Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

ЯМР-спектроскопия правило

    Помимо важной роли в комбинированных методах анализа меюды разделения и концентрирования имеют для аналитической химии суперэкотоксикантов самостоятельную ценность. Далеко не всегда можно проанализировать образец без предварительного выделения определяемых соединений из природной матрицы. При этом, как правило, возникает необходимость их концентрирования по отношению к матричным компонентам, присутствующим в растворе или в газовой фазе. Даже такие методы, как хромато-масс-спектрометрия и газовая хроматография в сочетании с ИК-спектроскопией, не всегда могут решить задачи следового анализа. Целью концентрирования является снижение нижнего предела обнаружения, тогда как разделение позволяет упростить анализ и устранить влияние мешающих веществ [c.199]


    Для твердых электродов, материал которых состоит из нескольких элементов, характерно отличие состава поверхности от состава объемной фазы, что может быть зафиксировано современными физическими методами (например, Оже- или рентгеновской фотоэлектронной спектроскопией). Эти методы позволяют определить состав поверхности в ходе послойного снятия материала в условиях ультравысокого вакуума. При использовании результатов этих методов надо учитывать возможность изменения состава поверхности при контакте с раствором электролита по сравнению с фиксируемым в вакууме. Как правило, на большинстве твердых поверхностей физические методы регистрируют наличие больших количеств углерода, который появляется, вероятно, при контакте с атмосферой. При анодной обработке в растворах электролитов углерод окисляется до СО. и десорбируется. [c.16]

    В спектроскопии правила отбора указывают, что некоторые переходы теоретически допустимы, тогда как другие переходы теоретически запрещены. Эти правила зависят от конкретного типа эксперимента. Например, инфракрасная спектроскопия основана на прямом поглощении электромагнитного излучения. Правило отбора для переходов в инфракрасном спектре точно [c.84]

    Спектроскопия комбинационного рассеяния. Спектр КР лежит, как правило, в видимой области, поэтому для исследования применяются обычные спектрографы со стеклянной оптикой или дифракционными решетками. Источником мощного возбуждающего излучения служит ртутная лампа низкого давления, из спектра которой с помощью фильтров выбирается та или иная линия высокой [c.151]

    Новое направление развития этих методов представлено колебательным круговым дихроизмом в ИК спектроскопии и определением разности в интенсивности рассеяния лучен с правой и левой круговой поляризациями в спектрах комбинационного рассеяния. В этой области следует ожидать новых важных результатов. [c.224]

    Трудно разрешимы. В тех случаях, когда структура в спектре существует, определенные переходы могут быть разрешены или запрещены правилами отбора для вращательных и колебательных переходов. Эти правила также основаны на приближении Борна — Оппенгеймера, предполагающем разделение волновых функций отдельных мод. В асимметричной молекуле не существует ограничений на возможные колебательные переходы, так что ее спектр соответственно достаточно сложен. В симметричной молекуле только колебательные уровни той же колебательной симметрии для частиц на верхнем и нижнем электронных уровнях могут сочетаться друг с другом. Это значит, что, хотя все симметричные колебания сочетаются друг с другом, для антисимметричных колебаний возможны лишь переходы с До = 0, 2, 4 и т. д. Вращательная структура в электронной спектроскопии особенно сложна, поскольку вращательный момент молекулы может взаимодействовать с электронным моментом, причем известно несколько типов и случаев такого взаимодействия. Более того, возможные для молекулы вращения зависят от ее формы (линейная, симметричный волчок и т. д.), так что нет смысла приводить здесь отдельные правила отбора для вращения. Достаточно одного известного примера для перехода линейной молекулы правила отбора записываются в виде АЛ = 0, 1. [c.43]


