Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фосфорилирование и активный транспорт

    Провести отдельные рН-метрические измерения окислительного фосфорилирования, активного транспорта Са + и транспорта Са + на фоне фосфорилирования АДФ в митохондриях. Рассчитать полученные данные и убедиться в том, что окислительное фосфорилирование не влияет на скорость активного транспорта Са +, а добавление Са " полностью блокирует окислительное фосфорилирование. [c.471]


    Проба 6. В среду 1, содержащую рутениевый красный, добавляют митохондрии, сукцинат, СаСЬ, АДФ и 2,4-динитрофенол. Убеждаются в том, что рутениевый красный полностью блокирует активный транспорт Са2+ и не влияет на окислительное фосфорилирование. [c.453]

    Провести кинетический анализ ингибирующего действия ДНФ на процессы активного транспорта Са + и окислительного фосфорилирования АДФ в митохондриях. Измерения следует провести отдельно для 3 различных концентраций Са + и АДФ. Полученные результаты проанализировать в координатах Диксона (vo/v, от концентрации ДНФ. [c.471]

    Экспериментальная задача может быть решена как с помощью полярографической техники (с. 480), так и путем непрерывной регистрации изменений pH среды в процессе активного транспорта Са + и фосфорилирования добавленной затем АДФ в соответствии с уравнением [c.476]

    Движение клеток и организмов, выполнение ими механической работы например, мышечной) производятся особыми сократительными белками, служащими рабочими веществами этих процессов. Сократительные белки выполняют ферментативную, АТФ-азную функцию, реализуют превращение химической энергии (запасенной в АТФ, с. 40) в механическую работу. Зарядка аккумулятора , т. е. окислительное фосфорилирование, происходит в мембранах митохондрий при непременном участии ферментов дыхательной цепи. Окислительно-восстановительные ферментативные процессы происходят и при фотосинтезе. Другие мембранные белки ответственны за активный транспорт молекул и ионов сквозь мембраны и, тем самым, за генерацию и распространение нервного импульса. Белки определяют все метаболические и биоэнергетические процессы. [c.87]

    Мембраны не являются пассивными полупроницаемыми оболочками, но принимают прямое и очень важное участие во всех функциях клетки. Мембраны обеспечивают активный транспорт вещества, идущий в направлении, противоположном градиенту химического или электрохимического потенциала. В мембранах локализованы основные биоэнергетические процессы — окислительное фосфорилирование и фотосинтез. АТФ синтезируется в мембранах митохондрий, в тилакоидных мембранах хлоропластов зеленых растений. Есть основания думать о связи между рибосомами, на которых синтезируется белок, и мембранной системой эндоплазматического ретикулума. Репликация ДНК и хромосом, по-видимому, происходит с участием мембран. [c.333]


    Поглощение субстрата осуществляется путем облегченной диффузии, активного транспорта (при этом субстрат проникает в клетку в неизмененном состоянии) или групповой транслокации (при этом субстрат подвергается фосфорилированию). Скорость синтеза полисахарида, по-видимому, зависит от скорости поступления субстрата, которая, таким образом, может быть первым из факторов, лимитирующих синтез полисахарида. В то же время скорость конверсии углерода обычно очень высока, поэтому она, видимо, не может быть фактором, лимитирующим синтез. Специфические потребности в углероде для образования полисахарида иногда связаны со специфическими механизмами поглощения субстрата. [c.229]

    При набухании митохондрий из окружающей жидкой фазы, гиалоплазмы, в митохондрии проникают субстраты окисления и другие растворенные вещества. Наоборот, при сокращении митохондрий происходит выталкивание различных веществ и поступление их в гиалоплазму. Этот обмен также представляет собой особую форму мембранного транспорта. Изучение кинетики активного транспорта сахаров внутрь митохондрий показало, что транспорт субстрата падает в несколько раз при сокращении митохондрий. Тем самым сокращение митохондрий вызывает ослабление процесса дыхательного фосфорилирования. Отсюда регулирование скорости реакций дыхания посредством изменения проницаемости. [c.184]

