Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Железо функции в растении

    КАТЕХИНЫ — природные вещества, содержап(иеся в растениях, особенно чайных, виноградной лозе, в бобах какао. К.— бесцветные кристаллы с вяжущим вкусом, хорошо растворяются в воде, метаноле и этаноле, окрашиваются спиртовым раствором хлорида железа и зеленый цвет. К. относятся к группе флавана. Молекула К. содержит два асимметрических атома углерода для каждого К. известны 4 оптически активных изомера и 2 рацемата. К. можно разделить и извлечь влажным диэтиловым эфиром или смесью уксусноэтилового эфира с четыреххлористым углеродом. К. получают из растительного сырья, возможен синтез. К.— биологически высокоактивные вещества они регулируют проницаемость кровеносных капилляров и увеличивают упругость их стенок, способствуют лучшему усвоению организмами аскорбиновой кислоты. К. относят к веществам, обладающим Р-витаминной активностью, используют их для лечения заболеваний, связанных с нарушением функций капилляров. Окислительные [c.122]


    Марганец весьма интересен в биохимическом отношении. Точные анализы показывают, что он имеется в организмах всех растений и животных. Содержание его обычно не превышает тысячных долей процента, но иногда значительно повышается. Например, в листьях свеклы содержится до 0,03%, в организме рыжих муравьев — до 0,05%, а в некоторых бактериях даже до нескольких процентов Мп. Опыты с кормлением мышей показали, что марганец является необходимой составной частью их пищи. В организме человека больше всего Мп (до 0,0004%) содержат сердце, печень и надпочечники. Влияние его на жизнедеятельность, по-видимому, очень разнообразно и сказывается главным образом на росте, образовании крови и функции половых желез. [c.300]

    Соединения ванадия ядовиты. Некоторые растения содержат ванадий (табак, бук, дуб, сахарная свекла и др.). Органические соединения этого металла в крови морских беспозвоночных выполняют те же функции, что и соединения железа в крови высших позвоночных. [c.210]

    Металлы УШВ-подгруппы образуют комплексные соединения, в частности с аминами, органическими кислотами и т. п. В виде комплексных ионов железо и кобальт выполняют биологические функции в организмах растений и животных. [c.424]

    Большая часть практически важных свойств комплексонатов железа связана с необычайно легким изменением степени окисления. При этом устойчивость комплексонатов железа(III), как уже отмечалось, на много порядков превосходит устойчивость аналогичных соединений железа (II). Совокупность этих свойств позволяет использовать карбоксилсодержащие комплексонаты железа(III) в качестве транспортного средства для введения этого ценного микроэлемента в растения При этом собственно транспортную функцию выполняет устойчивый комплекс Fe L, который затем легко восстанавливается и становится менее прочным. [c.364]

    Аккумулятивная функция Сущность этой функции заключается в накоплении в форме ГВ важнейших элементов питания живых организмов, органических соединений, несущих энергетические запасы или непосредственно необходимых и усваиваемых микроорганизмами или растениями, а также элементов, не участвующих в биологических процессах Такое накопление происходит не только в почвах, но также в природных водах, донных отложениях, где ГВ служат источниками энергии и питания для биоты Именно в форме ГВ в почвах накапливается до 90% всего азота, половина и более фосфора, серы [451] В этой же форме аккумулируются и сохраняются длительное время калий, кальций, магний, железо и практически все необходимые микроорганизмам микроэлементы В составе ГВ идентифицируются такие элементы, как Н , РЬ, N1, 2п, Си и Аи, которые они очень эффективно сорбируют [c.350]


    Основатель ятрохимии. Выдвинул положение о гармонии химических функций организма и о болезнях как нарушении этой гармонии. Ввел в медицинскую практику употребление препаратов ртути, сурьмы, меди, железа, мышьяка применял лекарства, выделенные из растений, развил представления о дозировке лекарств. Обогатил химию сведениями о соединениях мышьяка и сурьмы, минеральных кислотах и винном спирте. Путем перегонки виноградного и древесного уксуса получил (1537) концентрированную уксусную кислоту. Написал множество трудов, изданных а виде 14-томного собрания сочинений в 1923—1933 в Мюнхене. [c.382]

