Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Термодинамика биологическая первый

    Применение первого закона термодинамики к химическим и биологическим процессам [c.51]

    ЗНАЧЕНИЕ ПЕРВОГО ЗАКОНА ТЕРМОДИНАМИКИ ДЛЯ ИЗУЧЕНИЯ БИОЛОГИЧЕСКИХ ПРОЦЕССОВ [c.53]

    Применим ли первый закон термодинамики и закон Гесса к биологическим системам  [c.61]

    Попытки проверить опытным путем справедливость первого закона термодинамики для биологических объектов предпринимались уже давно. [c.121]


    Ранее мы рассмотрели ряд закономерностей термодинамики и сделали положительное заключение ( 26) о применимости первого закона термодинамики для анализа биологических процессов. Выясним границы применения в биологии второго закона термодинамики, следствий из него и энтропии. Статистический характер и неприменимость второго закона термодинамики к отдельным молекулам и системам из небольшого числа молекул ограничивает область его приложения системами макроскопическими. Самопроизвольные процессы в таких системах представляют собой переход системы из менее вероятного в более вероятное состояние, а необратимость физических процессов объясняется лишь относительно малой вероятностью их обращения, обусловленной молекулярным строением материи. С учетом изложенного естественно возникает вопрос, в какой мере приложима к биологическим процессам обычная трактовка второго закона термодинамики, вопрос о связи энтропии и вероятности состояния в смысле степени его упорядоченности и об определяющей роли энтропии в направлении химических процессов обмена. [c.66]

    Учебник состоит из двух книг. В первой — изложены теоретические положения кинетики и термодинамики биологических процессов и основы молекулярной биофизики проанализированы физические модели и представления, лежащие в основе понимания молекулярно-кинетических механизмов биологических процессов. [c.3]

    Хотя подбор материала и иллюстраций к общим положениям в существенной мере учитывает интересы именно биологического образования, изложение носит достаточно общий характер, чтобы книга могла быть использована для обучения физической химии студентов первого курса химической специализации в качестве курса, предваряющего изучение неорганической, органической и аналитической химии. Конечно, при этом предполагается, что будущие специалисты-химики на старших курсах получат необходимые сведения по тем разделам физической химии, которые существенно базируются на знании основ теоретической физики и серьезного математического аппарата — квантовой химии, статистической термодинамики, теории сложных химических процессов. [c.4]

    В биологических системах теплота обычно отдается системой во внешнюю среду, а работа совершается системой за счет убыли внутренней энергии (рис. 5.1). Поэтому первый закон термодинамики (5.1) можно переписать в виде [c.58]


    Разобранная задача показывает, что первый закон термодинамики применим не только к чисто химическим, но также и к биологическим системам  [c.58]

    Из имеющегося набора функционально сходных организмов доминируют те из них, чьи кинетические характеристики более всего соответствуют условиям, складывающимся в сообществе. Сообщество с химической точки зрения определяется термодинамикой и кинетикой осуществляемых окислительно-восстановительных реакций. Но физико-химический подход дает только первую приблизительную картину возможностей, реализация которых зависит от биологических особенностей организмов. К таким особенностям относятся, например, способность к выживанию, сопротивление выносу из системы, выеданию и другие свойства, которые могут обеспечить процветание в экологических нишах, входящих в абстрактные фундаментальные ниши . [c.30]

    В первой части монографии изложена краткая история биологической физики, рассмотрены основные понятия и законы термодинамики и статистической физики, а также описаны великие парадоксы физики, анализ которых имеет принципиальное значение для понимания сути некоторых важнейших проблем биологической физики. [c.2]

    Однако, во-первых, не полностью завершенное может гармонически завершить только сам автор во-вторых, эта книга, являясь монографией (отчасти учебником) носит в то же время и мемориальный характер. Поэтому редактор не счел себя вправе все время комментировать изложенное (хотя значительная часть книги была написана К. А. Путиловым еще в 1938 г.) или дополнять авторский текст (например, сведениями по термодинамике дисперсных систем, оптических явлений, биологических и космических процессов и т. д.) и ограничился лишь очень краткими примечаниями, помещенными в конце некоторых глав. Не внесено каких-либо изменений и в библиографию. [c.6]

