Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

сдвиг спирт

    Во время испытания в сосуде с помощью смеси спирта и твердой углекислоты (сухого льда) создается пониженная температура. При проведении испытания пазы с закрепленной пластинкой должны сдвигаться и раздвигаться с равномерной скоростью на расстояние 5 0,1 мм  [c.409]

    Равновесие сдвигается в сторону диссоциации при добавлении растворителей карбамида или углеводородов и повышении температуры [1—4, 16, 27]. Низкомолекулярные -парафины образуют менее стабильный комплекс, чем высокомолекулярные, однако скорость образования комплекса для них выше. Комплекс образуется в присутствии так называемых активаторов, к числу которых относятся вода, низшие спирты, кетоны, некоторые хлорорганические соединения, а также насыщенные водные или спиртовые растворы карбамида. Существует несколько мнений о механизме действия активаторов в процессе комплексообразования с карбамидом. По данным [3], роль активаторов заключается в удалении неуглеводородных примесей с поверхности кристаллов карбамида, что дает возможность молекулам углеводородов проникать в эти кристаллы. Высказано предположение [29], что сначала структура кристаллов карбамида преобразуется из тетрагональной в гексагональную, а действие растворителей карбамида заключается в осаждении его в тонкоизмельченном виде, что обеспечивает мгновенное образование комплекса с углеводородами. [c.203]


    Процессы первой группы являются традиционными и наиболее распространенными в технологии этерификации. Их суть состоит в том, чтобы возможно полнее осуществить обратимый синтез сложного эфира, сдвигая равновесие за счет отгонки летучих продуктов (вода, сложный эфир или их азеотропная смесь). В этом отношении кислоты, спирты и их эфиры подразделяют на четыре айда  [c.212]

    Напротив, образование комплекса пропанола-1 с катализатором характеризуется смещениями химических сдвигов протонов не только гидроксильной, но и остальных групп в слабое поле, что свидетельствует об образовании соединения, в котором затрагивается структура всей молекулы спирта. [c.70]

    Увеличение сил поверхностного натяжения и уменьшение твердости сдвигает переход в область более высоких температур. Применение в качестве смазок полярных жидкостей позволяет в случае трения тел с высокой поверхностной энергией, например металлов, существенно расширить температурную область граничной жидкой смазки (жирные кислоты и спирты или жидкости, содержащие большое количество диполей и имеющие гибкие молекулы). Применяемые в качестве смазок вещества должны иметь высокую температуру кипения и обладать высокой стойкостью к окислительной и термодеструкции. Стеариновые кислоты часто применяют в качестве смазывающих добавок к полимерам, имеющим большую вязкость расплава и высокий коэффициент трения, например к ПВХ. [c.92]

    Это положение можно иллюстрировать следующими примерами. В этиловом спирте протоны метильной (Л 1,22 м. д.) и метиленовой (6 3,70 м. д.) групп химически неэквивалентны, но по величине химических сдвигов достаточно близки. Поэтому их следует обозначать буквами А и В (спиновая система АаВ.,), в то время как в уксусном альдегиде, где различия в химических сдвигах протонов значительны (2,05 и 9,7 м. д. соответственно), следует использовать буквы А и X  [c.290]

    Четвертый пример образования двойного электрического слоя реализуется на идеально поляризуемом электроде при наличии в растворе поверхностно-активных полярных молекул органического вещества. Предположим дополнительно, что ионы электролита являются поверхностно-неактивными, а потенциал электрода за счет внешнего источника тока подобран так, что заряд поверхности равен нулю. В качестве примера можно привести находящийся при п. н. з. ртутный электрод, который погружен в раствор NaF, содержащий некоторое количество н-бутилового спирта. Бутиловый спирт адсорбируется на незаряженной поверхности так, что к поверхности ртути направлен радикал С Н,, а в раствор — гидроксильная группа. Поскольку углеводородный радикал несет небольшой положительный заряд, а группа ОН — отрицательный, то при адсорбции бутилового спирта на незаряженной поверхности ртути возникает некоторый скачок потенциала, изменяющий гальвани-потенциал А ф относительно его значения в чистом растворе NaF при =0. Это изменение можно определить экспериментально по сдвигу п. н. 3. при переходе от чистого раствора NaF к раствору с добавкой бутилового спирта. [c.28]


