Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Спектроскопия правила для интерпретации

    Интерпретация колебательных спектров комплексонатов и комплексонов носит, как правило, эмпирический характер. В процессе комплексообразования связи металл—лиганд нередко существенно искажают геометрическую конфигурацию последнего, в особенности это касается донорных центров, что, в свою очередь, сказывается на значении относительного смещения частот колебаний соответствующих функциональных групп Обычно при отнесении линий рассматривается серия родственных соединений [181], крайние члены которой принимаются в качестве эталонов. Например, значение частоты валентного колебания карбоксильной группы в солях щелочных металлов часто принимается в качестве эталона ионного типа связи и свободной , некоординированной группы СОО Возможность изучения и твердой фазы, и растворов, а также расходование для съемки спектров микроколичеств образца делают этот вид спектроскопии чрезвычайно привлекательным для исследователя Так, если для получения ИК-спектра твердого соединения достаточно массы вещества порядка 0,001 г, то для ЯМР широких линий эта величина примерно в 1000 раз больше. [c.409]


    ПМР-спектры Для замещенных аренов, за исключением бензолов, характерно большое число изомеров и, следовательно, большое число неэквивалентных ароматических протонов, которые способны взаимодействовать между собой (см разд 5 3) Это, как правило, приводит к такому усложнению интерпретации ПМР-спектров аренов, что для определения числа и положения заместителей в ароматическом ядре метод ПМР, так же как ИК-и УФ-спектроскопия, становится достаточно эффективен только в случае сравнительно простых производных ряда-бензола [c.89]

    Для изучения ПП восстановительных процессов на ртути эффективными являются полярография и родственные методы, в ряде случаев применима непосредственная индикация радикалов с помощью ЭПР-спектроскопии [1]. Для твердых электродов, особенно в анодной области и при высоких положительных потенциалах ф, препятствием для использования прямой детекции является малый период жизни радикалов, образующихся в этой области ф (как правило, Т1/, 10 — —10" сек). Электрохимические методы определения структуры адсорбированных на электроде ПП допускают противоречивую интерпретацию измерений [2, 3]. [c.226]

    В спектроскопии ЯМР наиболее широко применяется магнитный резонанс на ядрах водорода — протонах, что объясняется, в первую очередь, присутствием водорода в подавляющем большинстве химических соединений, а также тем, что протонные сигналы обладают наиболее высокой интенсивностью по сравнению с сигналами от других ядер (исключая ядра трития). Это позволяет наблюдать спектры слабых растворов и в известной мере учитывать межмолекулярные факторы, влияющие на экранирование. Однако интерпретация химических сдвигов Н в связи с электронной структурой молекул наталкивается на целый ряд трудностей. Ввиду того, что диапазон химических сдвигов Н невелик (примерно на порядок раз меньше, чем для ЯМР Р ), основное затруднение вызывают высокие значения относительных вкладов пространственных внутримолекулярных факторов. Теоретический расчет этих эффектов в настоящее время не может обеспечить необходимую точность. Поэтому, как правило, выделение локального экранирования Н и корреляция его с параметрами электронной структуры молекул (в том числе с а-константами Гаммета—Тафта) носит довольно приближенный характер. [c.409]

    Изучение природного лигнина затруднено рядом обстоятельств, основными из которых следует считать, в частности, высокую лабильность нативного лигнина и наличие химической связи его с другими компонентами древесины. Поэтому вполне понятен тот интерес, который проявляют химики к методам молекулярной спектроскопии, позволяющей исследовать растительные ткани, не прибегая к жестким физическим и химическим воздействиям на них. Целым рядом исследователей [1—4, 16] была применена в работе инфракрасная спектроскопия при изучении лигнина и получены интересные данные. Тем не менее, до сих пор отсутствует убедительная и общепринятая интерпретация полос поглощения в ИК-спектрах лигнина. Это обусловлено тем, что для столь сложного объекта, каким является лигнин, химическая структура которого однозначно не установлена, нельзя применить правила отбора. [c.137]


    В резонансном поглощении или резонансном рассеянии участвуют два состояния ядра. Каждое состояние взаимодействует с внеядерными полями посредством своих электрического монопольного, [магнитного [дипольного. и электрического квадрупольного моментов. Это взаимодействие может быть описано гамильтонианом, содержащим большое число координат. Даже если предположить, что ядро представляет собой твердое тело, мы сталкиваемся с вычислительной проблемой, решение которой находится вне возможностей современной теории, и для того, чтобы сделать какие-либо предсказания, необходимы аппроксимации. Очень полезным оказывается метод разделения переменных. Процедура состоит в сведении задачи к решению уравнения с угловыми переменными, которые описываются операторами угловых моментов, и уравнения с радиальными переменными, которые практически трактуются как полуэмпирические константы. Эта процедура известна как формализм спинового гамильтониана [1, 2]. Она с успехом применяется для интерпретации сверхтонкой структуры спектров в твердых телах. В рамках этого формализма имеется угловой момент 5, называемый эффективным спином и связанный с электронными координатами. Для свободных ионов или ионных решеток, в которых эффекты кристаллического поля очень слабы , 5 представляет собой полный угловой момент J. Однако для наиболее тяжелых атомов, доступных мессбауэровской спектроскопии, вырождение, связанное с J, снимается (частично или полностью) путем взаимодействия с лигандами (обычно через ковалентные связи), и основное состояние, как правило, является синглетом или дублетом. Квантовомеханическое описание этого основного состояния как линейной комбинации базисных состояний в 1 /, Лi )- или [c.399]