    Исследования последнего времени показали, что липиды необходимы для обеспечения процессов активного транспорта через биомембраны, передачи нервного импульса, биосинтеза белка, ферментативных процессов окисления и фосфорилирования. [c.237]

    Встречаются модифицированные варианты активного транспорта — перенос химических групп. В роли белков-переносчиков выступают фосфорилированные ферменты, поэтому субстрат переносится в фосфорилированной форме. Такой перенос химической группы называется транслокацией. [c.16]

    Подобные исследования были успешно проведены и в отношении активного транспорта протонов с применением уравнений неравновесной термодинамики для двух потоков. Во всех случаях варьирование Х+ позволяет оценить феноменологические коэффициенты и сродство А движущей метаболической реакции. В последнее время успешно применяют подобный формализм для описания процессов фосфорилирования в митохондриях и хлоропластах. Считается общепринятым, что в этих объектах имеется тесное сопряжение между тремя главными процессами, лежащими в основе биоэнергетики клеточных мембран электронный транспорт с окислением субстрата (/о, Ао), фосфорилирование АДФ с образованием АТФ (/р. Ар), транслокация протонов через сопрягающую мембрану (/н Ацн). Ключевую роль играет трансмембранная циркуляция протонов, которая индуцируется переносом электронов и в свою очередь запускает синтез АТФ. Феноменологическое описание системы включает соответственно три уравнения [c.80]

    НЫМ свойствам. В результате изменение степени диссоциации одного из них сопровождается перемещением электронной плотности по кольцу и обеспечивает участие гистидина в лигандных и окислительно-восстановительных взаимодействиях, когда его а-аминогруппа включается в пептидную связь. Возможно, поэтому карнозин благоприятно влияет на гликолиз и окислительное фосфорилирование, увеличивая количество образующегося АТФ. Кроме того, карнозин увеличивает эффективность активного транспорта К+ и Na+ через цитоплазматическую мембрану. [c.32]

    Вторичный активный транспорт ионов. Помимо ионных насосов, рассмотренных выше, известны сходные системы, в которых накопление веществ сопряжено не с гидролизом АТФ, а с работой окислительно-восстановительных ферментов или фотосинтезом. Транспорт веществ в этом случае является вторичным, опосредованным мембранным потенциалом и/или градиентом концентрации ионов при наличии в мембране специфических переносчиков. Такой механизм переноса получил название вторичного активного транспорта. Наиболее детально этот механизм рассмотрен Питером Митчелом (1966 г.) в хемиосмотической теории окислительного фосфорилирования. В плазматических и субклеточных мембранах живых клеток возможно одновременное функционирование первичного и вторичного активного транспорта. Примером может служить внутренняя мембрана митохондрий. Ингибирование АТФазы в ней не лишает частицу способности накапливать вещества за счет вторичного активного транспорта. Такой способ накопления особенно важен для тех метаболитов, насосы для которых отсутствуют (сахара, аминокислоты). [c.46]

    Следует напомнить, что А представляет собой изменение свободной энергии для специфического участка метаболической цепи, в котором А остается постоянным при варьировании Агр. В ряде случаев мы будем пользоваться обозначением До имея в виду, что в наших исследованиях А выражается через изменения свободной энергии в расчете на моль Ог. Значения Аог в необработанных образцах кожи лягушки и мочевого пузыря жабы находятся в интервале 20—80 ккал/моль О2. Поскольку предполагается, что активный транспорт в этих тканях осуществляется за счет гидролиза АТФ, представляется целесообразным выразить сродство на основе поглощения АТФ, однако осуществление этого намерения затрудняется отсутствием сведений о стехиометрии окислительного фосфорилирования в интактном эпителии. Если же считать отношение Р/0 равным [c.163]


