Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Энергии Гиббса и энергия Гельмгольца химической реакции

    ЭНЕРГИЯ ГИББСА, ЭНЕРГИЯ ГЕЛЬМГОЛЬЦА И НАПРАВЛЕННОСТЬ ХИМИЧЕСКИХ РЕАКЦИЙ [c.136]

    Термодинамические параметры реакций определяются термодинамическими свойствами веществ, участвующих в реакции. Важнейшими из этих свойств являются внутренняя энергия, энтальпия, энтропия, теплоемкость, энергия Гиббса (изобарно-изотермический потенциал), энергия Гельмгольца (изохорно-изотермический потенциал). Как показывает статистическая термодинамика, каждая из термодинамических функций отражает в совокупности влияние всех особенностей состава, внутреннего строения и условий существования веществ. Использование термодинамических величин для характеристики химических свойств веществ и параметров химических реакций дает возможность количественно отражать влияние этих факторов. Вместо того чтобы определять, как то или иное изменение в строении молекул (характер связи между атомами, расстояние между ними и др.) влияет на положение равновесия в данной реакции (что большей частью и недостижимо), мы, пользуясь термодинамическим методом, оперируем такими функциями, которые дают возможность отразить это влияние суммарно и в более доступной форме. [c.14]


    Термодинамическая возможность самопроизвольного протекания химической реакции определяется знаком и абсолютной величиной изменения энергии Гиббса AGr или энергии Гельмгольца AFr в процессе химической реакции (изменением изобарно-изотермического или изохорно-изотермического потенциала), найденной при постоянной температуре. Для любой химической реакции типа [c.139]

    Зная изменение энергии Гиббса или Гельмгольца реакции в стандартных условиях, можно определить константу химического равновесия по уравнениям (1Х.12) и (IX.13). [c.223]

    Зь. Рассчитайте стандартные энергии Гиббса и Гельмгольца при 70(] С для химической реакции  [c.64]

    Для расчета изменений внутренней энергии И, энергии Гельмгольца F и энергии Гиббса G в ходе химической реакции при постоянных Тир, вообще говоря, достаточно сведений об изменениях при тех же условиях объема системы V, энтропии S и энтальпии Я. Действительно, в согласии с уравнениями связи между характеристическими функциями (2.5.9), (2.5.10) и (2.5.12) имеем [c.188]

    С ЭНЕРГИЯМИ ГИББСА И ГЕЛЬМГОЛЬЦА. ИЗОТЕРМА ХИМИЧЕСКОЙ РЕАКЦИИ [c.568]

    Наряду с характеристическими функциями в термодинамике используются частные производные внутренней энергии, энтальпии, энергий Гельмгольца и Гиббса по числу молен -го компонента, участвующих в химическом процессе, так называемые химические потенциалы, которые характеризуют запас энергии отдельных компонентов системы (раствора). Через величину химического потенциала (jij) может быть выражена максимальная полезная работа химической реакции  [c.35]

    Применяемые для описания свободной энергии Гиббса и Гельмгольца параметры делятся на экстенсивные и интенсивные. Экстенсивные параметры определяются количеством вещества в системе, например объемом или массой, и могут быть непосредственно измерены. Интенсивные параметры, например температура, давление, могут быть определены лишь опосредованно — через некоторую экстенсивную величину. Таким образом, любой вид работы можно представить как произведение двух параметров — интенсивного и экстенсивного, например давления и объема или силы на пройденный путь. Как отмечалось ранее (4.3), (4.4), для химической системы с измененным компонентом реакции экстенсивным параметром будет количество вещества, а в качестве интенсивного [c.156]

    Направление и пределы самопроизвольного течения химических реакций. В соответствии с (IV.19) и (IV.21) положительной максимальной работе или отвечают отрицательные значения энергии Гельмгольца AF и энергии Гиббса ДС химических реакций. Иными словами, при постоянных температуре и давлении реакция протекает самопроизвольно в том направлении, которому отвечает убыль энергии Гиббса системы G2условием самопроизвольного течения химической реакции при заданных р и Т является неравенство [c.102]


    Изменения в равновесных химических системах можно изучать с помощью термодинамических функций и, в частности, с помощью энергий Гельмгольца и Гиббса. Для удобства изучения химических процессов вводится понятие химической переменной или пробега реакций. Для этого записываем общее выражение химического превращения веществ, учитывая, что взаимодействие молекул друг с другом в смеси проходит в строго стехиометрических соотнощениях (закон Дальтона) в таком виде  [c.189]