    Хлорофилл и гемин содержат четыре ядра — производных пиррола, составляющие циклическую систему порфирина, которая включает ион металла как центральный атом. Хлорофилл — это зеленый пигмент растений, встречающийся в природе в связанном состоянии с молекулой белка. Он функционирует как механизм для превращения световой энергий в химическую в процессе фотосинтеза, столь важного в растениях. Гемоглобин, одна из составных частей красных кровяных шариков в крови позвоночных, состоит из гемина (красный пигмент), связанного с белком. Он действует как переносчик кислорода из легких к тканям животного. Эта функция основана на присутствии железа в комплексе. Ядовитые свойства окиси углерода связаны с ее способностью заменять кислород в этом процессе и оказывать, таким образом, удушающее действие. На рис. 22.2 приведены формулы хлорофилла и гемина. [c.499]

    Эти два элемента (N и О) вместе с их аналогами из 3-го периода (фосфором и серой) образуют важнейшие ковалентные связи, скрепляющие скелет из цепочки углеродных атомов, и создают практически все огромное разнообразие органических соединений. Далее за азотом и кислородом в периодической системе следует фтор. Он не принимает никакого участия в построении организмов, так как образует слишком крепкие связи. Присоединяя один электрон, он приобретает настолько стабильную электронную конфигурацию, что изменить ее не может ни один химический агент. Следовательно, его недостатки в некотором смысле противоположны недостаткам лития. Так же как и литий, фтор обладает заметной физиологической активностью. При избыточном содержании фтора в почве развиваются необычные формы растении. У животных и человека этот элемент содержится в костной ткани и эмали зубов. Известно, что он угнетает функцию щитовидной железы. Содержание фтора в организме отражается на состоянии зубов. При его недостатке развивается кариес, а при избытке — флюороз (разрушение зубной эмали). [c.179]

    Подгруппа В. В небольших количествах, входя в состав комплексных соединений организма, медь стимулирует функции некоторых эндокринных желез и активность ферментов недостаток меди в пище приводит к анемии. Избыток же меди токсичен. Соединения меди, попадая в желудок, вызывают тошноту, рвоту, понос, появление гемоглобина в моче, анемию, желтуху, появление белка в моче — уремия и, наконец, жировую инфильтрацию сердечной мышцы и дегенеративные изменения почек. Среднее содержание меди в почвах 2-10 % в растениях 1 мг на 1 кг свежей массы. У бес- [c.283]

    Из 102 элементов периодической системы в живых организмах обнаружено не менее 60. Многие из них относятся к металлам и встречаются в живых клетках в виде разнообразных комплексных соединений. Уже давно стало ясно, что металлы, даже встречающиеся в живых тканях в крайне низких концентрациях (так называемые микроэлементы), и их комплексы — это не случайные примеси, а биологически важные компоненты клетки. Множество патологических нарушений, связанных с недостаточностью в клетке железа, меди, цинка, марганца, молибдена, кобальта, не говоря уже о более распространенных в живых тканях металлах кальции, магнии и др., имеют большое значение для биохимии животных и растений, а также для прикладных областей. Исследования биохимических процессов, в которых участвуют ионы металлов, представляют сравнительно новую, но уже вполне определившуюся и быстро развивающуюся область науки, называемую бионеорганической химией. К ней относится также и моделирование структурных и функциональных параметров природных комплексов металлов. Несмотря на значительные различия выполняемых физиологических функций, типов катализируемых реакций и структур реакционных центров, ферменты, являющиеся предметом исследования в бионеорганической химии, объединяет одна особенность— участие ионов металлов или в самом каталитическом акте, или в поддержании третичной или четвертичной структуры белка, необходимой для оптимального функционирования фермента. Это определяет известную общность подходов к изучению ферментов указанной группы и выбор некоторых методов исследования, заимствованных, с одной стороны, из арсенала энзимологии, а с другой - из химии координационных соединений. [c.5]


