Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

УАС-лазер линиям

    Элемент Возбуждаемая лазером линия, нм Аналитическая линия, нм Предел обнаружения, мкг/л Литера- турный источ- ник [c.946]

    НВг, Длина волны 4,23 мкм излучения этого лазера [линия Р(6) полосы 2— 1] достаточно хорошо совпадает с переходом 7 (20). Генерация возникала на обычных переходах в Р-ветви колебательно-вращательной полосы СОг 00° 1 —10°0. Энергетический к.п.д. т]э достигал в экспериментах 40%, т. е. квантовая эффективность лазера т]ф была близка к 100%. [c.183]


    Аргоновый лазер линия возбуждения 488 нм. [c.205]

    Для селективного воздействия большое значение имеет возможность перестройки длины волны, излучаемой лазером. В работе [11] описан перестраиваемый импульсный лазер на СОг с поперечным разрядом при атмосферном давлении газа. Средняя выходная мощность варьируется в пределах 0,1-2 МВт/см площадь сечения пучка составляет 8 см . Резонатор этого лазера представляет собой разрядную трубку длиной 2,43 м, по которой прокачивается газ со скоростью 1,4-108 см /ч. В энергетической диаграмме молекул СО2 содержатся два низких колебательных уровня, которым соответствуют волновые числа 1388 и 1286 см 1. В результате колебательно-вращательных переходов эмиссионный спектр содержит линии от 923 до 990 см 1 и от 1023 до 1090 см-1, с помощью дифракционной решетки, размещаемой на конце трубки резонатора, можно настроить излучение лазера на один из необходимых максимумов излучения. [c.100]

    Настоящий переворот в области использования спектроскопии КР в химии вызвало введение в аппаратуру лазерных источников возбуждения. Лазеры дают интенсивное монохроматическое излучение, что очень важно для получения качественных спектров КР, особенно для разрешения линий, имеющих малый частотный сдвиг относительно vo. При этом можно получать спектры для менее концентрированных растворов, а также записывать спектры газов, порошков, сильно окрашенных растворов и т. д. Уменьшается и количество вещества, необходимого для приготовления образца. [c.222]

    Найдя реальную гео.метрическую ось КСП направляем луч лазера вдоль него. Оптический разметчик 5 (рис. 4.14) устанавливаем в сечении предстоящей резки КСП. Вращая головкой оптического разметчика э отмечаем линию реза. [c.205]

    Этих усложнений удается избежать при выборе подходящей линии газового лазера гелии-неоновый лазер дает линию при 632,8 нм, аргоновый — при 488,0 и 514,5 нм, криптоновый — при 568,2 и 647,1 нм. Применение лазеров на красителях с подстройкой и узкополосных светофильтров расширяет диапазон длин волн и обеспечивает монохроматичность излучения. [c.274]

    Селективность ионизации атомов может быть достигнута путем предварительного селективного возбуждения атомов с последующей ионизацией из возбужденных состояний (рис. 9.1,6). Поскольку спектральные ширины линий генераций используемых лазеров могут быть очень узкими, то можно подобрать условия, когда будут возбуждаться атомы одного какого-либо элемента, оставляя атомы другого элемента невозбужденными. Можно достичь еще большей селективности, резонансно возбуждая несколько последовательных уровней энергии, применяя кванты света, совпадаю- [c.183]


    Активными центрами газовых лазеров являются атомы и ионы в газовой фазе. Области генерации достаточно узкие, как правило, не превышающие ширины спектральных линий, возникающих при электронных переходах в атомах и ионах. В последнее время широкое применение находят лазеры, в которых активными центрами являются молекулы, т. е. лазерное излучение возникает при электронных переходах в молекулах (говорят на молекулярных переходах ). Области генерации молекулярных лазеров несколько шире, чем лазеров на атомных переходах, так как генерация происходит одновременно в нескольких возбужденных вращательных уровнях (иногда и электронно-колебательно-вращательных). Мощности генерации меньше, чем у твердотельных лазеров, [c.192]

    Лазеры, у которых в качестве вещества для активной среды используются нейтральные атомы типичный представитель — ге-лий-неоновый (Не-Ые) лазер, который используется для получения излучения с длиной волны 633 нм. Ширина линии генерации составляет 1700 МГц. Гелий-неоновый лазер может также давать генерацию и на других длинах волн, соответствующих атомным переходам в атоме неона. Наряду с гелий-неоновым лазером существуют газовые лазеры с использованием других нейтральных атомов, включающих большинство инертных газов (Не, Ые, Кг, Аг, Хе) кроме того, применяются такие вещества, как Ь, СЬ, Нд. Длины волн и мощности излучений этих лазеров можно найти в специальной литературе. [c.193]