    Изменение энергии Гиббса, как указывалось ранее, определяется как химическое средство для реагирующих веществ. Эту величину можно рассчитать следующими способами по измерению электродвижущих сил при протекании химической реакции, по уравнениям изотерм и изобар химических реакций, по уравнению Гиббса—Гельмгольца. Следует указать, что для некоторых реакций, например, реакции гидрирования твердого [c.206]

    Химическим сродством называется способность веществ вступать в химическое взаимодействие. Химическое сродство зависит от природы, температуры и концентраций (для газов от давлений) реагирующих веществ. За меру химического сродства при заданной температуре Т принимают изменения изобарно-изотермического ДОг (энергии Гиббса) или изохорно-изотермического Л/ г (энергии Гельмгольца) термодинамических потенциалов. Для термодинамически обратимой реакции общего вида [c.127]

    Анализируя поведение различных термодинамических систем при низких температурах вблизи абсолютного нуля. В. Нернст в 1906 г. сформулировал свою знаменитую тепловую теорему, которая и стала основой третьего начала термодинамики. В форме, первоначально предложенной Нернстом, теорема применялась только к конденсированным системам. Однако, несмотря на имеющиеся отступления (СО, стекла, аморфные твердые тела), можно считать, что теорема Нернста является законом, имеющим общее значение, а не только частное применение к некоторым системам или к отдельным химическим реакциям. К выводу тепловой теоремы Нернст пришел в связи с обсуждением вопроса о химическом сродстве при низких температурах. Как уже отмечалось (гл. VII), Томсоном и Бертло был установлен принцип, согласно которому возможность протекания реакции между конденсированными фазами определяется тепловым эффектом. Поскольку истинной мерой химического сродства в зависимости от условия протекания химической реакции является убыль либо свободной энергии Гиббса, либо свободной энергии Гельмгольца, то для изохорно-изо- [c.183]

    Из уравнений (15.18) — (15.21) вытекает, что скорость химической реакции определяется не энергией активации AI7 или ДЯ, а изменением энергии Гельмгольца или энергии Гиббса при переходе исходных молекул в активный комплекс. Кроме энергии активации на скорость влияет энтропия активации AS.  [c.292]

    Изменение энергии Гиббса при химических реакциях Связь максимальной полезной работы с тепловым эффектом процесса. Уравнения Гиббса—Гельмгольца. ... [c.333]

    По уравнению изотермы химической реакции можно рассчитать изменение энергий Гиббса и Гельмгольца при соответствующих условиях, т. е. определить возможность, направление и предел протекания самопроизвольного процесса. [c.53]

    В гальванических элементах (рис. 11.2 и 11.3) химические реакции на электродах протекают тем медленнее, чем большим сопротивлением обладает внешняя цепь (выводы, вольтметр). Принципиально можно замкнуть электроды проводником бесконечно большого сопротивления, и реакция будет идти бесконечно медленно, так что в каждый момент будет существовать равновесие между электродами и растворами. Такое течение реакции является обратимым. В случае термодинамически обратимого процесса получается максимальная электрическая работа. Она равна ЭДС элемента ( ), умноженной на переносимый заряд. Если во время реакции произойдет восстановление и окисление 2 моль однозарядных ионов, то, по закону М. Фарадея, перенесенный заряд равен где Р — число Фарадея. Электрическая работа при изо-барно-изотермическом процессе совершается за счет убыли энергии Гиббса, поэтому — АС = гРЕ. Подставив это выражение в уравнение Гиббса — Гельмгольца (2.39), получают — гРЕ = АН,— [c.170]

    Поэтому, определив изменение энергии Гиббса (АС) или энергии Гельмгольца АР), т. е. разность значений между алгебраическими суммами энергий Гиббса (или энергий Гельмгольца) продуктов реакции и исходных веществ, можно количественно вычислить направление и полноту протекания той или иной химической реакции  [c.220]

    Энергия Гиббса. Чтобы ответить на вопрос, будет ли принципиально протекать та или иная химическая реакция, в каком направлении и как глубоко, необходимо к химическим реакциям применить второй закон термодинамики. Этот закон в приложении к химическим процессам может быть сформулирован следующим образом всякий самопроизвольный процесс (т. е. без затраты работы извне), в том числе и химическая реакция, может протекать в том направлении, при котором в системе происходит уменьшение энергии Гиббса (если процесс идет при постоянных температуре и давлении) или энергии Гельмгольца (если процесс идет при постоянных температуре и объеме). [c.242]


    При изучении химической реакции в электрохимическом элементе изменение энергии Гиббса и энергии Гельмгольца при постоянстве соответствующих параметров определяются по уравнениям  [c.56]