    К хроматографам не предъявляется каких-либо дополнительных требований, помимо тех, о которых шла речь во введении. Для полностью автоматического режима работы, однако, представляется целесообразным, чтобы управляющие сигналы могли сниматься непосредственно с детектора или же усилителя хроматографа и направляться для обработки в вычислительную машину спектрометра. Вообще говоря, в конструкции спектрометра должны быть предусмотрены возможности для подобной комбинации. Это касается как интерфейса, так и программного обеспечения вычислительной машины. Большинство современных коммерческих ИК-фурье-спектрометров создано именно по такому принципу, поскольку сочетание хроматографического и спектроскопического методов в существенной мере расширяет возможности этих пока еще довольно дорогих по сравнению с обычными спектрометрами приборов. Инфракрасные фурье-спектрометры, пригодные для сочетания хроматографии и спектроскопии, работают по принципу интерферометра. Их, как правило, подключают к высокопроизводительным вычислительным машинам, которые при помощи техники преобразования Фурье рассчитывают инфракрасные спектры из сложных интерферограмм. Менее чем за одну секунду может быть измерена интерферограмма для спектральной области 500—4000 см , причем достигаемое при этом разрешение 5—10 см вполне достаточно для качественной интерпретации спектра. В зависимости от техники измерения требуемое для этого количество образца составляет обычно 1— 10 мкг. Если определенная фракция будет удерживаться в газовой кювете в течение некоторого времени (метод остановленной струи), то спектры можно получить, располагая всего лишь несколькими нанограммами вещества. [c.264]

    При достаточно чувствительном способе детектирования можно получить чисто вращательный спектр молекулы в возбужденном колебательном состоянии. Все наблюдения таких спектров до сих пор проводились с помощью микроволновой спектроскопии, и даже в этом случае необходимо иногда нагревать образец для того, чтобы в возбужденное колебательное состояние перешло достаточное число молекул. Здесь действуют те же общие и частные правила отбора, что и в основном колебательном состоянии, так что при интерпретации спектров не возникает никаких новых вопросов. Однако важность результатов, получаемых для молекул в возбужденном состоянии, состоит в том, что они позволяют определить значение равновесного межъядерного расстояния г . Для двухатомных молекул момент инерции в возбужденном состоянии больше, чем в основном, а потому для вращательной постоянной в возбужденном состоянии можно написать [c.64]

    Спектральные полосы поглощения исследуемых соединений можно, как правило, отнести, сравнивая их со спектрами аналогичных веществ, полученных другими авторами. При интерпретации спектров мы использовали в качестве справочного материала монографии [1—4] и таблицы [5]. Для полистирола и полистиролсульфоновой кислоты достаточную информацию дает сравнение с соответствующими дейтерированными соединениями [6]. Принятое нами отнесение полос обобщено в виде таблиц в приложении. Читатели, интересующиеся только проблемами гидратации, могут опустить данную главу и в последующем использовать приведенное в таблицах отнесение полос. В литературе можно найти дополнительные данные по исследованию синтетических ионообменных смол методами ИК-спектроскопии и спектроскопии комбинационного рассеяния [7—12]. [c.15]


    Идентификация кислотных красителей спектрометрическими методами обычно более трудна, чем в случае красителей других классов. Они редко дают молекулярные ионы при масс-спектрометрии, а получаемые данные мало информативны. Как правило, растворимость кислотных красителей в растворителях, пригодных для ЯМР-спектроскопии, очень низка. Несмотря на то, что сульфо-и сульфонатные группы обычно имеют характеристические полосы в области 1250—1000, ИК-спектры сульфированных красителей часто плохо разрешены. Красители сильно гигроскопичны и присутствие молекул воды приводит к экранированию в ИК-спектрах полос поглощения в области НН- и ОН-частот. Наличие влаги может также вызвать трудности при интерпретации данных ПМР-спектроскопии, особенно если молекула красителя содержит легко обменивающиеся протоны. Кроме того, если даже имеется образец, полученный встречным синтезом, полное совпадение ИК- и ПМР-спектров возможно только в случае, когда анализируемый и эталонный образцы находятся полностью в форме кислоты или соли. Тем не менее, использование комбинированных спектрометрических методов возможно и в данном случае. [c.316]