    Сведения о химических сдвигах углеродных атомов обычно получают из спектров с полным подавлением спин-спинового взаимодействия с протонами. Интервал химических сдвигов углерода составляет около 250 м. д., что более чем на порядок превышает область химических сдвигов протонов. Поскольку при Этом сигналы в спектре ЯМР С имеют малую ширину, то практически каждой линии в спектре соответствует одна группа химически эквивалентных углеродных атомов . В качестве эталонного соединения в, спектроскопии ЯМР. С выбран тетра- метилсилан, химический сдвиг которого принят за О м. д. (на рис. 5.2 это крайний правый сигнал спектра). Сдвиги в слабое поле относительно ТМС считают положительными (шкала 8с). В качестве дополнительных эталонов на практике часто выбирают сигналы растворителей, химические сдвиги которых в 8с -шкале приведены в табл. П1Х. [c.136]

    Улучшение чувствительности ЯМР-спектрометров. ЯМР-спектроскопия отличается невысокой чувствительностью. Главная причина этого состоит в небольшой разности заселенностей ядерных энергетических уровней и, как следствие, легкости достижения состояния насыщения (равная заселенность уровней). В этом состоянии поглощение ядрами энергии извне прекращается и спектр записать невозможно. Во избежание насыщения образец облучают очень слабым источником электромагнитного излучения (его мощность составляет, как правило, не более нескольких милливатт). Доля поглощенного излучения не превышает 10 мощности генератора, т. е. составляет 10 —10 Вт. Чтобы зарегистрировать такой слабый сигнал, его нужно многократно усилить. При этом неизбежно в систему усилителя просачиваются посторонние сигналы (шум), которые также подвергаются усилению и создают фон. Если магнитных ядер мало или их сигнал слабый, то резонансный пик может потонуть в шуме и мы его не заметим. [c.46]

    Существует несколько методов множественного резонанса в спектроскопии ЭПР, из которых основными являются рассматриваемые ниже двойной электрон-ядерный резонанс (ДЭЯР) и электрон-электронный двойной резонанс (ЭЛДОР или ЭДР) . Как правило, хорошо разрешенные спектры ЭПР регистрируются для невязких жидкостей и кристаллов при низких температурах, а для многих структурно неупорядоченных сред характерны неразрешенные или плохо разрешенные спектры. Основной задачей развития указанных специальных методов явилось повышение спектрального разрешения. В методе ДЭЯР оказывается одновременное воздействие на систему при неразрешенной сверхтонкой структуре в спектре ЭПР двух переменных электромагнитных полей, одно из которых вызывает электронные, а второе — ядерные зеемановские переходы. [c.79]

    Интегрирование в спектроскопии ЯМР При измерении площадей сигналов ядер С встречаются некоторые трудности, так как измеренные площади сигналов часто не коррелируют с числом атомов углерода. Это связано с большим временем релаксации ядер С (особенно у четвертичных атомов углерода), небольшими промежутками между импульсами и различными для разных ядер эффектами Оверхаузера. Именно поэтому интегральные интенсивности в спектрах ЯМР С, как правило, не приводятся. [c.139]

    Условием для получения колебательных и вращательных спектров поглощения или испускания является изменение дипольного момента, тогда как переходы, наблюдаемые в спектрах Ki связаны с изменением поляризуемости молекул. Благодаря различию правил отбора ИК-спектроскопия и спектроскопия КР существен но дополняют друг друга. [c.267]

    Общие правила работы. Нагренапис и охлаждение, кристаллизация, сушка и упаривание, фильтрование, экстракция и противоточное распределение, перегонка, работа с вакуумом и под давлением, возгонка, методы работы с полумикроколиче-ствами. Основы хроматографического разделения веществ, хроматографические методы. Идентификация органических веществ определение температуры плавления, тепературы кипения, плотности. Качественный элементный и функциональный анализ. Применение ИК- и УФ-спектроскопии и спектроскопии ПМР для идентификации органических соединений. Понятие о применении газовой хроматографии и масс-спектрометрии для идентификации веществ. Номенклатура ЮПАК. [c.247]