    Поскольку уменьшение энергии Гиббса равно максимально возможной работе химической реакции (Wma.x = —AG), то величина Ег — это предельно возможное напряжение разряда. Согласно уравнению Гиббса — Гельмгольца AG = АН — TAS АН + Т (dAG/dT)p [c.48]

    Термодинамический анализ дает возможность судить об оптимальной для выхода продукта температуре реакции. Направление химической реакции определяется знаком изменения изобарно-изотермического потенциала АО (энергии Гиббса) или изохорно-изотермического потенциала АЛ (энергии Гельмгольца), происходящего в Системе в результате реакции. [c.49]

    Константу равновесия химической реакции рассчитывают по изменению энергии Гиббса или Гельмгольца для веществ, взятых в стандартном состоянии, в соответствии с уравнениями  [c.50]

    У. Вант-Гоффа (уравнение изотермы химической реакции) — показывает взаимосвязь энергии Гиббса АО (энергии Гельмгольца ЛЯ) и константы равновесия обратимой реакции К ). Так, для реакции ЬВ + с10 г==  [c.308]

    Близость и частичное совпадение реакций, рассматриваемых как реакции разного типа в различных классификациях химических соединений и химических реакций, не удивительна ведь по существу все химические изменения (т. е. реакции) обусловлены изменениями в состоянии внешних электронных оболочек атомов, ионов, молекул. А такие изменения с точки зрения пространственной могут состоять либо в переходе электронов от одних атомов к другим (окислительно-восстановительная реакция), либо в нх обобществлении взаимодействующими атомами (образование химических связей — все остальные виды реакций). С позиций термодинамики все реакции сопровождаются изменениями энтальпии и энтропии, и то или иное пространственное перераспределение электронов при прохождении химических реакций определяется такими возможными изменениями энтальпии и энтропии в системе, при которых суммирующее их изменение термодинамического потенциала (энергии Гиббса или Гельмгольца) будет отрицательным, т. е. термодинамический потенциал будет уменьшаться. [c.22]

    По-видимоМу, впервые на целесообразность непосредственно го использования энергии Гиббса или Гельмгольца системы для определения химического состава равновесий указал Я. Б. Зель дович [15]. На основе условия G=I,mi ii и используя условия сохранения атомов каждого элемента в ходе реакции, он показал, что, хотя константы равновесия связаны с rtii нелинейно , существует только один набор равновесных величин т,, имеющих физический смысл, т. е. единственность состояния равно--весия. [c.113]

    Расчет равновесных (теоретических) выходов целевых и побочных продуктов реакции, определение термодинамической устойчивости веществ и направления само- и несамопроизволь-ного протекания реакций в изучаемых условиях является одним из важнейших этапов при исследовании новых химических реакций, при проектировании промышленных химических установок, при подборе оптимальных по составу катализаторов и разработке математических моделей для управления химическими процессами. Равновесный состав смеси химических веществ можно определить экспериментально или рассчитать по термическим данным с привлечением данных по теплоемкостям, теплотам и энтропиям веществ, а также по величинам изменения энергий Гельмгольца и Гиббса. [c.206]

    Уравнения (69.28) — (69.30) также называются уравнениями Гиббса — Гельмгольца. Энергия Гиббса широко используется в термодинамике, когда в качестве независимых переменных выбраны Р Т. Параметры Р и Т, как V и Т, легко могут быть определены экспериментальным путем. Если химическая реакция будет протекать при постоянных давлении и температуре термодинамически необратимо (нестатически), то АН будет равно тепловому эффекту Q реакции. Следовательно, величина АН в уравнении (69.29) может быть определена термохимическим способом (калориметричейки или вычислена на основании закона Гесса). Произведение TAS согласно уравнению [c.228]

    Все химические реакции одновременно протекают в двух направлениях в сторону образования продуктов реакции (вправо — прямая реакция) и в сторону преврапдения продуктов в исходные вещества (влево—обратная реакция). Вследствие химической обратимости реакции не доходят до конца. Так как скорость реакции прямо пропорциональна концентрации, то с течением времени скорость прямой реакции будет уменьшаться, а скорость обратной расти. Когда обе скорости сравняются, наступит химическое равновесие. Химическое равновесие — динамическое, характеризуется постоянством равновесных концентраций (или парциальных давлений) всех участников реакции при постоянстве внешних условий и минимальном значении энергии Гиббса или энергии Гельмгольца. [c.50]