    Однако, как правило, возможности инфракрасной спектроскопии в изучении поверхностных соединений и адсорбции вследствие указанных ограничений трудно реализовать, что затрудняет и часто делает неоднозначной интерпретацию спектральных результатов. [c.276]

    Известно, что белки и нуклеиновые кислоты можно изучать с помощью методов ДОВ и КД вследствие, в первую очередь, пространственной асимметрии составляющих остов этих макромолекул аминокислот и нуклеотидов, следовательно, ДОВ и КД полезны при структурных исследованиях белков, нуклеиновых кислот и нуклеопротеидов. Однако еще раз надо напомнить о том, что теория, позволяющая связать спектры с молекулярной структурой, еще недостаточно развита, поэтому используемые для интерпретации спектров рабочие правила (как и правила абсорбционной спектроскопии) носят большей частью эмпирический характер. [c.450]

    В DENDRAL используются два множества правил для представления знаний в области масс-спектроскопии правила интерпретации данных масс-спектрографии и вывода фрагментов молекул в процессе планирования и правила моделирования масс-спектрограмм на этапе проверки полученных структур. [c.51]

    Эксперим. исследование мол. движений проводят с помощью ЯМР, ЭПР, оптич. спектроскопии (люминесцентной, ИК, комбинац. рассеяния), методов диэлектрич. и мех. релаксаций, рассеяния нейтронов, рентгеновских лучей и др. для интерпретации результатов привлекают модельные представления о мол. структуре изучаемого объекта и даша-мике молекул. Из теоретич. методов в первую очередь используют моделирование мол. структур на ЭВМ-численные эксперименты (часто иаз. также машинными или вычислительными экспериментами). Такое моделирование основано на определенных физ. гипотезах относительно характера движения частиц в системе, их взаимод. и т. п. оно позволяет провести детальный анализ динамич. св-в разл. мол. систем, зависимость этих св-в от г-ры и др. термодинамич. параметров и влияния динамики молекул на макроскопич. св-ва в-ва. Одно, пз существ, достоинств численных экспериментов - возможность проверить исходные физ. гипотезы и вычислит, методики, оставаясь в рамках самих этих экспериментов. Совр. ЭВМ позволяют проводить численные эксперименты для систем с относительно небольшим числом N частиц (как правило, N = 10 -10 ). Поэтому для моделирования изотропных макроскопич. систем часто полагают, что все пространство заполнено тождеств, ячейками с периодич, граничными условиями (напр., кубич. ячейками, когда считаются тождественными противополохсные грани).,  [c.111]

    Флуоресцентная спектроскопия находит широкое применение в исследованиях природы и состояния сложных субмолекулярных объектов, таких как мицеллы, лнпосомы, биологические клетки и их компоненты [1]. По своим аналитическим возможностям она во многом лидирует, позволяя регистрировать излучение одного кванта в объеме менее 1 мкм , а также фиксировать молекулярные явления в фемтосекундной шкале времени. В исследованиях субмолекулярных объектов часто используются вспомогательные инструменты - флуоресцентные зонды. Флуоресцентный зонд - это молекула, способная при поглощении кванта света оптического диапазона испускать новый квант света. Характеристики излучения подобных молекулярных устройств (его интенсивность, положение и полуширина полосы в спектре и пр.) всегда несут определенную информацию об объекте. Задача исследователя состоит в адекватной интерпретации полученной информации. Однако часто интерпретация информации представляется сложной задачей, поскольку излучение молекулы зонда, как правило, отражает состояние сразу нескольких физических параметров микроокружения. Поэтому к химической архитектуре зонда и его флуоресцентным свойствам существует ряд жестких требований. В частности, важным требованием (если не основным) является экстракция информации об изучаемом параметре микроокружения. Эта задача решается путем фильтрации информации, а также увеличения количества каналов ее получения. [c.385]