    Качественное объяснение десорбции органического вещества при больших <7 состоит в том, что в заряженный конденсатор — двойной электрический слой — втягивается диэлектрик, обладающий более высокой диэлектрической проницаемостью, т.е. вода. Как видно из рис. 22, десорбция бутилового спирта (т. е. слияние а, -кривых) наблюдается при потенциалах, не одинаково удаленных от п. н. з. в катодную и анодную стороны. Это объясняется взаимодействием диполя органического вещества с электрическим полем двойного слоя. Действительно, при смещении потенциала в положительную сторону диполь н-С НвОН отталкивается от поверхности, к которой он обращен своим положительным концом. Поэтому десорбция наблюдается уже при относительно небольшом удалении от п. н. з. При сдвиге потенциала в отрицательную сторону, наоборот, притяжение между положительным концом диполя и отрицательно заряженной поверхностью затрудняет выталкивание молекул бутилового спирта из двойного слоя. Можно показать, что эффект вытеснения диэлектрика с меньшей диэлектрической постоянной пропорционален ф , а электростатическое взаимодействие диполя с поверхностью от потенциала зависит линейно. Поэтому в конце концов превалирует первый эффект. [c.45]

    Когда комплексное соединение отличается малой прочностью, для сдвига равновесия в сторону более полного образования комплексного соединения применяют достаточный избыток реагента, а также используют органические растворители (спирт, ацетон) или (если это возможно) экстракцию органическим растворителем, не смешивающимся с водой (экстракционно-фотометрический метоц). При этом следует учитывать также поглощение реагента, перешедшего в органическую фазу. [c.481]

    С повышением адсорбции присадок на металле. Например, высокая теплота адсорбции 4-этиллиридина и стеариш>вой кислоты обусловливает достаточно высокую эффективность их противоизносного действия при умеренных режимах трения на машине трения шар по диску (табл. 5.1). Полагают, что более высокая теплота адсорбции 4-этилпиридина по сравнению с пиридином и 2-этилпиридином объясняется образованием более прочной поверхностной пленки вследствие электронодонорного эффекта метильной группы, обусловливающего сдвиг электронной плотности к азоту. Если молекула адсорбата содержит в своем составе химически активные группы, отличающиеся повышенной полярностью или поляризуемостью в силовом поле металла, то величина адсорбции повышается. Так, более высокая теплота адсорбции стеариновой кислоты на стали по сравнению со спиртами объясняется интенсивным взаимодействием между карбоксильной группой и поверхностью металла, вплоть до образования химической связи. Это и определяет более высокие противоизносные свойства стеариновой кислоты по сравнению со спиртами. [c.257]

    Чтобы реакция по уравнению (16) проходила с оптимальной скоростью и равновесие было сдвинуто возможно больше вправо, необходимо исполь-зоиать активатор — растворитель для реагента (метиловый спирт или метилэтилкетон), который, по-видимому, играет важную роль в создании гомогенного раствора мочевины и м-парафина, как это следует из- уравнений (14) и (15). Однако природа и концентрация активатора не должны сдвигать влево равновесие в уравнении (17). Для получения количественных выходов весьма важно подобрать условия, обеспечивающие максимальный сдвиг равновесия вправо на всех стадиях реакции. [c.221]

    При дегидратации над окисью алюминия при 360° непредельного (Зтор-гексилового спирта, формула которого приводится ниже, олефиновая связь сдвигается из первого положения, как и в примерах, приведенных выше, [c.106]