    Представляют интерес также те вещества, которые непосредственно подавляют метаболизм. К ним относится, например, 2-дезокси-0-глюкоза. Это вещество дезорганизует энергетический обмен клетки тремя основными путями конкурируя с глюкозой при поглощении клетками, конкурируя с глюкозой в процессе ее фосфорилирования гексокиназой, а также путем подавления 2-дезокси-0-глюкозо-6-фосфатом изомеризации глю-козо-6-фосфата в фруктозо-6-фосфат. Поскольку 2-дезокси-0-глюкозо-6-фосфат далее не подвергается метаболическим изменениям, эти эффекты стимулируют распад АТФ и подавляют активный транспорт. В исследованиях кожи лягушки, находящейся в контакте с 1 мМ раствором глюкозы, при концентрации 16 мМ 2-дезокси-0-глюкозы активный транспорт подавлялся, по данным измерений тока короткого замыкания, в среднем на 58 % от контрольного уровня. Это было связано со значительным понижением сродства, в данном случае на 53 % от контрольного значения (рис. 8.12). Такое понижение А легко объяснить исходя из известных типов влияния 2-дезокси-0-глю-козы на метаболизм. [c.167]

    Оценки сродства были также использованы при попытках установить природу эффектов альдостерона и антидиуретического гормона (АДГ) — физиологических веществ, которые стимулируют активный транспорт натрия по механизмам, пока еще не вполне понятным. Три общие возможности указаны на рис. 8.13. Механизм (1) состоит в том, что облегчается проникновение натрия через внешний барьер для пассивной проницаемости механизм (2) —это стимулирование фосфорилирования АДФ с возрастанием сродства Лр механизм (3)—непосредственная активация натриевого насоса. [c.169]

    Обратимость потоков означает, например, что при сопряжении типа Б, которое мы назвали отрицательным в соответствии с принятой полярностью, гидролиз АТФ будет способствовать выбросу протонов наружу, как это показывает стрелка, тогда как поглощение протонов способствует фосфорилированию. При сопряжении типа Е поток протонов внутрь приведет к накоплению Я за счет X. Сопряжения Б, В к Е отражают работу обратимого протонного насоса, т. е. они означают наличие активного транспорта протонов. [c.314]

Рис. 11-6. Превращение свободной химической энергии в механическую работу (задача 11-7). А. Скольжение актиновых филаментов относительно миозиновых. Б. Активный транспорт Са из клетки во внешнее пространство. Стрелки в каждом цикле нарисованы лишь в одном направлении В соответствии с прямой реакцией (нормальная работа). Стадии фосфорилирования и дефосфорилирования в цикле активного транспорта катализируются ферментами, которые на схеме не изображены. Рис. 11-6. Превращение <a href="/info/1016367">свободной химической энергии</a> в <a href="/info/3424">механическую работу</a> (задача 11-7). А. Скольжение <a href="/info/1339102">актиновых филаментов</a> относительно миозиновых. Б. <a href="/info/97001">Активный транспорт</a> Са из клетки во <a href="/info/1372692">внешнее пространство</a>. Стрелки в каждом цикле нарисованы лишь в одном направлении В соответствии с <a href="/info/6299">прямой реакцией</a> (<a href="/info/826344">нормальная работа</a>). <a href="/info/765652">Стадии фосфорилирования</a> и дефосфорилирования в <a href="/info/310876">цикле активного</a> <a href="/info/1402901">транспорта катализируются</a> ферментами, которые на схеме не изображены.
    В работе предлагается сравнить действие разобщителей на процессы окислительного фосфорилирования и активного транспорта Са + в митохондриях печени крысы. Так как протекание обеих эндергонических реакций сопряжено с поглощением (синтез АТФ) или освобождением (транспорт Са +) стехпометрических количеств ионов Н+, следует воспользоваться установкой для непрерывной регистрации pH стеклянным Н+-чувствительньш электродом (с. 474). Изменения трансмембранного потенциала прослеживают по распределению К+ (в присутствии валиномицина в бескалиевой среде — с. 442) с помощью К+-чувствительного электрода или по абсорбции проникающих синтетических катионов (например, сафранин, оксанол и др.) с помощью двухволновой спектрофотометрии. [c.469]