    Такие белки часто называют дыхательными пигментами. Они все чаще встречаются, когда мы поднимаемся по эволюционному древу животного мира, но их гораздо реже можно обнаружить в царстве растений и микроорганизмов (разд. 7.1). В этих белках кислород обратимо координируется переходными металлами (железом, медью и, возможно ванадием) таким образом, концентрация кислорода может быть повышена за счет повышения концентрации белка. Например, в 1 л крови человека растворяется около 200 см кислорода в равновесии с воздухом при 20°С [81], что соответствует концентрации раствора кислорода 9 10 М. Другими словами, кровь может переносить в 30 с лишним раз больше кислорода, чем чистая вода. Однако кислород поступает к ферменту или переносится через клеточную стенку в форме свободного, несвязанного кислорода. Таким образом, функция этих белков состоит в том, чтобы повысить стационарную концентрацию свободного кислорода сверх того уровня, который мог бы быть достигнут в результате баланса между процессами его потребления ферментами и свободной диффузией и циркуляцией. [c.138]

    Для четырнадцати микроэлементов установлено их жизненно важное значение. К ним относят В, Мп, Си, 2п, Со, Мо и некоторые другие. Они входят в состав ферментов, витаминов, гормонов, пигментов и других соединений, влияющих на жизненные процессы. Влияя на биохимические превращения, они оказывают действие на многие физиологические функции в растительных организмах, осуществляемые через ферментные системы. Микроэлементы активизируют различные ферменты, являющиеся катализаторами биохимических процессов. Например, они влияют на углеводный обмен, усиливают использование света в процессе фотосинтеза, ускоряют синтез белков. Отдельные микроэлементы могут усиливать те или иные полезные свойства растения засухоустойчивость, морозоустойчивость, скорость развития и созревания семян, сопротивляемость болезням и др. Недостаток необходимых микроэлементов обусловливает нарушения в обмене веществ и приводит к заболеваниям растений и животных. Так, недостаток бора уменьшает стойкость озимой пшеницы, льна и сахарной свеклы к заболеваниям, недостаток марганца снижает интенсивность фотосинтеза, молибденовое голодание вызывает накопление нитратов в листьях и понижение содержания белка, дефицит железа — хлороз листьев и т. д. [c.296]

    Некоторые микроэлементы, такие как бор, медь, марганец, цинк, молибден, железо, необходимы для осуществления жизненных функций всех растений, другие же требуются для отдельных видов, причем роль многих микроэлементов, входящих в состав растений, пока еще не выяснена. [c.313]

    Подсолнечник, как и другие культурные растения, в течение всего вегетационного периода нуждается в питательных веществах. Растениям необходимы самые разнообразные химические элементы — азот, фосфор, калий, сера, магний, железо, медь, бор и др. Каждый элемент выполняет определенные физиологические функции и не может быть заменен другим. [c.30]

    Железо входит в состав растений и животных — без него не может развиваться ни один живой организм. Основная функция в организме — участие в кислородном обмене и окислительных процессах. При недостатке железа в питании у растений развивается болезнь — хлороз листья теряют нормальную зеленую окраску, рост задерживается. [c.452]

    Макроэлементами в живом веществе являются кислород, водород, углерод, азот, кальций, сера, фосфор, калий, магний, железо, кремний, натрий, хлор и алюминий. Их роль в живых организмах различна. Первые десять элементов (их названия выделены в перечне полужирным шрифтом) жизненно необходимы для животных и для растений. Натрий и хлор, безусловно, нужны всем животным и полезны для некоторых видов растений. Биологические функции кремния и алюминия изучены недостаточно. Все макроэлементы живого вещества располагаются в верхней части периодической системы. Большинство из них входит в состав второго и третьего периодов. [c.142]

    Ядовитые выделения содержатся в кожных железах жаб, и яд может быть получен как из высушенных жабьих шкурок, так и непосредственно из живого животного. Основное количество яда содержится в околоушных и<елезах, расположенных за глазами, и этот яд может быть выжат без вреда для животного, причем после удаления яда происходит регенерация желез. Выделяемый лобами яд, повидимому, не используется ими при самозащите и не выполняет каких-либо функций в организме в этом отношении имеется аналогия между выделяемым жабами ядом и активными алкалоидами и сердечными ядами, образующимися в растениях. [c.537]