    Книга состоит из трех частей. В первой части книги изложены наиболее общие принципы термодинамики они обладают ограниченными прогностическими возможностями во всем, что касается биогенеза. Во второй части обсуждаются проблемы, относящиеся к системе организм — среда, и роль динамических структур. Динамичность биологических систем столь же важна для понимания смысла законов, объединяющих живой и неживой мир, как и существование стационарных состояний атома для квантовой механики. Именно динамичность позволяет обнаружить тенденцию к развитию кодовых отно-щений между средой и организмом и между частями организма. Иллюстрации кодовых процессов конкретным биохимическим и биофизическим материалом посвящена третья часть книги. [c.3]

    В первую очередь мы рассмотрим понятие химического потенциала, имеющее существенное значение для понимания принципов передвижения воды и растворенных веществ в биологических системах. При изложении материала мы будем стараться в максимальной мере упростить все математические выкладки, так что для более основательного знакомства с предметом читатель должен обратиться к специальным работам по термодинамике. Для этой цели можно рекомендовать ряд работ [3, 22, 28, 431, 580, 715]. [c.26]

    Пока не получено никаких данных, которые говорили бы о том, что в биологических процессах может нарушаться первый закон термодинамики — сохранение энергии. Мы не сможем работать, если не будем питаться. Биологические наблюдения играли важную роль при открытии первого закона. Насколько мы сейчас знаем, не существует такой формы энергии, которая была бы характерна исключительно для живых организмов любой вид энергии, с которым мы сталкиваемся при рассмотрении биологических процессов, можно полностью объяснить, обращаясь к физике пли химии. Каким бы сложным ни казался биологический процесс, всегда оказывается, что баланс энергии выполняется в нем строжайшим образом. [c.256]

    Основной итог начального периода развития биофизики — это вывод о принципиальной приложимости в области биологии основных законов физики как фундаментальной естественной науки о законах движения материи. Важное общеметодологическое научное значение для развития разных областей биологии имеют полученные в этот период экспериментальные доказательства закона сохранения энергии (первый закон термодинамики), утверждение принципов химической кинетики как основы динамического поведения биологических систем, концепции открытых систем и второго закона термодинамики в биологических системах, наконец, вывод об отсутствии каких-либо особых живых форм энергии. Все это во многом повлияло на развитие биологии, наряду с достижениями биохимии и успехами в изучении [c.8]

    В последующем изложении мы попытаемся обсудить несостоятельность равновесной термодинамики, решить проблему структурной организации белка и выяснить возможность в этом отношении нелинейной неравновесной термодинамики — физики открытых диссипативных систем, возникшей в первой половине 1980-х годов. Предпринимаемая попытка имеет, по-видимому, и более общее значение, так как биологические объекты всех уровней структурной организации являются открытыми системами. Учитывая это обстоятельство, а также демонстрируемую большинством авторов публикаций по свертыванию белковых цепей осведомленность в специфике используемого ими подхода, представляется целесообразным перед изложением общей теории самосборки белка кратко остановиться на некоторых принципиальных моментах и понятиях равновесной и неравновесной термодинамики. [c.433]


    Линейная термодинамика неравновесных процессов не объяснила способность открытых систем к самоорганизации и не решила принципиальный вопрос о совместимости второго начала термодинамики с процессами структурирования и, следовательно, не устранила противоречивость физической и биологической формулировок эволюционных идей. Таким образом, не удалась попытка создать общую теорию неравновесных процессов путем минимальной коррекции основ равновесной термодинамики, без внесения в термодинамическое рассмотрение качественно новых элементов. Тем не менее проделанная работа сыграла важную роль в последующем 4>азвитии термодинамического подхода. Она явилась началом движения в правильном направлении, а именно в направлении изучения свойств стационарных процессов открытых систем при удалении от положения равновесия. Линейная неравновесная термодинамика показала (и в этом ее принципиальное достижение), что непременными условиями структурирования открытых систем являются, во-первых, наличие взаимообусловленности между свойствами макроскопической системы и ее микроскопических составляющих и, во-вторых, взаимодействие с привносящей негэнтропию окружающей средой. Дальнейшие исследования вскоре привели к широким обобщениям и формулировке ряда характерных особенностей термодинамических моделей самопроизвольной пространственной и временной структурной организации и, таким образом, к становлению нелинейной неравновесной термодинамики. [c.448]

    Биоэнергетика занимается изучением превращения энергии в живых организмах, т. е. это термодинамика применительно к биологическим системам . В основе термодинамики лежит несколько простых принципов (законов), приложимых к любым процессам, протекающим как в живых, так и в неживых системах. Первый закон термодинамики указывает, что общая энергия изолированной системы при любом процессе всегда остается постоянной, т. е. первый закон термодинамики — закон о сохранении энергии. Второй закон термодинамики налагает определенные ограничения на возможности самопроизвольного превращения энергии в системе и может быть сформулирован следующим образом все процессы стремятся идти в направлении возрастания общей энтропии системы и окружающей- среды. [c.78]