    Оказалось, что все жидкости обладают модулем сдвиговой упругости и модуль сдвига таких полярных жидкостей, как вода и спирты, при приближении к поверхности пьезо-кварца на расстояние, меньшее 0,1 мкм, повышается во много раз. По мнению авторов, это также является следствием структурных изменений в пристенных слоях полярных жидкостей. Повышение значения сдвиговой прочности граничных слоев обнаружено также при исследовании электроосмоса в капиллярах при высоких градиентах потенциала [228]. Установлено, что вблизи гидрофильных поверхностей в воде на расстоянии нескольких мономолеку-лярных слоев имеется атюмалия диэлектрических свойств. Например, значительное понижение диэлектрической проницаемости у воды (прн толщине слоя 0,07 мкм — до 4,5), что свидетельствует о снижении свободы вращения молекул воды в тонких прослойках. Теплопроводность жидкости с уменьшением толщины граничной пленки при этом резко возрастает, в то время как ее электрическая проводимость снижается. [c.201]

    Комплексы пропанола-1 с 80 и 96%-й Н2504 изучены в работе [145]. Отсутствие в спектрах ЯМР Н изменения мультиплетности сигналов спирта указывает на отсутствие изомеризации ионных превращений углеводородного радикала. С другой стороны, сдвиг сигналов ОН-группы и протонов радикала в слабое поле указывает на перестройку электронной структуры всей молекулы спирта (табл. 3.4). [c.74]


    Количество тех или иных побочных соединений в продукциои-ной смеси зависит от температуры, давления, состава исходной газовой смеси, селективности и состояния катализатора. Наиболее существенными примесями являются метан и диметиловый эфир. По сравиению со всеми побочными процессами (а) — (е) получение метилового спирта идет с максимальным уменьшением объема, поэтому Б соответствии с принципом Ле Шателье повышение давления сдвигает равновесие в сторону образования метилового спирта. Так как процесс экзотермичен, то при повышении температуры равновесие сдвигается влево и равновесная степень превращения синтез-газа в метиловый спирт уменьшается. В то же время при недостаточно высоких температурах скорость процесса чрезвычайно мала. Поэтому в промышленности процесс ведут в узком интервале температур с колебаниями в 20—30°С. Константа равновесия основной реакции [c.165]

    Чтобы успешно осуществлять реакцию, важно создать условия, обеспечивающие максимальный сдвиг ее на всех стадиях вправо. Так, весьма эффективным является добавление активаторов (метилового и этилового спирта, ацетона, нетилэтилкетона и др.). [c.63]

    Дибензтиофен — кристаллическое вещество, кристаллизующееся из спирта в виде бесцветных игл и имеющее температуру нлавЛенйя 99—100° С при 3 мм рт. ст. перегоняется при температуре 152— 154 С образует пикрат (температура плавления 125° С). Изучение спектров поглощения дибензтиофена в ультрафиолетовой области показало, что имеется полоса сильного поглощения при 230 яг ц и очень сильного при 290 и 325 т [х [66] и что молекула его имеет планарное строение [66]. Изучение спектров комбинационного рассеяния света [67 I показало наличие определенного сдвига линий бен--зольного кольца. Имеются также упоминания о спектрах флуоресценции. [c.353]

    Паро-кислородо-углекислотная конверсия. Паро-кислородо-углеки-слотная (ПКУ) конверсия применяется для получения технологического газа для синтеза метанола и высших спиртов. При замене 0,3 объема водяного пара углекислым газом степень превращения метана и содержание его в сухом конвертирова1Шом газе практически не меняются.Но равновесие сдвигается в сторону образования СО. И если при низких температурах происходит конверсия СО, образовавшейся из метана, то при BH oioix температурах протекает конверсия Og с получением дополнительного количества СО. [c.105]