    Железо, медь, цинк. Эти элементы в соединении со специфическими белками образуют основу ряда ферментных систем. Исключительно важное место в обмене веществ принадлежит, как известно, ферментам Ре- и Си-протеидам. К ферментам Ре-протеидам принадлежат компоненты цитохромной системы (различные цитохромы и цитохромоксидазы, цнтохромпероксидаза), а также каталаза, пероксидазы, ферредоксины, ферритины. Медь входит в простетические группы полифенолаз, аскорбатоксидазы, лакказы. Эти ферменты участвуют в темновых реакциях фотосинтеза и в реакциях дыхания, что и определяет важное значение этих катализаторов для биосинтетических функций растения в целом. [c.432]

    Среди соединений гормонального действия были открыты вещества различного строения и разных свойств. Элберсгейм и Дарвилл [1985] установили, что фрагменты клеточной стенки — олигосахариды, высвобождаясь из нее под действием специфических ферментов, являются более целенаправленными медиаторами, чем фитогормоны. Необычная сложность компонентов клеточной стенки растений навела авторов на мысль, что они могут выполнять не только структурные функции. Клеточная стенка ведет себя, как железа , служащая хранилищем определенного класса регуляторных молекул, которые выделяясь из нее, способны контролировать целый ряд функций растения. Первичные стенки клеток растений на 90% состоят из полисахаридов, а остальные 10% приходятся на долю белков. Больше всего в клеточной стенке содержится D-глюкозы, которая вообще представляет собой самый распространенный в природе сахар. Матрикс первичной клеточной стенки, как правило, включает не менее восьми различных полисахаридов, шесть из которых были идентифицированы. [c.97]

    Процессы выделения веществ широко распространены у растений и могут выполнять многообразные функции. Например, от повреждений и инфекций клетку защищают клеточные стенки, формирующиеся из выделяемых цитоплазмой полисахаридов и других соединений, слизистые полисахаридные чехлы на поверхности многих клеток (водорослей, корневых волосков, пыльцевых трубок и др.), восковые выделения на поверхности листьев. Поддержанию постоянства ионного состава клеток и защите от избыточного засоления способствует выделительная деятельность солевых желёзок и солевых волосков растений-галофитов. Функцию внеклеточного переваривания осуществляют протеолитические ферменты, секретируемые железами насекомоядных растений. Выделение нектара способствует опылению растений насекомыми и т. д. [c.301]

    Очень интересным типом азотсодержащих соединений нефти являются порфирины. Они имеют такое же строение, как порфири-новый комплекс, входящий в молечулу хлорофилла или гема, только вместо магния (хлорофилл) или железа (гем) в порфири-новых комплексах иефти встречается ванадий или никель. Пор-с )ириновые комплексы нефти фотоактивны, они способны ускорять окислительно-восстановительные реакции, поэтому предполагают, что они принимают активное участие в процессах диспропорционирования водорода в процессе генезиса нефти. Очевидно, более глубокое изучение этих природных соединений позволит расширить наши представления о происхождении нефти, а возможно, и выделить новый вид катализаторо в с обратимыми окислительно-восстановительными функциями, способными ускорять определенные реакции подобно хлорофиллу в хивых растениях. [c.204]

    О существенной роли иода в живой природе свидетельствует то, что при его относительно небольшом содержании в земной коре и в водах океанов значительная часть приходится на иод, связанный в живом веществе в организмах животных и растений. Как биоактивный элемент иод оказывает существенное влияние на жизнедеятельность. У человека иод активно воздействует на обмен веществ, усиливает процессы диссимиляции. Особенно выражено его действие на функцию щитовидной железы, связанное с участием в синтезе тироксина. Суточная потребность организма в иоде составляет около 200 мкг. При недостатке иода происходит угнетение функции щитовидной железы. Малые дозы иода оказывают тормозящее влияние на образование тиреотропного гормона, что используется при лечении гиперфункции щитовидной железы. Иод влияет также на липидный и белковый обмен. При применении препаратов иода у больных атеросклерозом наблюдается тенденция к снижению холестерина в крови, уменьшается содержание р-липопротеидов. Под влиянием препаратов иода повышается липопротеиназная и фибринолитическая активность крови, несколько уменьшается свертываемость крови. У животных и растений иод повышает общую устойчивость к воздействию окружающей среды, повышает иммунитет [1]. [c.9]