    Бнол. роль К окончательно ие выяснена. Установлено, что он является предшественником в биосинтезе анзерина-, благоприятно влияет на гликолиз и окислит, фосфорилирование, увеличивая кол-во образующегося АТФ повышает отношение Са/АТФ при нарушенном активном транспорте Са в пузырьках саркоплазматич. ретикулома, увеличивает эффективность активного транспорта и Na через плазматич. мембрану препятствует пероксидному окислению липидов активирует восстановление поврежденных тканей. [c.332]

    Мол. механизмы генерирования и утилизации энергии на промежут. этапах О.в. изучает биоэнергетика, к-рая рассматривает сопряжение биол. окисления с фосфорилированием. Это обусловлено тем, что своб. энергия гидролиза осн. продукта фосфорилирования-АТФ и в меньшей степени др. фосфатных производных, напр, гуанозинтрифосфата, креатинфосфата,-обеспечивает в сопряженных р-циях синтез сложных соед., мьппечное сокращение, транспорт соед. через биол. мембраны против градиента концентрации (активный транспорт), создание на мембране электрич. потенциала, разряд к-рого, в частности, обеспечивает проведение нервного импульса и др. биоэлектрич. явления. Энергия гидролиза АТФ может также трансформироваться в световую энергию или служить в организме источником тепла. [c.316]

    Мембраны выполняют в клетке большое число функций. Наиболее очевидной из них является разделение внутриклеточного пространства на компартменты. Плазматические мембраны, например, ограничивают содержимое клетки, а митохондриальные — отделяют митохондриальные ферменты и метаболиты от цитоплазматических. Полупроницае-мость мембран и позволяет им регулировать проникновение внутрь клеток и клеточных органелл как ионов, так и незаряженных соединений. Проникновение многих из них внутрь клетки осуществляется против градиента концентрации. Таким образом, в процессе, известном под названием активный транспорт, совершается осмотическая работа. Протекающий в мембранных структурах бактерий и митохондрий процесс окислительного фосфорилирования служит источником энергии для организма. В хлоропластах зеленых листьев имеются мембраны с очень большим числом складок, которые содержат хлорофилл, обладающий способностью поглощать солнечную энергию. Тонкие мембраны клеток глаза содержат фоторецепторные белки, воспринимающие световые сигналы, а мембраны нервных клеток осуществляют передачу электрических импульсов. [c.337]

    Мономерные фосфорилированные нуклеозиды играют важнейшую роль в метаболизме и биоэнергетике, в регуляции жизнедеятельности на молекулярном уровне. Это яркое свидетельство химического единства живой природы (с. 24), разнообразного использований кйётками одних и тех же веществ. Среди нуклео-зидов особенно существен аденозин. На рис. 2.6 изображена структура аденозин-5 -моно-, ди- и трифосфата (АМФ, АДФ, АТФ). АТФ является главным аккумулятором химической энергии в клетке. Эта энергия выделяется при гидролитическом отщеплении 7-фосфата в реакции АТФАДФ + Фв (Фв—фосфорная кислота Н3РО4). Энергия АТФ расходуется на все нужды клетки для биосинтеза белка, для активного транспорта веществ через мембраны, для производства механической и электриче- [c.40]

    Фермент в клетке связан с мембраной. Его активность высока, если система транспорта сахаров находится в фосфорилированной форме. Если же эта система затрачивает много энергии на транспорт сахаров (что связано с их фосфорилированием), активность аденилатциклазы снижается. [c.484]