    В процессе симметричного валентного колебания молекула претерпевает растяжение или сжатие, при этом электронная плотность в элементе объема изменяется, и по этой причине изменяется поляризуемость. Неизменным остается дипольный момент. Вот почему такие колебания следует наблюдать в спектре комбинационного рассеяния [см. уравнение (5.3.13)], но не в инфракрасном [см. уравнение (5.3.12)]. Для антисимметричных валентных колебаний складываются обратные соотношения. Для молекул с центром симметрии имеется правило альтернативного запрета, по которому колебание может быть активным только в инфракрасных спектрах или в спектрах комбинационного рассеяния. Из этого следует необходимость комбинирования методов инфракрасной спектроскопии и спектроскопии комбинационного рассеяния при изучении колебательных спектров молекул. [c.222]


    В аналитической спектроскопии в названиях различных методов, как правило, отражены объекты исследования и процессы, лежащие Р) основе определения этих объектов, например атомно-абсорбционный, атомно-флуоресцентный методы анализа. В методе, основанном на селективной лазерной ионизации, объектом исследований являются атомы, а процессы, позволяющие детектировать эти атомы, связаны с образованием ионов. Поэтому, с точки зрения авторов настоящего учебного пособия, данный метод логично называть в общем виде атомно-ионизационным (АИ). [c.183]

    Переходы, для которых Dftj = 0, называются запрещенными в дипольном приближении, и соответствующие этим переходам спектральные линии отсутствуют в наблюдаемом спектре. Большая часть возможных переходов в атоме запрещена, в связи с чем в спектроскопии важное значение имеют правила отбора для разрешенных переходов. [c.40]

    И все же действительно тройные связи, как правило, более подвержены нуклеофильным и менее — электрофильным атакам, чем двойные связи, несмотря на более высокую электронную плотность в алкинах. Одно из объяснений этого заключается в том, что электроны тройной связи удерживаются более прочно из-за меньшего расстояния между атомами углерода поэтому атакующему электрофилу труднее оторвать пару электронов от такой связи. Данные спектроскопии в дальней УФ-области свидетельствуют в пользу этого вывода [71]. Другое возможное объяснение базируется на доступности свободной орбитали алкина. Показано, что я "-орбиталь изогнутых алкинов (таких, как циклооктин) имеет более низкую энергию, чем л -орбиталь алкенов, и предполагается [72], что линейные алкины могут принимать изогнутые конфигурации в переходных состояниях при взаимодействии с электрофилами. В тех случаях, когда электрофильное присоединение включает образова- [c.150]

    Переходы, для которых О = О, называют запрещенными в дипольном приближении. Большая часть возможных переходов в атоме запрещена, в связи с чем в спектроскопии важное значение имеют правила отбора для разрешенных переходов. [c.44]

    Книга всесторонне и доходчиво, а самое главное методологически правильно знакомит с теорией химической связи и результатами ее применения к описанию строения и свойств соединений различных классов. Сначала изложены доквантовые идеи Дж. Льюиса о валентных (льюис овых) структурах и показано, что уже на основе представлений об обобществлении электронных пар и простого правила октета при помощи логических рассуждений о кратности связей и формальных зарядах на атомах удается без сложных математических выкладок, как говорится на пальцах , объяснить строение и свойства многих молекул. По существу, с этого начинается ознакомление с пронизывающими всю современную химию воззрениями и терминами одного из двух основных подходов в квантовой теории химического строения-метода валентных связей (ВС). К сожалению, несмотря на простоту и интуитивную привлекательность этих представлений, метод ВС очень сложен в вычислительном отношении и не позволяет на качественном уровне решать вопрос об энергетике электронных состояний молекул, без чего нельзя судить о их строении. Поэтому далее квантовая теория химической связи излагается, в основном, в рамках другого подхода-метода молекулярных орбиталей (МО). На примере двухатомных молекул вводятся важнейшие представления теории МО об орбитальном перекрывании и энергетических уровнях МО, их связывающем характере и узловых свойствах, а также о симметрии МО. Все это завершается построением обобщенных диаграмм МО для гомоядерных и гете-роядерных двухатомных молекул и обсуждением с их помощью строения и свойств многих конкретных систем попутно выясняется, что некоторые свойства молекул (например, магнитные) удается объяснить только на основе квантовой теории МО. Далее теория МО применяется к многоатомным молекулам, причем в одних случаях это делается в терминах локализованных МО (сходных с представлениями о направленных связях метода ВС) и для их конструирования вводится гибридизация атомных орбиталей, а в других-приходится обращаться к делокализованным МО. Обсуждение всех этих вопросов завершается интересно написанным разделом о возможностях молекулярной спектроскопии при установленни строения соединений здесь поясняются принципы колебательной спектро- [c.6]