    Хотя стероидные гормональные вещества играют важнейшую роль в жизни млекопитающих и птиц, их биосинтез не является привилегией этих классов животных и вырабатывают их не только железы внутренней секреции. Способность к биосинтезу стероидных гормоноподобных вешеств диффузно распространена во всей природе. Сами гормоны или близкие им вешества найдены в растениях. Их функция здесь не известна, но локализация в репродуктивных органах (например, тестостерон найден в пыльце сосны, эстрон — в семенах граната и яблони) наводит на мысль об участии [c.278]

    СЯ в повышении активности различных ферментов. Входя в состав витамина В , весьма активно влияющего на поступление азотистых веществ и увеличение содержания хлорофилла и аскорбиновой кислоты, К. активирует биосинтез и повышает содержание белкового азота в растениях, а также играет значительную роль в ряде процессов, происходящих в живом организме. В повышенных концентрациях К. весьма токсичен, прием внутрь большой дозы К. может вызвать быструю гибель. У лиц, подвергавшихся хроническому воздействию соединений К., снижается артериальное давление, в тканях наблюдается увеличение содержания молочной кислоты, нарушаются функции печени. При этом выраженные, клинические проявления могут быть стертыми или отсутствовать вовсе. Изменения в углеводном обмене связаны с нарушениями в эндокринных отделах поджелудочной и щитовидной желез. Нарушения углеводного обмена изменение формы гликемической кривой (уплощение), нарушение толерантности к глюкозе. Ионы К. вступают в хелатные комплексы с белками, разрушающими последние. Нарушается активность мембранных ферментов, что ведет к увеличению проницаемости клеточньгх мембран, повышению в крови уровня трансаминаз, лактатдегидрогеиазы, альдолазы. Действие К. и его соединений на организм приводит к расстройствам со стороны дыхательных путей и пищеварительного тракта, нервной системы, влияют на кроветворение, а также нарушают многие обменные процессы, избирательно действуют на обмен и структуру сердечной мышцы. Все это позволяет считать К. ядом общетоксического действия. [c.457]

    В итоге синтетически процессов, протекаюш их в зеленых частях растения при освеш,ении и пол гчивших название фотосинтеза, образуются наряду с углеводами и органические кислоты, аминокислоты и белки. Из минеральных элементов, кроме азо та и серы, входяш,их в аминокислоты (азот во все, сера в некоторые), уже в самом начале фотосинтеза потребляется фосфор, поскольку появляются фосфороглицериновая кислота и сахарофосфаты. Кроме того, хлорофилл Содержит магний (2,7%), который атомами азота связан, с четырьмя пирро льными ядрами. Наконец, калий выполняет важную функцию в передвижении углеводов из листовой пластинки в черешок и дальше по растению. [При недостатке калия эта функция нарушается, а другим катионом его заменить нельзя. При недостатке железа подавляется образование - хлорофилла.  [c.43]

    Комплексоны снижают активность алкогольдегидроге-назы (цинк), цитохром-с-редуктазы (железо), аскорбино ксидазы растений (медь) и др. Изучение свойств некоторых комплексных соединений металлов (Л. А. Николаев)) показало, что и относительно простые и довольно лабильные комплексы,способны проявлять высокую каталитическую активность и являются хорошими моделями активных групп металлсодержащих ферментов. Вместе с тем большое число этих комплексов и их высокая чувстви тельность к изменению природы лиганда делают понятным, почему соединения этого класса обязательно должны быть вовлечены в жизненный круговорот. Порфири-новые комплексы играют в поддержании процессов жизни важную роль не только потому, что магниевый комплекс такого типа хлорофилл осуществляет управление потоками солнечной энергии, направляя их на работу синтеза в фотосинтезирующих организмах, а гемоглобин и ряд ферментов выполняют важные функции, но еще и потому, что образование ДНК — основного кодирующего вещества — протекает по всем данным с участием порфи-ринового комплекса кобальта (витамина В12)  [c.182]