    Третья важнейшая функция белков — структурная. Клетка не может быть уподоблена сосуду, в котором попросту перемешаны в растворе все метаболиты п ферменты, — она разделена на множество органелл, защищенных белковьши, часто лппопротеиновьши, мембранами, наделенными ферментативной активностью, препятствующими свободному проникновению растворенных веществ. Внешняя оболочка клетки также является липопротеидной мембраной с весьма селективной проницаемостью. Большинство ферментов в клетке находится внутри тех или иных органелл. Поэтому и все биохимические процессы локализованы в определенных местах. Продолговатые, довольно крупные тела (длиной около 0,5 х) — митохондрии содержат в себе ферменты окисления и окислительного фосфорилирования, т. е. катализаторы реакций, в которых запасается энергия, потребляемая клеткой. Маленькие круглые образования (диаметром 150— 200 х ) — микросомы пли рибосомы содержат в себе ферменты, необходимые для синтеза белков. В ннх главным образом локализованы процессы синтеза белка. Задача, выполняемая структурными белками клетки, с одной стороны, чисто архитектурная белки служат материалом, из кото рого строится то или иное морфологическое образование. С другой стороны, они регулируют прохождение различных веществ внутрь органелл, т. е. осуществляют так называемый активный транспорт различных веществ, идущий часто против градиента концентрации, т. е. в сторону, противополон ную диффузии. В высших организмах, в которых произошла дифференциация и специализация тканей, некоторые структурные белки присутствуют в значительных количествах, образуя специальные типы тканей. Таков, например, коллаген, фибриноген крови, склеропротеин роговицы глаза и т. п. Изучение своеобразного молекулярного строения этих белков показывает его тесную связь с выполняемой ими функцией. В этом случае мы также имеем основание говорить о функциональной активности, разыгрывающейся на молекулярном уровне. [c.5]

    Остановимся еще на энергетике активного транспорта. Мы уже упоминали о том, что энергия необходима для этого процесса, и его можно остановить, прекратив процессы дыхания и гликолиза в клетке. Во многих случаях, например при переносе аминокислот, а иногда и некоторых сахаров, можно прекратить активный перенос с помощью специфических ядов, отравляющих окислительное фосфорилирование, т. е. образование в клетке богатых энергией фосфатов типа АТФ. Типичный яд такого типа 2,4-динитрофенол ингибирует очень сильно перенос аминокислот внутрь большинства клеток. Поэтому АТФ и другие подобные соединения, вероятно, являются во многих (но не во всех) случаях теми донорами энергии В, которые нами рассматривались в общей схеме активного переноса. С этим связана также, по-види-мому, значительная аденозинтрифосфатазная активность, сосредоточенная в клеточных оболочках. Если АТФ расщепляется в процессе активного переноса метаболитов до АДФи ортофосфата, то мембрана должна содержать ферменты, действие которых эквивалентно АТФ-азе. Опыт подтверждает это предположение. АТФ-азная активность найдена была в оболочках самых разных клеток (бактерий, эритроцитов, асцитного рака). [c.182]

    Мы рассматривали до сих пор явленпя проппцаемостп оболочки клеток. Однако активный перенос имеет не меньшее значение для процессов, протекающих внутри клетки. В последнее время высказывается мнение о том, что транспорт веществ между структурными элементами клетки представляет собой один пз механизмов автоматического регулирования внутриклеточных процессов обмена веществ. Именно через активный транспорт происходит взаимодействие структурных элементов клетки между собой. В этом смысле более всего изучены митохондрии. В митохондриях сосредоточена ферментативная система, генерирующая АТФ за счет энергии дыхания и представляющая собою цепь ферментов дыхания и цепь ферментов сопряженного дыхательного фосфорилирования. Тело митохондрий построено нз мембран, заполненных внутри жидкой фазой. Само пх вещество, состоящее из линонротеидов является разделительной мембраной, через которую осуществляется активный перенос субстратов дыхания, АТФ и других веществ. Продуктом окислительного фосфорилирования, вырабатываемым внутри митохондрий для покрытия энергетических затрат клетки является АТФ. [c.183]