    На основании экспериментальных данных по атомной спектроскопии и теоретических расчетов энергий различных состояний были выработаны общие правила классификации атомных состояний и их энергетической последовательности. [c.74]

    В DENDRAL используются два множества правил для представления знаний в области масс-спектроскопии правила интерпретации данных масс-спектрографии и вывода фрагментов молекул в процессе планирования и правила моделирования масс-спектрограмм на этапе проверки полученных структур. [c.51]

    Эти результаты имеют весьма общий характер для ароматических хромофоров, поскольку компоненты их тензора поляризуемости, лежащие в плоскости хромофора, достаточно велики, а моменты переходов также лежат в этой плоскости. Однако следует помнить, что эти выводы справедливы только при рассмотрении наименьшего по энергии электронного перехода. Основной принцип спектроскопии, правило сумм Куна — Томаса, гласит, что полная интегральная интенсивность всех переходов должна оставаться постоянной и не изменяться при взаимодействии между состояниями. Следовательно, если переход на нижний возбужденный уровень становится менее интенсивным, какой-то более высокоэнергетический переход должен стать более интенсивным, и наоборот. Однако для данной полосы поглощения в случае упорядоченных макромолекул часто наблюдается ги-похромный эффект порядка 10-50%. [c.57]

    Наиболее хорошо разработанными системами, в которых органично связаны аспекты моделирования и экспериментальных исследований, являются АСНИ для анализа молекулярных структур [8]. Научной основой разработки таких систем являются работы в области квантовой химии и спектроскопии. Стратегия исследования молекулярных структур новых веществ в АСНИ построена следуюпцтм образом. Из первоначального эксперимента определяется брутто-формула и наличие характерных групп атомов (на основе спектроструктурных корреляций) в исследуемом химическом соединении. Затем но этим данным на ЭВМ производится автоматический синтез вариантов гипотетических молекулярных образований с использованием ряда аксиом о запрещенных сочетаниях атомов (правил валентности). Для синтезированных вариант молекул, в которых встречаются обнаруженные экспериментально характерные группы, на основе квантовохимических моделей производится расчет (моделирование) колебательных спектров гипотетических синтезированных молекул. Сравнением рассчитанных и измеренных спектров выбираются наиболее вероятные структуры. По выбранным структурам после более тщательного моделирования спектров с учетом вариантов пространственного расположения атомов и дополнительного экспериментального исследования уточняется пространственное расположение атомов в молекуле. [c.61]

    ЭПР-спектроскопия. Возможность применения методов ЭПР-сиектроскопии обусловлена наличием свободных устойчивых радикалов, концентрирующихся в смолисто-асфальтеновых веществах [142]. Как правило, радикалы делокализованы ио коиденснрованным ареновым структурам. Оценки по измерен- ым значениям концентрации парамагнитных центров показывают, что при молекулярной массе асфальтенов около 2000 один радикал приходится на несколько десятков молекул. [c.99]

    Атомами, имеющими ядерный спин, и обычно входящими в со- став органических соединений, являются водород и азот. Существует сбщее правило, согласно которому элементы (за исключением дейтерия и азота) с четным массовым числом не имеют спина. Большинство измерений ЯМР проведено на атомах водорода, и поэтому указанный метод иТюгда называют протонной магнитной резонансной спектроскопией. [c.52]