    Богорад Л.,Пайрс Дж., Свифт Х.,Макил-р а т В. Структура хлоропластов в ткани листа растения Xanthium, не содержащего железа. В кн. "Структура и функция фотосинтетического аппарата". М., ИЛ., 1962. [c.276]

    Во многих случаях металлические комплексы входят в состав ферментных систем, несущих окислительные функции в растениях. Так, в натуральном каучуке обнаружены оксидазные и перокси-дазные ферменты, содержащие железо, медь, марганец . Наличие этих ферментов ускоряет окисление каучука. Необходимо их разрушить и связать металлы в прочные комплексы. [c.110]

    Потребляемые растениями из почвы фосфор, сера, калий, кальций, маший, железо и многие микроэлементы — бор, медь, цинк, марганец и др. выполняют в организме определенные функции и входят в состав растительных тканей. В отличие от углерода и азота, которые при сжигании растительного вещества улетучиваются, названные вьпне элементы остаются в золе, в связи с чем и получили название зольных элементов. [c.230]

    В состав растений входит свыше 70 химических элементов. Установлено, что только 16 из них абсолютно необходимы для их жизнедеятельности углерод, кислород, водород, азот, — называемые органогенами фосфор, калий, кальций, магний и сера — зольными элементами и, наконец, бор, молибден, медь, цинк и кобальт— микроэлементами, а также железо и марганец. Замена одного элемента другим невозможна, так как каждый выполняет свою функцию в растении. В состав растений и почв могут входить, например, кремний, натрий, хлор. Однако наличие этих и других элементов не является строго обязательным для жизни растений. Главными элементами, поступающими из атмосферы в зеленые растения, являются углерод, кислород и водород. На долю этих трех эле1менто(в приходится 93,5% сухой маюсы растений, в том числе на углерод —45%, на кислород—42% и на водород — 6,5% [1]. [c.9]

    Роль марганца в обмене веществ у растений сходна с функциями магния и железа. Марганец активирует многочисленные ферменты, особенно при фосфорилйрованни. Благодаря способности переносить электроны путем изменения валентности он участвует в различных окисли-тельно-восстановительных реакциях. В световой реакции фотосинтеза он участвует в расщеплении молекулы воды. [c.25]

    Значительное влияние на более позднюю греческую культуру и особенно на философов-схоластов средних веков оказал Аристотель (384—322 до н. э.), работы которого охватывали все области науки того времени. Этот философ учил, что весь мир заполняет материальное вещество — эфир, который определяет порядок и непрерывность мира. Эфиру родственна пневма, или дыхание жизни, причина жизненных функций животных и растений. Четыре элемента Эмпедокла, по его мнению, происходят из единой первичной материи и входят в состав всех объектов в различных соотношениях. Из воды и земли в недрах земного шара в течение длительного периода времени образуются все соли, камни, руды и металлы. Эмпедокл считал, что только золото не содержит земли. Все другие металлы — серебро, медь, железо, олово и свинец — содержат большее или меньшее количество земли и поэтому не стойки к действию огня. Металлы родственны и могут превращаться друг в друга. Так, медь, сплавленная с определенной землей (безусловно, речь идет о сульфиде цинка), превращается в новый металл, желтый, как и золото (латунь). Эти идеи имеют немало общего со взглядами поздних греческих алхимиков, однако алхимики не вдохновлялись непосредственно ими. Вероятно, они были общим достоянием всей древней культуры. В своих произведениях алхимики признавали не греческих философов, а совсем другие авторитеты. [c.12]


Смотреть страницы где упоминается термин Железо функции в растении: [c.541]    [c.79]    [c.78]    [c.109]    [c.426]    [c.748]    [c.167]    [c.357]    [c.217]    [c.186]    [c.43]    [c.191]    [c.217]   
Жизнь зеленого растения (1983) -- [ c.211 ]




ПОИСК





Смотрите так же термины и статьи:

Железо растений



© 2025 chem21.info Реклама на сайте