    Гиббс (1878), Гельмгольц (1884) и Вант-Гофф (1885) предложили принимать за меру химического сродства свойство, которое характеризует работоспособность сйстемы и называется энергией Гиббса или изобарно-изотермическим потенциалом и обозначается буквой 0. При любом процессе, протекающем самопроизвольно при постоянных давлении и температуре, энергия Гиббса уменьшается, а величина С приобретает минимальное значение. Следовательно, условием протекания химической реакции является неравенство А0р,т-<0, условием химического равновесия — равенство А0р,т=0. Отсюда следует, что не может самопроизвольно протекать химическая реакция, для которой Д0р,т->0. [c.52]

    Согласно уравнению Гиббса — Гельмгольца А = —АН+ -1гТ дА1дТ)р, или А = Рр- -Т дА1дТ)р. Если Aэнергии химической реакции превращается в работу, а часть выделяется в виде теплоты в окружающую среду, т. е. гальванический элемент работает с нагреванием , если же [c.222]

    Из химической термодинамики вы знаете, что самопроизвольно протекают только те процессы, которые приводят к зпиеньшению свободной энергии системы. Если процессы проводятся в условиях постоянства объема и температуры, они должны приводить к уменьшению свободной энергии Гельмгольца (dF < 0). Процессы, протекающие при постоянных давлении и температуре, должны сопровождаться уменьшением свободной энергии Гиббса (dG < 0). Если процессы в поверхностном слое не сопровождаются химическими реакциями, состав системы остается постоянным (Ищ = onst). Рассмотрим, какие процессы в поверхностном слое отвечают указанным условиям. [c.18]

    Многие процессы химической технологии протекают при постоянных давлении и температуре, если они проводятся в непрерывных (открытых) аппаратах, или при постоянных объеме и температуре - в периодических (закрытых) реакторах. О направлении химической реакщш и ее равновесии при постоянных давлении и температуре судят по изменению энергии Гиббса реакции (АО), а при постоянных объеме и температуре - по изменению энергии Гельмгольца реакции (АА). Промышленные процессы органической технологии, как правило, проводятся при постоянных давлении и температуре. В этом случае, если в реагирующей системе исходные вещества (реагенты) имеют значение АО больше значения конечных продуктов, то в реакционной системе будет происходить самощюизвольное превращение реагентов в продукты до тех пор, пока не установится равновесие (ДО 0). Таким образом, изменение энергии Гиббса реакции (АО = АО - [c.83]

    Несколько позже Гиббс, а затем Гельмгольц пришли к принятому в настоящее время выводу о том, что направление реакции (химическое сродство) определяется свободной энергией AG или AF. Это дало возможность применить формальный аппарат термодинамики для расчета равновесных превращений и влияния разлтных параметров на выход конечного продукта химической реакции. [c.58]

    В последующие годы развитие химической термодинамики пошло по двум, сначала совершенно независимым линиям. Первая связана с именами Гельмгольца и Вант-Гоффа, вторая — с именем Гиббса, В 1882 г. Гельмгольц в статье под названием К термодинамике химических реакций предложил разделить химическую энергию на две части способную превращаться только в теплоту и способную превращаться в другие виды работы. Первую он назвал связанной, а вторую свободрой энергией- Гельмгольц показал, что для изотермических систем минимум свободной энергии является условием их равновесия. Таким образом, наряду с энтропией появился еще один критерий химического равновесия. Принципиальное значение имел и вывод Гельмгольца о том, что именно значения свободной энергии, а не энергии, проявляющейся путем выделения тепла, будут определять, в каком направлении может действовать химическое сродство. Следующий шаг принадлежал Вант-Гоффу (1884—1887). Оперируя моделью идеального газа, Вант-Гофф установил термодинамическим путем связь между равновесными коицептрациями исходных веществ и конечных продуктов реакции, т. е. вывел теоретически закон действия масс. Вант-Гофф предложил также уравнение, выражающее зависимость константы равновесия (он впервые применил этот термин, так же как и знаки для обратимых реакции) от температуры, установил зависимость между константой равновесия К и работой Е. которую может произвести химическое сродство  [c.121]


Смотреть страницы где упоминается термин Энергии Гиббса и энергия Гельмгольца химической реакции: [c.229]    [c.53]    [c.247]    [c.75]    [c.210]    [c.100]   
Смотреть главы в:

Курс общей химии -> Энергии Гиббса и энергия Гельмгольца химической реакции




ПОИСК





Смотрите так же термины и статьи:

Гельмгольца

Гельмгольца энергия

Гиббс

Гиббса химическая

Гиббса энергия

Гиббса—Гельмгольца

Гиббсит

Реакции энергия реакций

Химическая энергия

Энергия Гиббса Гиббса энергия



© 2025 chem21.info Реклама на сайте