Излагается новое направление, необходимое при изучении сложных органических систем - непрерывный, феноменологический подход к спектрам веществ. Анализируются закономерности, открытые нами в спектрах, в частности закон связи различных свойств и спектральных характеристик систем. Последнее означает, что свет несет информацию практически о всех свойствах материи. На основе данных спектроскопии предпринята попытка построения теории реакционной способности многокомпонентных органических систем. Отмечена особая роль квазичастиц- типа структуронов и вакансионов в формировании их реакционной способности. Показана роль слабых химических взаимодействий в гидродинамике многокомпонентных жидких сред. Даны новые подходы к направленному синтезу сложных органических систем. Экологические, геохимические системы и вопросы генезиса углеводородных систем планируется рассмотреть во второй части книги. [c.4]

    Основными объектами термодинамики являются энергетические балансы и равновесия при химических и фазовых превращениях. Решение первой группы вопросов основано на первом законе, а второй — на втором и третьем законах термодинамики. Введем некоторые необходимые термины. Системой называется совокупность тел, которая фактически или мысленно может быть выделена из окружающей среды. При этом рассматриваются макроскопические системы. Если система не взаимодействует с окру-лсающей средой, т. е. ее энергия и объем постоянны, то она называется изолированной. Если в систему поступает или из нее удаляется вещество, то она называется открытой. Если же такого обмена веществом нет, то система называется закрытой. Состояние любой системы определяется сизокупностью таких параметров, как объем, давление, температура, концентрации входящих в нее веществ. [c.12]

    Физическая химия применяет законы термодинамики, статистики, классической и квантовой механики для исследования химических явлений. Непосредственные контакты между химией и физикой долгое время оставались неопределенными и ограничивались развитием атомистики древних (П. Гассенди, 1592—1655) и использованием атомистических представлений прирешении физических задач (Бернулли, 1700—1780). М. В. Ломоносов был, по-ви-димому, первым, кто оценил необычайные возможности физики в раскрытии природы химических явлений. По крайней мере именно он был автором первого курса физической химии (1752), прочитанного им студентам Академии наук и названного Введение в истинную физическую химию . В дальнейшем методы этой науки развивались и совершенствовались медленно, так как ее прогресс зависел от успехов и химии, и физики. Лишь в 1887 г. в Лейпциге была учреждена кафедра физической химии, ставшая впоследствии крупным центром физико-химических исследований. Период между этими датами можно охарактеризовать как время напряженных поисков общих физических принципов, которые могли бы стать фундаментом для создания методов исследования химических процессов. В начале XIX в. С. Карно, отправляясь от неверной теории теплорода, сделал правильное заключение о работе тепловых машин доля теплоты, превращенной в работу, будет тем больше, чем больше разность температур нагревателя и холодильника. Глубокий смысл этого вывода был понят лишь в сере- дине прошлого века Р. Клаузиусом и В. Томсоном. С именами этих ученых и связано открытие важнейшего закона природы, I который называют вторым началом термодинамики. Клаузиус показал, что в изолированной системе сумма выделенной теплоты и совершенной работы является функцией состояния. Клаузиус называл ее эргалом в настоящее время для этой функции при- j нято название внутренняя энергия. Несколько лет спустя Клау- ] зиус открывает другую функцию состояния — энтропию эта функ- А ция позволяет предвидеть принципиальную возможность того или 4 иного процесса.  [c.4]


Смотреть страницы где упоминается термин Термодинамика, второй закон в открытых системах: [c.238]    [c.143]    [c.128]    [c.457]    [c.281]    [c.11]    [c.292]    [c.351]   
Биофизика Т.1 (1997) -- [ c.123 , c.129 ]




ПОИСК





Смотрите так же термины и статьи:

Закон второй

Закон термодинамики

Закон термодинамики второй

Система открытая

Системы открытие

Термодинамики второй



© 2024 chem21.info Реклама на сайте