    Лазеры, в которых в качестве активной среды используются ионы атомов наиболее популярен лазер, в котором генерация возникает на атомных переходах в ионе аргона (Аг+). Это так называемый аргоновый лазер. Наибольшая интенсивность генерации соответствует линиям с Я = 488 нм и Х = 514,5 нм. Типичным примером является лазер, в котором в качестве активной среды используются пары кадмия (Сс1). Генерация обусловлена атомными переходами в ионе атома кадмия (Сс1+). Наибольшая интенсивность достигается при Я. = 441 нм и 1 = 325 нм. Типичные значения мощности излучения достигают нескольких ватт. Имеется много веществ (Зп, Р Ь, Сс1, 8е), при использовании которых наблюдается генерация на переходах в ионах атомов соответствующих элементов. [c.193]

    В последнее время для возбуждения спектров комбинационного рассеяния начали использовать интенсивное излучение оптических квантовых генераторов —- лазеров. Большая концентрация энергии в маленьком объеме позволила работать с очень малыми количествами анализируемого вещества, а высокая монохроматичность лазерного излучения дает возможность использовать линии, отстоящие всего на 30 см от возбуждающей линии. Одновременно возросла также чувствительность метода. [c.342]

    Эффект резонансного комбинационного рассеяния (РКР) возникает в том случае, когда длина волны возбуждающего лазера попадает в область интенсивной полосы поглощения в электронном спектре хромофора. В этих условиях происходит значительное увеличение интенсивности отдельных линий в спектре КР. [c.774]

    Твердое тело отличается высокой концентрацией частиц. Поэтому в твердотельных лазерах могут быть получены большие величины концентрации активных частиц, а следовательно, высокие коэффициенты усиления. Вместе с тем существенная Оптическая неоднородность твердого тела снижает добротность оптического резонатора (см. ниже) и не позволяет получить излучение с малыми углами расхождения луча. Важная особенность твердотельных ОКГ связана с энергетическим спектром твердого тела, в котором многие энергетические уровни частиц, расщепляясь, образуют достаточно широкие энергетические зоны, состоящие из множества близко расположенных энергетических состояний. Поэтому наряду с узкими линиями переходов в спектре имеются [c.521]

    Аналит. сигнал в А.-ф, а. формируется на фоне шумов регистрирующей схемы и рассеянного света. Последний возникает в результате рассеяния излучения источника возбуждения на оптич. неоднородностях паров и на частицах пробы в атомизаторах. При больших интенсивностях рассеянного света выделение из шума сигнала резонансной флуоресценции затруднено, поскольку длина волны аналит, линии совпадает с длиной волны рассеянного света. Для подавления влияния шума макрокомпоненты пробы отделяют и анализируют концентрат микроэлементов. Применяют также нерезонансную флуоресценцию, при к-рой длины волн возбуждающего и рассеянного света не совпадают с длиной волны флуоресценции. В этом случае эффективное возбуждение достигается только с использованием лазеров. [c.217]

    Рис 2 Спектральная линия активной среды лазера. ХСу", У21)-относит число спонтанно испущенных фотонов на частоте у, У21 резонансная частота, [c.561]


    Элемент Возб -даемая лазером линия, нм Аналитическая линия, нм Предел обнаружения, мкг/л Литер а-туфный источник [c.946]

    В недавно опубликованной работе Большова с соавт. [70] азер на красителе применялся для возбуждения паров свинца рис. П1.8). Источником возбуждения служила вторая гармо [ика лазера на родамине 6Ж, накачиваемом второй гармоникой 1мпульсного неодимового лазера. Линия возбуждения РЫ % = = 283,3 нм при ширине 0,02 нм. Линия флуоресценции 405,8 нМ. 1змерения велись в интервале концентраций от 3 10 до О см . Один из главных источников помех — флуоресценция варцевых окон печи, в которой находился свинец. [c.65]

    Теоретический анализ /25/ показывает, что распределение интев-сивности в спектре рассеянного света имеет сложный характер и зависит от кинетических свойств среды, в частности сяг наличкх в ней релаксационных процессов. Подробные исследования этих деталей спектральной картины рассеянного излучения потребовали разработки специальной методики, основным элементом которой является использование одночастотного лазера с предельно узкой линией собственного излучения. Необходимость в этом возникает в особенности при высоких температурах исследуемой жидкости (с ростом температуры компоненты триплета сближаются), при рассеянии под малыми углами и при изучении тонких деталей спектрал1 ой картины. Для этих исследований была создана специальная оптическая кювета, предназначенная для температур до 600° К под давлением до 50 МПа. Ра >-работанная система фотоэлектрической регистрации с синхронным детектированием обеспечивала высокую стабильность и чувствительность установки. [c.10]