    Строгого правила отбора для До колебательных переходов, как и в оптической электронной спектроскопии, в фотоэлектронных спектрах нет, и часто наблюдается хорошо развитая колебательная структура полос. Она видна, например, на рис. 1.5, где приведен фотоэлектронный спектр бромоводорода. Соответствующий более низкому значению энергии I дублет интенсивных узких пиков без колебательной структуры относится к ионизации с несвязывающей орбитали Вг и обусловлен спин-орбитальной связью (см. гл. VI 2.2). Полоса при более высоких энергиях / относится к ионизации со связывающей орбитали и расстояния между пиками ее структуры соответствуют частоте валентного колебания v(H—Вг) ионизованной молекулы. В ФЭС также справедлив принцип Франка —Кон дон а, т. е. наиболее вероятны вертикальные переходы. [c.145]

    Конечные продукты реакции, как правило, определяют путем проведения макроэлектролиза при контролируемом потенциале с последующим их выделением из раствора н анализом с помощью методов, обычно применяемых в органической химии (определение физических констант вещества, элементный анализ, ЯМР- и ИК-спектроскопия, масс-спектрометрия, хроматография и т. д.). Если эти продукты образуются в результате медленных химических превращений в объеме раствора, следующих за переносом электрона, то исследование кинетики таких химических стадий электрохимическими методами оказывается малоэффективным. Здесь более пригодны методы изучения химической кинетики в гомогенной фазе. Нечувствительность электрохимических методов эксперимента к достаточно медленным химическим превращениям в растворе является причиной того, что во многих случаях выводы о природе конечного продукта реакции, сделанные на основе данных препаративного электролиза и анализа поляризационных кривых, измеренных в стационарных или нестационарных условиях, оказываются различными, поскольку относятся к неодинаковым временным интервалам, охватывающим неодинаковое число стадий суммарного процесса. [c.195]

    Поглощение или рассеяние излучения исследуют спектроскопическими методами (микроволновая и инфракрасная спектроскопия, спектроскопия комбинационного рассеяния света), которые основаны на изучении вращательных переходов энергии молекулы, что позволяет определить для изучаемой молекулы с данным изотопным составом максимум три главных момента инерции. Для линейных молекул и молекул типа симметричного волчка можно определить лишь одну из этих величин. Число моментов инерции, определенных спектроскопически, соответствует числу определяемых геометрических параметров молекул. В связи с этим при исследовании геометрического строения многоатомных молекул необходимо применять метод изотопного замещения, что создает значительные трудности. Кроме того, микроволновые и инфракрасные вращательные спектры могут быть получены только для молекул, имеющих днпольный момент. Изучение строения бездипольных молекул осуществляется методами колебательно-вращательной инфракрасной спектроскопии и спектроскопии комбинационного рассеяния (КР). Однако эти спектры имеют менее разрешенную вращательную структуру, чем чисто вращательные микроволновые спектры. Трудно осуществимы КР-спектры в колебательно-возбужденных состояниях бездипольных молекул или приобретающих дипольный момент в колебательных движениях. Последние случаи весьма сложны и, как правило, реализуемы лишь для простых молекул типа СН4. [c.127]

    Кроме величины химического сдвига в спектроскопии ЯМР для решения структурных задач используется константа спин-спинового взаимодействия углерода с протонами. Поскольку спиновое число для и одно и то же, то для предсказания мультиплетности сигнала в спектре ЯМР применимы те же правила, что и в спектрах ПМР первого порядка. Константы спин-спи-нового взаимодействия в ходё структурного анализа обычно не определяются, поскольку съемка чаще всего проводится в условиях полного или частичного подавления спин-спинового взаимодействия с протонами. Однако эти константы могут быть получены из спектра без подаеления взаимодействия с протонами. [c.142]