    Выбор условий проведения процесса большей частью обусловливается экономическими соображениями. Как улге отмеча,пось, при повышении температуры равновесие резко сдвигается в Toj)ony дегидратации спирта, тогда как скорость гидратации увеличивается. Отсюда получается, что при определенной величине активности катализатора повышение скорости реакции вызывает увеличение объема этилена, подвергающегося рециркуляции, так как за проход его реагирует меньше. Увеличение объема рециркулирующих газов повышает расход энергии. Степень превращения этилена за проход МО /КПО повысить увеличением давления, но это влечет за собой донол-нител]лн.1е расходы. Состав смеси паров воды и этилена также определяется частично экономическими соображениями. При сни/кении парциального давления воды ее степень превращения за проход увеличивается, а этилена падает. Следовательно, это также увеличит степень рециркуляции этилена. Правда, одновременно уменьшится количество тепла, требующееся для испарения воды. Наиболее экономичными будут условия, при которых расход энергии иа повышение рециркуляции этилепа будет уравновешиваться снижением расходов на испарение воды. [c.459]

    Уиомянутые выше исследования позволили подробнее изучить условия, при которых происходит изомеризация двойной связи непосредственпо у гомологов этилена однако следует подробнее коснуться и сдвига двойной связи, происходящего нри получеиии или химической переработке олефинов. Так, уже при образовании олефинов, например, дегидратацией спиртов или дегидрохлорированием алкилхлоргвдов часто происходят довольно [c.667]

    Простые эфиры можно получать и в гетерогенной фазе над твердыми катализаторами, например над А120д, ТЬ0,2, а также над некоторыми глинами. Над А12О ,-катализатором из этилового спирта можно получить 60% диэтилового эфира. Однако все твердые катализаторы дают и значительные количества олефинов, причем, как видно из табл. 45, с повышением температуры реакции процесс все больше сдвигается в направлении образования олефинов. [c.461]

    Большинство индулинов как в виде оснований, так и в виде солей нерастворимо в воде, но растворимо в спирте. Для получения водорастворимых препаратов красители сульфируют. Спирторастворимые индулины применяются для крашения таннированиого хлопка, водорастворимые (натриевые соли сульфокислот) пригодны для крашения шелка и шерсти. В зависимости от состава препарата тон выкрасок сдвигается от фиолетово-синего До зеленовато-синего (высшая ступень фенилиро-вання). Раствор индулина в ацетилированном глицерине (ацетине) служит заменителем индиго. [c.758]

    На рис. 31, дающем в схематическом виде зависимость минимальных температур самовоспламенения от давления, кривая 1 изображает форму области самовоспламенения метапа, этана (для бедных этано-воздушных смесей), этилена, бензола, а также метилового спирта и формальдегида. Для этих веществ наблюдается непрерывное изменение температуры самовоспламенения в зависимости от давления. Иная форма области самовоспламенения представлена кривой 2 рис. 31, относящейся к этану (для богатых этано-воздушных смесей), пропилену и бутилену. Здесь наблюдается резкий излом на кривой самовоспламенения, приводящий к тому, что для этих веществ даже очень небольшое увеличение давления сверх некоторого его значения В переводит самовоспламенение из области высоких температур Ь) в область низких температур Наконец, третья форма области самовоспламенения была найдена Тоунендом для парафиновых и олефино-вых углеводородов, содержащих первые — три и больше, а вторые — пять и больше атомов углерода в молекуле, а также для исследованных спиртов, кроме этилового, альдегидов, кроме формальдегида, и эфиров. Вид их области самовоспламенения схематично представлен кривой <3 рис. 31. Из формы этой кривой ясно, что при давлениях, меньших А, самовоспламенение может осуществляться только при высоких температурах, больших К при давлениях А—В имеются три температурных предела самовоспламенения, т. е. при одном и том же давлении, например А, самовоспламенение будет происходить в низкотемпературном интервале М—ТУ, исчезнет в интервале М—Ь и снова возникнет, начиная с температуры Ь наконец, при давлениях, больших В, существует только один предел самовоспламенения, которое будет осуществляться при температурах, меньших, но близких к N. Таким образом, у высших углеводородов имеется низкотемпературный полуостров самовоспламенения, вытянутый в сторону низких давлений и определяющий в интервале давлений А—В три температурных предела самовоспламенения. Формы и размеры этого полуострова зависят от сосуда, состава смеси и природы самого углеводорода. С обеднением смеси углеводородом полуостров самовоспламенения сдвигается в сторону высоких давлений. Наиболее ярко выражен полуостров у парафинов с прямой цепью. У изопарафинов это явление тем менее отчетливо, чем раз-ветвленней молекула. Для всех углеводородов полуостров самовоспламенения расположен около 350°. [c.85]