    В отличие от этого процесс активного транспорта протекает в направлении, обратном градиенту химического потенциала соответствующего вещества, и поэтому требует затрат энергии. Доказано, что в мембранных структурах клеток животных энергия, необходимая для переноса ионов с участием транспортных белков, обеспечивается за счет гидролиза АТФ, осуществляемого ферментом АТФ-азой. (АТФ-аза представляет собой полифункциональный фермент, участвующий в обеспечении энергетических потребностей фотосинтетического и окислительного фосфорилирования, транс-гидрогеназной реакции, ионного транспорта и в целом процессов активного переноса этот фермент лабильно связан с фосфолипидами или сульфолипидами мембран.) АТФ-аза активируется двухвалентными катионами, одновалентные ионы могут способствовать дальнейшей активации ферментов. [c.48]

    Необходимо отметить, что натриевые насосы как системы активного транспорта характерны для структурных мембран клетки, первыми при-нимаюшими на себя воздействие внешней среды и не требующими для функционирования высокого электрического сопротивления. Иначе обстоит дело с сопрягающими мембранами, выполняющими главную функцию —аккумулирование энергии —и требующими высокого электрического сопротивления [15, 33]. В этом случае действуют протонные насосы, которые служат главными узлами механизма сопряжения процессов окисления и фосфорилирования при генерации мембранного потенциала дыхательной цепью и АТФ-азой. При этом одна система разделяет водород на Н+ и /, а вторая — молекулу НгО, гидролизующей АТФ, на Н+ и НО-. [c.432]

    Синтез и секреция Т3 и Т4 контролируются тиролиберином и тиротропином. Тиротропин оказывает следующие эффекты стимулирует активный транспорт 1 против 500-кратного градиента в полость фолликула за счет цАМФ-зависимого фосфорилирования белков клеточных мембран усиливает транскрипцию и трансляцию тироглобулина стимулирует рост эпителиальных клеток, формирующих фолликулы, а в фолликулярном коллоиде — иодирование тирозилов по аденилатциклазному механизму стимулирует синтез Т3, Т4 (аналогично действуют адреналин и РСЕ2) стимулирует секрецию иодированного тироглобулина путем пиноцитоза и отщепления Т3 и Т4 при слиянии пиноцитозных пузырьков с мембранами лизосом (протеолитическим путем), а также поступление Т3 и Т4 в кровь и лимфу. [c.401]

    Природные (Ь-) изомеры (но не О-изомеры) аминокислот подвергаются активному переносу через кишечную стенку от слизистой ее поверхности к серозной в этом переносе может участвовать витамин В (пиридоксальфосфат). Активный транспорт Ь-аминокислот представляет собой энергозависимый процесс об этом свидетельствует его ингибирование разобщителем окислительного фосфорилирования 2,4-динитрофенолом. Аминокислоты переносятся через щеточную каемку целым рядом переносчиков, многие из которых действуют при посредстве Na+-зависимых механизмов, подобно системе переноса глюкозы (рис. 53.4). К числу Na+-зaви имыx переносчиков относятся переносчик нейтральных аминокислот, переносчик фенилаланина и метионина и переносчик, специфичный для иминокислот, таких, как пролин и гидроксипролин. Охарактеризованы и независимые от Ка переносчики, специализированные в отношении транспорта нейтральных и ли-пофильных аминокислот (например, фенилаланина и лейцина) или катионных аминокислот (например, лизина). [c.296]

    Образование инвагинаций, т. е. углублений, впячиваний шириной до 20 нм, глубиной до 50—80 нм, и втягивание их в цитоплазму в случае фагоцитоза и макропиноцитоза чувствительно к ингибиторам метаболизма и низкой температуре, т. е. представляет собой активный энергозависимый процесс. В частности, ингибиторы гликолиза (ЫаР, моноиодацетат), дыхания (K N, NaNз), разобщители окислительного фосфорилирования (2,4-ди-нитрофенол) эффективно блокируют указанные процессы. В связи с этим эндоцитоз можно рассматривать как своеобразный аналог активного транспорта веществ через мембрану. При гипоксии клеток, создаваемой с помощью 2-дезоксиглюкозы, также снижается эндоцитоз. Наиболее чувствителен к снижению АТФ в клетках фагоцитоз, затем адсорбционный и менее жидкофазный пиноцитоз. [c.22]