    Место ЯМР-спектроскопии среди других физических методов исследования и ее значение в химии. ЯМР-спектроскопия заняла достойное место рядом с другими физическими методами исследования, например, инфракрасной спектроскопией. Как правило, эти методы не заменяют, а взаимно дополняют друг друга. Тем не менее следует особо подчеркнуть, что ЯМР-спектроскопия может часто служить источником такой Информации о структуре химических соединений, которая другими методами получается лишь с огромным трудом или вообще была недоступна. еперь во многих случаях химик-органик, взглянув на спектр ЯМР, может быстро решить, получил ли он то, что задумал. Раньше такой вывод удавалось сделать лишь после долгих недель или месяцев кропотливой работы. Это было и остается одной из причин небывалой популярности ЯМР-спектроскопии. В настоящее время контроль за синтезом новых соединений часто осуществляется с помощью метода ЯМР. Связь химической структуры со спектрами ЯМР отли-чаетсисключительно высокими темпами, быстро получила признание и в настоящее время занимает ведущее место среди физических методов определения строения молекул. [c.6]

    В молекулярной спектроскопии известно правило интеркомбинационного запрета, согласно которому оптические переходы между электронными состояниями разной мультиплетности запрешены. Хотя экспериментально спектральные линии, соответствуюшие таким переходам, все же наблюдаются, их интенсивность обычно значительно меньше интенсивности линий, образованных переходами между уровнями одинаковой мультиплетности (например, синглет-синглет 8—15 или триплет-триплет Т—Т"). С теоретической точки зрения, качественная сторона этого вопроса очевидна. Операторы, приводящие к изменению мультиплетности (т. е. содержащие спиновые операторы), входят в гамильтониан с небольшими множителями, значительно меньшими, чем множители операторов, определяющих изменение координатной части волновой функции. [c.137]

    На основании экспериментальных данньис по атомной спектроскопии и теоретических расчетов энергий различных состояний были выработаны общие правила классификации атомных состояний и их энергетической последовательности. Определенное энергетическое состоя1ше атома называют атомным термом. [c.81]

    Исследование начального энергетического распределения по крайней мере требует, чтобы межмолекулярные столкновения не приводили к перераспределению энергии между модами. Для этого необходимы очень низкие давления газа, и работы обсуждаемого типа, как правило, ограничиваются газофазными системами. Еще лучший путь исключения столкновений молекул дают свободные от столкновений молекулярные пучки. Одной из важных методик, использующих молекулярные пучки, является времяпролетная спектроскопия фотофрагментов. Определение времени, которое требуется фрагментам фотодиссоциации, чтобы достигнуть детектора, помещенного на удаленном конце пролетной трубки, позволяет установить скорость поступательного движения и, следовательно, энергию фрагментов. Тогда разность между энергией кванта света и энергией диссоциации молекулы показывает распределение энергии фрагментов между поступательным движением и внутренними модами. В ряде случаев для определенного фрагмента появляется несколько пиков, обычно представляющих различные образующиеся колебательные уровни, а иногда указывающих, что образовалось более одного электронно-возбужденного состояния. Ширины отдельных пиков дают меру вращательного распределения фрагментов. Методику можно развить, если обеспечить передвижение детекторной части относительно входящего молекулярного пучка с целью получения важной информации об угловом распределении для процесса фрагментации. Подробные данные о вращательном распределении фрагментов обычно могут быть получены только с помощью спектроскопии высокого временного разрушения. Оптическое поглощение, фотоионизация и КАСКР, как описано в разд. 7.4, нашли применение в этом контексте. [c.206]


Смотреть страницы где упоминается термин ЯМР-спектроскопия правило: [c.205]    [c.153]    [c.478]    [c.333]    [c.153]    [c.39]    [c.62]    [c.149]    [c.85]    [c.69]    [c.69]    [c.32]   
Экспериментальные методы в химии полимеров - часть 2 (1983) -- [ c.0 ]

Экспериментальные методы в химии полимеров Ч.2 (1983) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Инфракрасная спектроскопия, номенклатура правила отбора

Комбинационного рассеяния спектроскопия правила отбора

Перенос когерентности в 2М-спектроскопии амплитуды и правила отбора

Правила отбора в спектроскопии

Правила отбора в спектроскопии для атома в магнитном поле

Правила отбора в спектроскопии для атома в электрическом поле

Правила отбора в спектроскопии для свободного атома

Спектроскопия правила для интерпретации



© 2025 chem21.info Реклама на сайте