    На рис. 1.5 в качестве примера приведен спектр ПМР низкого разрешения для этилового спирта с указанием химических сдвигов в б- и т-шкалах и соотношення экспериментально изме- [c.19]

    Химические сдвиги однотипных групп в различных соединениях не одинаковы (например, группы СНз в метиловом спирте, хлористом метиле и уксусной кислоте), поэтому значения б варьируются в определенном интервале. Это затрудняет их строгое отнесение. При отнесении сигналов в спектре ПМР к той или иной группе следует учитывать интенсивность сигнала, которая пропорциональна числу магнитноэквивалентных протонов. Так, например, соотношение интенсивностей сигналов протонов в спектре этилового спирта равно 3 2 1, что позволяет однозначно отнести их к соответствующим группировкам. Интенсивность сигнала на диаграммной ленте можно определить по площади соответствующего сигнала. [c.286]

    На рисунке приведен спектр изопропилового спирта Протоны ме-тнльных групп химически эквивалентны и поэтому их химические сдвиги одинаковы. В результате спин-спинового взаимодействия с потоном СН-группы сигнал метильных протонов расщепляется в дуплет. В соответствии с правилом мультиплетности (/У= - -1) сигнал протонов метиновой группировки расщепляется в септет. Сигнал протона гидроксильной группы (сравните интенсивности сигналов) проявляется в спектре в виде уширенного синглета. [c.299]

    Рассмотрим кратко электрокапиллярные кривые в присутствии поверхностно-активных органических веществ (рис. 22). В присутствии h-QHjOH происходит снижение пограничного натяжения в максимуме электрокапиллярной кривой, сдвиг п. н. з. в положительную сторону и слияние а.Е-кривых при достаточно большом удалении от п.-н. з. как в катодную, так и в анодную стороны. Снижение пограничного натяжения связано с положительной адсорбцией бутилового спирта на поверхности ртути. Сдвиг п. н. з. свидетельствует об ориентированной адсорбции органического вещества. Молекула н-С Н ОН при адсорбции ориентируется к поверхности своим положительно заряженным концом, что и приводит к сдвигу п. н. 3. Б положительную сторону. Имеются, однако, органические вещества, которые смещают п. н. 3. в отрицательную сторону. Совпадение а, -кривых при доста- [c.44]

    С увеличением концентрации ПАОВ ингибирование электрохимических реакций возрастает. Известно, однако, что при переходе от водного раствора реаги-рующеГ частицы к ее раствору, например в пропиловом спирте, скорость электрохимических реакций проходит через минимум (рис. 5.7). При сопоставлении зависимостей потенциала полуволны Е /2 реакции восстановления и дифференциальной емкости от концентрации пропи-лового спирта видно, что наименьшее значение емкости двойного слоя практически совпадает с максимальным сдвигом 1/2 в сторону более отрицательных потенциалов. Аналогичные эффекты были обнаружены для большого числа электрохимических систем, однако не имеют пока [c.173]

    ИЗ которых соответствует восстановлению в бензиловый спирт протонированных молекул бензальдегида, вторая — непротони-рованных. Последний процесс становится возможным при сдвиге потенциала электрода в более отрицательную область и протекает в условиях повышенного значения pH приэлектродного слоя. [c.237]


Смотреть страницы где упоминается термин сдвиг спирт: [c.237]    [c.415]    [c.418]    [c.191]    [c.141]    [c.475]    [c.143]    [c.345]    [c.467]    [c.418]    [c.7]    [c.263]    [c.20]    [c.256]    [c.272]    [c.256]   
Основы органической химии Часть 1 (2001) -- [ c.0 ]




ПОИСК







© 2025 chem21.info Реклама на сайте