    Тем не менее существует достаточное количество экспериментальных данных в пользу линейной зависимости между потоками и силами в широком диапазоне условий при трансэпителиальном активном транспорте Ыа+ и Н+, а также при окислительном фосфорилировании в митохондриях. Конкретные [c.88]

    Первоначально хемносмотическая гипотеза возникла не-в связи с проблемой окислительного фосфорилирования, а в связи с механизмом активного транспорта веществ через клеточные мембраны, выяснению которого был посвящен ряд работ Митчелла. Особенно Митчелла интересовал вопрос, как ненаправленные (в пространстве) химические реакции могут вызывать направленный (векторный) перенос веществ через мембрану. Он предположил, что структура транспортных белков позволяет субстратам и продуктам проникать в активный центр и покидать его лишь по определенным путям (рис. 1.12). В гипотетическом при- [c.22]

    Существенное влияние на проницаемость мембран для ионов оказывают гормоны и нейромедиаторы, повышающие концентрацию цАМФ в клетке. К их числу принадлежат катехоламины (в случае связывания с р-адренергическими или дофаминергическими рецепторами), глюкагон, паратгормон, кальцитонин, либерины, тропины и др. (см. раздел 1.3). Связываясь с мембранными рецепторами, они активируют аденилатциклазу (см. раздел 4.2.1), в результате чего в клетке возрастает концентрация цАМФ и происходит цАМФ-зависимое фосфорилированне белков (см. раздел 4.2.4). При цАМФ-зависимом. фосфорилировании мембран может возрастать проницаемость плазматических мембран для Са +, активироваться Ыа+, К -АТФаза (скорость активного транспорта На+ и К+) и Са +-АТФаза эндоплазма- [c.37]

    Следует отметить также, что мембранные рецепторы, регулирующие аденилатциклазу, могут и непосредственно, без реакций цАМФ-зависимого фосфорилирования, влиять на проницаемость мембран для иоиов. Долгое время считалось, что все эффекты р-адренерги-ческих рецепторов опосредуются образованием цАМФ. В последние годы установлено, что в эритроцитах птиц р-рецепторы повышают проницаемость мембран для Са2+ или вызывают высвобождение Са из мембраны), а в ряде тканей тормозят активный транспорт Mg + с помощью механизмов, независимых от цАМФ., [c.174]

    Едва ли не большая часть всех известных в настоя щее время гормонов и нейромедиаторов может влиять на концентрацию ионов Са в цитоплазме (см. разделы 1.2 и 4.1). К числу таких регуляторов относятся и те агенты, которые повышают концентрацию цАМФ в клетке, поскольку путем цАМФ-зависимого фосфорилирования мембранных белков может изменяться как пассивная диффузия Са2+ через наружные и внутренние мембраны, так и активный транспорт этих ионов (см. раздел 4.2) При цАМФ-зависимом фосфорилирс-вании изменяются -Са-связывающие свойства некото-рЫ Х немембранных белков (например, киназы фосфЬ-рилазы, см. рис. 77), что может. приводить к изменению концентрации свободных ионов Са н- в цитоплазме. [c.234]

    При гидролизе АТР большая субъединица фосфорилируется фосфорилированная форма фермента содержит аспартил-р-фосфатный остаток. Каталитическая субъединица имеет места связывания для Ыа+, К" " и уабаина (сердечного гликозида), пнгпбируюшего активный транспорт Ыа+ и К" во многих клетках. [c.378]


Смотреть страницы где упоминается термин Фосфорилирование и активный транспорт: [c.214]    [c.393]    [c.227]    [c.151]    [c.151]    [c.47]    [c.16]    [c.174]    [c.201]    [c.393]   
Биохимия Т.3 Изд.2 (1985) -- [ c.307 , c.311 , c.316 ]




ПОИСК





Смотрите так же термины и статьи:

Активный транспорт ряда сахаров сопряжен с их фосфорилированием

Фосфорилирование



© 2025 chem21.info Реклама на сайте