    Прежде всего сделаем попытку классифицировать методы в соответствии с тем, позволяют ли они получить сведения о геометрии и размерах молекул, т. е. о пространственном распределении ядер, или информацию о характеристиках связей, т. е. о пространственном и энергетическом распределении электронов. Конечно, во многих случаях один и тот же метод можно использовать для решения различных задач однако для обсуждения электронного строения молекул обычно требуется сначала построить какую-либо теоретическую модель, такую, например, как модель теории МО, в то время как определение равновесных положений ядер чаще всего основывается на соображениях симметрии или правилах отбора, не зависящих от какой-либо специальной модели. Например, дифракционные методы лишь очень редко используются для исследования распределения электронов, хотя в принципе это возможно, поскольку рассеяние падающих пучков, за исключением нейтронных пучков, происходит на электронах. Аналогичным образом с помощью спектроскопических методов, например ИК- или ЯМР-спектроско-пии, по числу наблюдаемых линий часто удается получить информацию, вполне достаточную для того, чтобы с помощью правил отбора с высокой степенью надежности опредатить форму молекулы. Однако сведения об электронных плотностях можно получить только при использовании теории, которая определяет пространственное распределение электронных оболочек более детально, чем это вытекает только из свойств симметрии. С другой стороны, мы часто не доверяем данным о размерах и симметрии молекулы, полученным с помощью только УФ-спектроскопии, если они не подтверждены результатами кристаллографических исследований или данными о колебаниях молекулы. Но даже и в том случае, когда такие подтверждения имеются, УФ-спектроскопия является в основном методом исследования электронного строения молекул. Отличительная особенность методов, чаще всего используемых для определения размеров и формы молекул, состоит в том, что они связаны с применением правил отбора, и по крайней мере в начальной стадии исследования такими методами не возникает необходимости измерять интенсивность переходов достаточно лишь установить предварительно, наблюдаются ли данные переходы или нет. Например, изучение и интерпретация данных об интенсивности в ИК-спектрах и спектрах комбинационного рассеяния представляют собой весьма трудную задачу. Тем не менее часто удается вполне однозначно определить геометрию молекулы просто с помощью анализа числа полос, проявляющихся в указанных спектрах, как это будет показано ниже на примере фторидов ксенона. [c.393]

    В настоящее время одним из наиболее распространенных методов исследования выделенных в твердую фазу координационных соединений является термический анализ. Он занимает второе место после колебательной спектроскопии. Отчасти это объясняется широким использованием дериватографов, позволяющих одновременно регистрировать массу, скорость нагревания, изменение массы и тепловых свойств вещества при повышении температуры. Известны и другие методы термического анализа, которые позволяют следить за скоростью газовыделения, изменения магнитных свойств, изменения масс-спектра выделяющихся газообразных продуктов, изменения электрической проводимости исследуемого вещества и др. Однако подавляющее число исследований твердофазных термических превращений координационных соединений сводится к изучению термической устойчивости . О ней, как правило, судят по температуре начала разложения соединения или по температурному интервалу, в котором осуществляется процесс. Часто по температуре отщепления лиганда судят о прочности его связи с центральным атомом. Необоснованность такой интерпретации термогравиограмм аргументирована В. А. Логвиненко [1]. [c.395]

    В современной молекулярной спектроскопии вопрос об интерпретации полос, об отнесении полос электронных спектров поглощения к тому или другому типу переходов является одним из актуальных. Решением его занимаются многие исследователи, применяя в основном спектроскопические методы, а именно, используя экспериментальные данные о влиянии растворителей на положение и интенсивность полос поглощения. В ранних исследованиях было обнаружено, что имеется связь между смещением полосы поглощения и показателем преломления растворителя (правило Кунд-та). Аномалии этой связи были изучены Шайбе [630, 629] и Вуроу [376] (голубой сдвиг). В 1950 г. Мак-Коннелл [562] установил, что явление голубого сдвига связано с п—я-переходами и на этом основании предложил деление полос поглощения на п—я- и я—я-полосы. Каша [367] установил, что в явлении голубого сдвига главную роль играет водородная связь. Г. Бахшиев [11] в своих теоретических и экспериментальных исследованиях голубого сдвига, наблюдающегося при переходе от паров к растворам, сделал предположение об уменьшении дипольного момента молекулы в возбужденном состоянии. [c.236]

    В области химического применения физических методов ЭВМ призваны сыграть выдающуюся роль. В самом деле, в подавляющем большинстве физические методы являются косвенными и само наблюдение, как правило, не дает в окончательном виде ту информацию, ради которой ведется исследование. Известно, что, скажем, рентгенограммы являются лишь полуфабрикатами, и для выявления пространственной структуры молекулы надо проделать еще громадный объем вычислений, результатом которых, и являются координаты атомов изучаемой системы. С аналогичной ситуацией приходится встречаться в колебательной спектроскопии. Одно лишь наблюдение спектра еще ничего не может сказать о строении молекулы, если с помощью соответствующих вычислений, базирующихся на современной теории, не проведена интерпретация спектра, т. е. не уста-новдена физическая связь между наблюдаемыми величинами и параметрами молекулы. Ситуация эта является типичной. [c.346]


Смотреть страницы где упоминается термин Спектроскопия правила для интерпретации: [c.205]    [c.56]    [c.129]    [c.488]   
Физическая Биохимия (1980) -- [ c.392 ]




ПОИСК





Смотрите так же термины и статьи:

ЯМР-спектроскопия правило



© 2024 chem21.info Реклама на сайте