    Эллипсометрический метод. Принципиальная схема этого метода, впервые предложенного Л. Тронштадом (1929), изображена на рис. 11.16,0. Свет от монохроматического источника И (небольшой лазер) проходит вначале через поляризатор П, который делает этот свет плоскополяризованным, а затем через компенсатор К, превращающий плоскополяризованный свет в эллиптически поляризованный. Выберем систему координат таким образом, что ось 2 соответствует направлению падающего света, ось X располагается в плоскости рис. VII. 16,а, а ось у направлена перпендикулярно плоскости этого рисунка. При таком выборе системы координат в плоскости ху конец вектора электрического поля описывает эллипс, если падающий свет поляризован эллиптически (рис. VII.16,6). Для плоскополяризованного света этот эллипс стягивается в линию АВ, угол наклона которой по отношению к оси X (угол х) задается поляризатором П. От поворота компенсатора К угол 7 не изменяется, но падающий свет становится эллиптически поляризованным. Параметры эллипса можно характеризовать углом у, который задается компенсаторбм К и тан- [c.181]

    В виде )елеевского рассеяния проявляется только 10 интенсивности падающего света и только около 10 в виде комбинационного рассеяния. Поэтому эксперименты по рассеянию света требуют очень интенсивных источников излучения. Ранее в качестве источника излучения использовали наиболее интенсивные линии ртутного спектра. В настоящее время для этой цели используют лазеры. Осложняющими факторами могут быть разложение образна ири поглощении м0Н0хр0матическ010 света и появление флюоресценции. [c.274]

    Атомно-ионизационный метод анализа был бы невозможен без использования лазеров. Поскольку наиболее селективным методом ио1П1зации атомов является нх предварительный перевод в одно из возбужденных состояний и поскольку в видимой и ультрафиолетовой областях спектра лежат спектральные линии атомов многих элементов, то имеиио лазеры, генерирующие излучение в этих областях, являются неотъемлемой частью любого прибора для атомно-ионизационного метода. В основном это лазеры, работающие на органических красителях как активных средах. Непрерывная перестройка длины волны излучения, достаточная для достижения (во многих случаях) режима насыщения, сделала лазеры на органических красителях незаменимым средством селективного возбуждения атомов многих элементов. Существует много типов таких лазеров. Наиболее часто используемые лазеры имеют следующие xapaivTepH THKH область непрерывной перестройки от —300 до 800 нм, выходная мощность 1—20 кВт в линии генерации, ширина которой варьируется от 1 до 0,01 нм при длительности 7— 12 НС в случае лазерной накачки и 1—50 мс при ламповой накачке лазера на красителях. Следующей неотъемлемой частью установки является атомизатор, в качестве которого наиболее широко, как это уже упоминалось, используется пламя, а также электротермические атомизаторы с испарением находящихся в них образцов в вакууме. Находят применение и различного вида электротермические атомизаторы, работающие при атмосферном давлении. [c.185]

    Лазеры, работающие на переходах между колебательно-вра-щательными и электронно-колебательными уровнями в молекулах. Из большого разнообразия лазеров, работающих на колебательновращательных переходах, следует отметить лазер на СОг, дающий генерацию на серии тесно расположенных вращательных линий с максимальной интенсивностью при Я = 9,6 мкм и Я,= 10,6 мкм. Следует отметить, что на СОг-лазере в импульсном режиме относительно просто достигаются мощности порядка мегаватт и даже ги-гаватт. [c.193]