    Для понимания процессов преобразования энергии в биологических системах необходимо рассмотреть некоторые основные понятия термодинамики. В то время как превращения молекул происходят в соответствии с химическими законами, сама возможность осуществления этих превращений и полнота их протекания зависят от количества энергии, получаемой системой. Для изучения энергетики процессов привлекают термодинамику, главные положения которой выражены в первом и втором законах. Законы термодинамики позволяют предсказать направление химических процессов, т. е. понять, будет ли реакция проходить слева направо или справа налево (в соответствии с тем, как она записана), а также выяснить, можно ли использовать данную реакцию для совершения полезной работы или же для осуществления реакции требуется энергня, которая должна поставляться каким-то внешним источником. Основные начала термодинамики формулируются с помощью [c.323]

    В 1945 г. Шредингер написал книгу Что такое жизнь с точки зрения физики , оказавшую существенное влияние на развитие биофизики и молекулярной биологии. В этой книге внимательно рассмотрено несколько важнейших проблем. Первая из них — термодинамические основы жизни. На первый взгляд имеется решительное противоречие между эволюцией изолированной физической системы к состоянию с максимальной энтропией, т. е. неупорядоченностью (второе начало термодинамики), и биологической эволюцией, идущей от простого к сложному. Шредингер говорил, что организм питается отрицательной энтропие1и>. Это означает, что организмы и биосфера в целом не изолированные, но открытые системы, обменивающиеся с окружающей средой и веществом, и энергие . Неравновесное состояние открытой системы поддерживается оттоком энтропии в окружающую среду. Вторая проблема — общие структурные особенности органиа-мов. По словам Шредингера, организм есть апериодический кристалл, т. е. высокоупорядоченная система, подобная твердому телу, но лишенная периодичности в расположении клеток, молекул, атомов Это утверждение справедливо для строения организмов, клеток и биологических макромолекул (белки, нуклеиновые кислоты). Как мы увидим, понятие об апериодическом кристалле важно для рассмотрения явлений жизни на основе теории информации. Третья проблема — соответствие биологических явлений законам квантовой механики. Обсуждая результаты радиобиологических исследований, проведенных Тимофеевым-Ресовским, Циммером и Дельбрюком, Шредингер отмечает, квантовую природу радиационного мутагенеза. В то же время применения квантовой механики в биологии не тривиальны, так как организмы принципиально макроскопичны. Шредингер задает вопрос Почему атомы малы Очевидно, что этот вопрос лишен смысла, если не указано, по сравнению с чем малы атомы. Они малы по сравнению с нашими мерами длины — метром, сантиметром. Но эти меры определяются размерами человеческого тела. Следовательно, говорит Шредингер, вопрос следует переформулировать почему атомы много меньше организмов, иными словами, почему организмы построены из большого числа атомов Действительно, число атомов в наименьшей бактериальной клетке [c.12]

    Все сказанное предопределяет и построение современного обш его курса биофизики, который подразделяется на две основные части первую — теоретическую биофизику, включаюш ую биофизику сложных систем (в свою очередь подразделяется на кинетику биологических процессов и термодинамику биологических процессов) и молекулярную биофизику (строение и электронные свойства полимеров) вторую — биофизику клеточных процессов, включаюшую биофизику мембранных процессов, биофизику фотобиологических процессов и радиационную биофизику. Вторая часть посвяш ена биофизике конкретных биологических процессов, проте-каюш их на разных структурных уровнях организации живого. Поскольку элементарной ячейкой живого является клетка, эту часть и целесообразно именовать биофизикой клеточных процессов. [c.6]

    Пособие содержит изложение основных понятий, законов и методов физической химии, необходимых для углубленного и ускоренного усвоения неорганической, органической и биологической химии. Книга состоит из 2-х частей. Первая посвящена рассмотрению строения и состояния вещества, причем материал излагается в рамках единого подхода к вещсству как к. системе из взаимодействующих электронов и ядер, из которых образуются молекулы, а затем и макроскопические системы. Строго и достаточно просто разбирается ряд пс1Ложений квантовой механики и статистической физики, на которых базируется изучение строения и состояния вещества в современной химии. Во второй части рассмотрены термодинамика и кинетика химических процессов. [c.335]