    Многоквантовое ИК-поглощение дает уникальный способ получения высокой степени внутреннего возбуждения молекул, обеспечивая новые экспериментальные методы для исследования мономолекулярной диссоциации. К тому же при ИКМКД продукты обычно образуются в основном электронном состоянии, что не всегда обеспечивается стандартной однофотонной диссоциацией под действием ультрафиолетового или видимого излучения. Продукты, образующиеся при ИКМКД, схожи с получаемыми при термической диссоциации или пиролизе, однако при этом нет необходимости нагревать весь образец до высоких температур. Этот метод привлек особое внимание теми возможностями, которые можно реализовать в изотопно-селективной химии. Во многих экспериментах показана решающая роль нескольких первых дискретных стадий поглощения во всей схеме возбуждения. Так как изотопный сдвиг в колебательных спектрах может быть относительно велик, то существует возможность селективно диссоциировать частицы, содержащие выбранный изотоп, настроив лазер на соответствующий переход v = l- v = 0. Двухчастотные эксперименты продемонстрировали, что маломощный, но имеющий узкую линию лазер может быть использован для прохождения первых уровней области I, тогда как мощный лазер, частота излучения которого часто несущественна, обеспечивает возбуждение молекулы в области И и последующую диссоциацию. Например, диссоциация UFe осуществляется накачкой полосы V3 (615 см- ) излучением маломощного лазера и использованием более мощного СОг-лазера, облучение которым само по себе не приводит к диссоциации. Потенциальные применения лазерных методов разделения изотопов очевидны они дополняют стандартные методы, представленные в разд. 8.10. [c.78]

    Природу, структуру и электронное состояние промежуточного продукта. Для абсорбционной спектроскопии можно использовать источник белого света в сочетании со спектрографом для получения фотографически зарегистрированного обзорного спектра поглощающих соединений в реакционной системе. В других случаях для сканирования спектрального диапазона может применяться монохроматор с фотоэлектрическим приемником. Многие исследуемые короткоживущие интермедиаты обладают достаточно большим оптическим поглощением из-за наличия разрешенного электронного дипольного перехода на более высокий уровень энергии, В этом случае, например, триплетные возбужденные состояния могут наблюдаться по их триплет-триплетному поглощению. В общем случае индивидуальные полосы поглощения имеют тем большую амплитуду, чем они уже. Вследствие этого эффекта атомы имеют разрешенные линии поглощения с особенно большими амплитудами. При количественных измерениях поглощения обычно выбирается длина волны, при которой наблюдается сильная полоса поглощения и на нее не накладываются полосы поглощения других соединений, В экспериментах по оптическому поглощению в качестве источника света можно применять лазеры. Очень эффективны в лазерных абсорбционных исследованиях перестраиваемые лазеры на красителях, особенно для веществ с узкими полосами поглощения (таких, как атомы и малые радикалы), поскольку лазерное излучение отличается высокой монохроматичностью и узкой спектральной полосой. Повышения поглощения можно достигнуть, заставив световой пучок многократно пересекать образец с помощью соответствующего расположения зеркал в многопроходовом абсорбционном эксперименте. Вновь для этой цели превосходно подходят лазеры благодаря малой расходимости лазерного пучка. В ряде случаев можно создать источник света, который спектрально адекватен абсорбционным свойствам именно исследуемых соединений. Например, можно сконструировать электрические разрядные лампы, содержащие подходящие газы и испускающие резонансные спектральные линии (при переходе из первого возбужденного состояния в основное) многих атомов и простых свободных радикалов. Очевидно, что резонансные спектральные линии точно соответствуют длинам волн поглощения этих же веществ, соответствующим переходу из основного электронного состояния. Если эти атомы или простые радикалы присутствуют в реакционной смеси, то будет наблюдаться резонансное поглощение. Если спектральные ширины полосы испускания источника и полосы поглощения объекта исследования совпадают, то чувствительность абсорбционных измерений может быть высокой при различающейся избирательности, так [c.195]

    Эксперименты на пикосекундной временной шкале и более короткой требуют других подходов. Световая вспышка, вызывающая возбуждение или фотолиз молекул исследуемого вещества, генерируется лазером с пассивной синхронизацией мод, оснащенным системой выделения одиночного импульса из цуга. Хотя пикосекундная импульсная спектроскопия опирается на методику двух вспышек — возбуждающей и зондирую -щей,— импульс зондирующего света обычно получается за счет преобразования части света возбуждающей вспышки, а необходимая короткая временная задержка легко достигается благодаря конечной скорости света. Зондирующий световой пучок направляется по варьируемому более длинному оптическому пути. Для абсорбционных экспериментов спектр этого излучения может быть уширен (например, ССЬ преобразует малую часть излучения лазера на неодимовом стекле с длиной волны 1060 нм в излучение в широком спектральном диапазоне). Для других диагностических методик, например КАСКР, это излучение может быть преобразовано в излучение другой частоты. Существует также ряд специализированных методик для изучения испускания света в пикосекундном диапазоне. Одна из них связана с электронным вариантом стрик-камеры. Для регистрации временной зависимости интенсивности сфокусированного пучка или светового пятна в механическом варианте стрик-камеры используется быстро движущаяся фотопленка. В электронном варианте изображение вначале попадает на фотокатод специального фотоумножителя типа передающей телевизионной трубки. Под действием линейно изменяющегося напряжения, прилагаемого к пластинам внутри трубки, образующиеся фотоэлектроны отклоняются тем сильнее, чем позже они вылетели из фотокатода. Для регистрации мест попадания отклоненных электронов может использоваться фосфоресцирующий экран с относительно длинным послесвечением, изображение на котором фотографируется или преобразуется с помощью электроники для последующего анализа. Этот метод носит название электронно-оптической хроноскопии. В альтернативном методе для изучения флуоресценции с пикосекундным временным разрешением Используется затвор, основанный на эффекте Керра (вращение плоскости поляризации света в электрическом поле), индуцируемом открывающим лазерным импульсом. В еще одном методе (флуоресцентная корреляционная спектроскопия) часть света возбуждающего импульса проходит через оптическую линию задержки и смешивается с испускаемой флуоресценцией в нелинейном кристалле (см. конец разд. 7.2.3), давая на выходе [c.203]