    Все сказанное послужило основанием внести суш,ественные изменения в третье издание учебника по физической и коллоидной химии. В учебник включены новые главы элементы учения о превращениях энергии при химических процессах (первое и второе начало термодинамики и т. д.). Эти знания необходимы медику для правильного представления об обмене энергии, протекающем, в живом организме в результате разнообразных биохимических процессов. Внесен раздел о физико хнмичес1р1х свойствах и биологическом значении воды, которая является одной из важных составных частей животного организма, а также в учебник внесен ряд дополнений почти во все разделы курса по физической и коллоидной химии, из которых одни несколько расширяют имеющиеся представления по отдельным главам учебника, другие же являются дополнениями о новых данных науки, полученных в последние годы. [c.3]

    Термодинамика и кинетика окислит.-восстановит. р-ций, в к-рых участвуют биологически активные соед, изучаются вольтамперометрич. методами с использованием капающего (обычно ртутного) или стационарного электрода. Эти методы позволяют определить число электронов, вовлеченных в р-цию при каждом значении потенциала, а также обнаружить неустойчивые промежут. соединения, в т.ч. короткоживущие радикалы, к-рые не удается зарегистрировать методом ЭПР. Электрохим. методы имеют широкую область применения и позволяют изучать тонкости механизма р-ций. Они пригодны для проведения уникальных синтезов и решения сложных аналит. задач, т. к. чувствительность импульсной полярографии позволяет, напр., обнаружить 10 М электрохимически активного в-ва. Возможность применения электрохим. методов для решения упомянутых проблем основана на сходстве электрохим. и биол. окислит.-восстановит. р-ций оба типа являются гетерогенными (первые осуществляются на пов-сти электрода, вторые-на границе фермент-р-р), идут в одном интервале pH и в р-рах той же ионной силы, протекают в неводных средах и в одинаковом интервале т-р, включают стадию ориентации субстрата. Электрохим. методы позволяют получать информацию об окислит.-восстановит. потенциалах, числе электронов, механизме р-ций с участием азотсодержащих гетероциклич. соед. (пурины, пиримидины, порфирины и т. п.). Емкостные измерения дают важные сведения об адсорбционных св-вах низкомол. и высокомол. биологически активных соед. (нуклеотиды, белки, нуклеиновые к-ты). [c.292]

    Изменение энтропии в открытых системах. Применение второго закона к биологическим системам в его классической формулировке приводит, как кажется на первый взгляд, к парадоксальному выводу, что процессы жизнедеятельности идут с нарушением принципов термодинамики. В самом деле, усложнение и увеличение упорядоченности организмов в период их роста происходит самопроизвольно. Оно сопровождается уменьшением, а не увеличением энтропии, как следовало бы из второго закона. Ясно, что увеличение энтропии в необратимых самопроизвольных процессах должно происходить в изолированных системах, а биологические системы являются открытыми. Проблема поэтому заключается в том, чтобы понять, как связано изменение энтропии с параметрами процессов в открытой системе, и выяснить, можно ли предсказать общее направление необратимых процессов в открытой системе по изменению ее энтропии. Главная трудность в решении этой проблемы состоит в том, что мы должны учитывать изменение всех термодинамических величин во времени непосредственно в ходе процессов в открытой системе. Постулируется, что общее изменение энтропии открытой системы может происходить независимо либо за счет процессов обмена с внешней средой с1е5, либо вследствие внутренних необратимых процессов [c.70]

    Как мы увидим дальше, динамический порядок, возникновение динамических структур и их упорядоченное поведение во времени возможны лишь вдали от равновесия. Линейная неравновесная термодинамика, кратко изложенная в этой главе, справедлива лишь вблизи равновесия. Ее основные положения выражаются соотношениями (9.51) и (9.80). Первое описывает сопряжение различных кинетических процессов вследствие отличия недиагональных коэффициентов Ьц 1 ]) от нуля, второе есть математическое выражение теоремы Пригожина о минимуме производства энтропии в стационарном состоянии. Несомненно, что в биологической открыто11 системе реализуются сопряженные процессы. Поэтому общая феноменологическая теория Онзагера — Пригожина позволяет объяснить важные биологические явления. Вопрос о применимости теоремы Пригожина к биологическим системам более сложен. Как мы видели, продукция энтропии а минимальна лишь в тех стационарных состояниях биологических систем, которые близки к равновесию. Эти системы описываются линейными соотношениями (9.51). Но в физике линейная зависимость реакций системы от воздействия, вызвавшего эту реакцию, есть всегда лишь первое приближение, справедливое для малых воздействий. В нашем случае малость означает малое удаление от равновесия. Для рассмотрения биологических систем и их динамической упорядоченности необходимо выйти за пределы линейной термодинамики. [c.327]