    Зиачение и применении. В. с. высоко индивидуальны, что позволяет по неск. линиям отождествлять конкретные молекулы (конформации, изотопные разновидности и т.п.). Именно по B. . открыто существование своб. молекул в межзвездном пространстве. По тонкой структуре В. с., вызванной колебательно-вращат. взаимод., можно определять потенциальные ф-ции внутр. вращения, инверсионного и др. типов внутримол движений с большими амплитудами (см. Нежесткие молекулы). Совр. техника (двойной оптико-микроволновой резонанс с использованием лазеров) позволяет наблюдать чисто вращат. переходы в высоковозбужденных (электронных и колебательных) состояниях молекул, т.е. изучать по B. . св-ва молекул в этих состояниях. Исследование параметров спектральных линий (уширение, сдвиг частоты) дает сведения о межмолекулярных взаимодействиях. [c.430]

    При КР происходит изменение поляризации света, характеризуемое степенью деполяризации р. При использовании для возбуждения лазера (рис. 2), излучение к-рого поляризовано в плоскости ху, р = где и / -интенсивности компонент рассеянного света, поляризованных в направлении осей гих соответственно. Для неполносимметричных колебаний (хаотически ориентир, молекул в газе или жидкой фазе) р = 0,75 (деполяризов. линии в спектре) для полно- [c.437]

    Рис 3 Спектра 1ьиая линия активной среды лазера и моды (резонансные частоты) оптич резонатора [c.562]

    Внеш. магн. поле влияет на выход продуктов р-ции, скорость элементарных процессов взаимод. парамагнитных частиц (рекомбинации радикалов, аннигиляции триплетно-возбужденных молекул, тушения триплетных молекул радикалами и т.п.), интенсивность флуоресценции и хеми-люминесценции, темновую и фотопроводимость мол. кристаллов и орг. полупроводников. Магн. изотопный эффект сопровождается разделением магн. и немагн. изотопов (напр., С и С, о и О). Хим. поляризация электронов и ядер проявляется в спектрах ЭПР и ЯМР продуктов р-ций (радикалов и молекул), при этом положит, поляризация приводит к аномально сильным линиям поглощения, а отрицательная-к линиям эмиссии. В последнем случае создается инверсная населенность зеемановских уровней электронов или ядер (см. Зеемана эффект. Лазер). Когда химически индуцированная отрицат. поляризация ядер достигает значит, величины, превосходящей порог генерации, происходит самовозбуждение радиочастотного излучения и хим. система становится мол. квантовым генератором-хим. радиочастотным мазером. Внеш. высокочастотное резонансное поле стимулирует изменение спина и, следовательно, выхода продукта р-ции или интенсивности люминесценции. Это позволяет регистрировать спектры ЭПР короткоживущих пар парамагнитных частиц по изменению выхода электронов, дырок, возбужденных молекул. На этом принципе основан новый метод магн. резонанса-двойной магн. резонанс (ДМР). [c.624]


Смотреть страницы где упоминается термин УАС-лазер линиям: [c.184]    [c.205]    [c.185]    [c.159]    [c.250]    [c.358]    [c.248]    [c.238]    [c.148]    [c.194]    [c.195]    [c.38]    [c.382]    [c.59]    [c.268]    [c.311]    [c.394]    [c.394]    [c.220]    [c.563]   
Аналитическая химия Том 2 (2004) -- [ c.2 , c.661 ]




ПОИСК





Смотрите так же термины и статьи:

Лазер

УАС-лазер лазеры



© 2024 chem21.info Реклама на сайте