    Первый здкон термодинамики применим и к биологическим системам, например к живым организмам, в которых протекают биохимические, физиологические и другие процессы, сопровождающиеся превращением энергии. Изучение обмена веществ, в частности ассимиляции и диссимиляции, измерения всего выделяемого человеком тепла, поглощенного им кислорода, выдыхаемых двуокиси углерода и азота, выделяемой мочи и др., вычисление полного баланса метаболизма белков, жиров и углеводов позволило показать, что пищевые продукты при окислении в организме высвобождают такое же количество энергии, как при сжигании их до тех же конечных веществ вне организма. Энергетический баланс процессов подчиняется первому закону термодинамики. В процессе обмена веществ организм принимает из внешней среды разнообразные вещества. Они в организме подвергаются глубоким изменениям, в результате которых превращаются в вещества самого организма. Одновременно вещества живого организма разлагаются, выделяя энергию и продукты разложения во внешнюю среду. Специфично для живых тел то, что эти реакции определенным образом организованы во времени, согласованы между собой и образуют целостную систему, обусловливающую единство ассимиляции и диссимиляции и направленную на постоянное самовосстановление и самосохранение живого тела. [c.54]

    В начале второй половины нашего столетия стала очевидной невозможность описания возникновения в макроскопических системах когерентных структур на основе известных законов, применимых, подобно закону возрастания энтропии, к множеству частиц, не говоря уже о невозможности понимания этого явления. Классическая термодинамика, как и другие теории "среднего поля", оказались неподготовленными для выяснения причин спонтанного образования порядка из беспорядка за счет большей хаотизации окружающей среды. Возникшая в середине XX в. ситуация в принципе аналогична той, которая имела место в первой половине XIX в. когда выяснилась несостоятельность классической физики в описант поведения макроскопических систем. Теории бифуркаций диссипативных структур, а в общем плане -нелинейная термодинамика неравновесных процессов, по существу, представляют собой отход от унифицированных моделей теорий "среднего поля" и признание невозможности непротиворечивого объяснения эволюции (физической, химической и биологической) в рамках исключительно макроскопического описания, иными словами, является отказом от чисто вероятностных представлений классической и линейной термодинамики. [c.457]

    С какими другими молекулами взаимодействует данная молекула Обычно первые указания на взаимодействие данной макромолекулы с какими-то другими из огромного множества малых и больших биологических молекул получают при исследовании ее функций. Затем пытаются установить, сколько молекул данного типа может взаимодействовать с рассматриваемой макромолекулой одновременно, как прочно они связываются и все ли связываются одинаково. На эти вопросы можно ответить с помошью прямых термодинамических измерений связывания (например, с помощью равновесного диализа) или применяя менее прямые спектроскопические методы. Если связывающиеся молекулы обладают подходящими спектроскопическими свойствами (например, если они окрашены), за ними наблюдают непосредственно. В противном случае иногда используют спектроскопические свойства молекулы-матрицы, с которой они связываются. В более строгих исследованиях изучают термодинамику и кинетику процесса связывания. [c.33]

    Сделаем очевидный для меня вывод, лишь в малой степени объясняемый вторым началом термодинамики. Вроде бы как будто биологическое живое побеждает мёртвое физическое, изменяя его в направлении, благоприятном для себя техническое биологическое. Но это в целом, глобализуя вектор эволюции в одну сторону в сторону (применим термин с осторожностью) прогрессивной эволюции. Но в каждой точке (для конкретной биологической и технической особи) движение обратное. Витальная сила живого, хотя бы на уровне простейших, побеждает, обращая вспять вектор техноэволюции. Может, СНИД вирусный генотип, коровье бешенство первые звонки саранче человеческой  [c.10]


Смотреть страницы где упоминается термин Термодинамика биологическая первый: [c.11]    [c.21]    [c.86]    [c.400]    [c.89]    [c.7]   
Биофизика (1983) -- [ c.9 ]




ПОИСК





Смотрите так же термины и статьи:

Значение первого закона термодинамики для изучения биологических процессов

Применение первого закона термодинамики к химическим и биологическим процессам

Термодинамика биологическая

Термодинамики первый



© 2025 chem21.info Реклама на сайте