Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Химическая связь. Теория поля лигандов

    ХИМИЧЕСКАЯ СВЯЗЬ. ТЕОРИЯ ПОЛЯ ЛИГАНДОВ [c.243]

    Данная глава представляет собой краткое введение в обширную область химии, которая посвящена комплексным соединениям переходных металлов. Многообразие и трудность интерпретации химических свойств этих соединений обусловлены наличием у них тесно расположенных энергетических уровней, связанных с -орбиталями металла. Путь к пониманию химии переходных металлов заключается в объяснении того, каким образом лиганды возмущают эти энергетические уровни металла. Теория валентных связей и теория кристаллического поля частично объясняют этот эффект, но в настоящее время наиболее плодотворной является теория поля лигандов. [c.246]


    Теория кристаллического поля является весьма грубым приближением к действительности, так как рассматривает лиганды бес-структурно, как источники точечных отрицательных зарядов. Для более точных расчетов следует применять метод молекулярных орбиталей (МО), который в применении к комплексным соединениям называется теорией поля лигандов. В этой теории учитывается строение молекулярных орбиталей как адсорбированных атомов и молекул, так и атомов катализатора. Таким образом, становится возможным оценивать адсорбционную и каталитическую активность вещества и реакционную способность адсорбированных молекул в связи с их химическим строением. [c.459]

    На основе теории валентных связей (МЕС) и теории кристаллического поля (ТКП) невозможно достаточно полно описать свойства комплексных соединений. МВС, хотя и дает наглядное представление о химической связи между атомами, но ограничивается только качественными объяснениями. Не приводится интерпретация спектров комплексов и детальное объяснение магнитных свойств, не учитываются энергетические и другие факторы при образовании комплексов. Достоинство ТКП в возможности количественных расчетов и в сопоставлении теории с экспериментом, ио это сопоставление далеко не всегда на пользу ТКП. Для комплексов, в которых энергия делокализации играет значительную роль, например для систем, в которых существуют я-связи, электростатическая теория непригодна. ТКП не рассматривает электронную структуру лигандов и принимает их как неизменные частицы. Невозможность удовлетворительного описания свойств комплексов в МВС и ТКП в значительной степени связана с тем, что обе теории исходят из одностороннего и абстрактного предположения о природе связей в комплексах — чисто ковалентной (в МВС) или чисто ионной (в ТКП). Эти недостатки в известной мере преодолеваются в теории поля лигандов, которая использует метод молекулярных орбиталей (метод МО). [c.232]

    Молекулярная спектроскопия изучает электронные, колебательные и вращательные уровни молекул и переходы между ними. Электронные уровни в молекулах трактуют, исходя из атомных уровнен на основе теории химической связи (кристаллического поля, поля лигандов, молекулярных орбиталей). [c.216]

    Таким образом, ТПЛ (метод МО ЛКАО) отражает реальное существование определенной ковалентности связи в комплексных соединениях. Достигая тех же результатов, что и ТКП, метод МО ЛКАО превосходит ее, учитывая возможности образования других связей, помимо чисто электростатических. Поэтому в теории поля лигандов получила объяснение химическая связь не только в ионогенных, но и в таких координационных соединениях, как соединения металлов с олефинами, в карбонилах металлов, сэндвичевых и других соединениях, где лигаНды — малополярные или неполярные молекулы и поэтому электростатическая природа связи металл — лиганд исключается. [c.250]


    Донорно-акцепторный механизм взаимодействия. Комплексные соединения в растворах электролитов. Координационный тип химической связи. Теория кристаллического поля. Влияние природы лигандов на расщепление энергетических уровней d-орбиталей центрального атома-комплексообразователя. [c.264]

    Ни одна модель химической связи не будет в равной мере успешна в объяснении свойств всех соединений переходных элементов, Даже наиболее гибкий в теории химической связи метод молекулярных орбиталей в применении к переходным элементам страдает тем, что на неэмпирическом уровне требует большого объема вычислений, а на полуэмпирическом уровне его очень трудно параметризовать. И только в последние годы расчеты на основе метода молекулярных орбиталей дали до некоторой степени удовлетворительное объяснение структуры и спектров соединений переходных металлов. В противоположность этому эмпирическая теория, известная как теория поля лигандов, оказалась очень успешной в интерпретации свойств соединений переходных металлов важного, хотя и ограниченного класса. [c.249]

    По теории поля лигандов сила этого иоля коррелирует с прочностью ковалентных а-связей металл-лиганд. Поле лигандов в соединениях металлов часто характеризуют энергией электронного перехода Л между уровнями симметрии. Слабое поле (малое значение А), как правило, обусловлено слабыми химическими связями лигандов с металлом. Имеется определенная зависимость, согласно которой лиганды, характеризующиеся малыми значениями А, склонны к образованию спин-свободных комплексов, приближающихся к чисто ионному типу [211]. В случае же лигандов с большими значениями А наблюдается склонность к образованию спин-спаренных комплексов, приближающихся к соеди- нениям ковалентного типа. [c.184]

    Современные представления о координационных соединениях переходных металлов основываются на так называемой теории поля лигандов. Это — квантовомеханическая теория соответствующих молекул, в которой рассматриваются как молекулярные орбитали центрального иона металла, так и его лигандов в координационной сфере. Связи металл — лиганд не характеристичны и лиганды сильно влияют друг на друга в химических реакциях. Координация лигандов определяет симметрию молекулы и расщепление энергетических уровней -электронов. В отсут-216 [c.216]

    Очевидно, что связь в координационных соединениях полностью отвечает общим теоретическим представлениям о химической связи (см. гл. 3), однако важнейшие свойства этих соединений - магнетизм, цвет, устойчивость и реакционную способность -можно успешно интерпретировать с помощью несколько упрощенного подхода к их электронному строению, получившего название теория поля лигандов. [c.334]

    В последние годы теория химической связи сделала новые важные успехи. Получила развитие теория поля лигандов, являющаяся результатом [c.86]

    Однако теория поля лигандов позволяет учитывать некоторые эффекты, трудно истолковываемые с точки зрения теории кристаллических полей. При наличии у лигандов р- или -орбит в химическую связь могут вступить 2й орбиты центрального [c.23]

    Теорию валентных связей рассмотрим первой, поскольку она наиболее понятна и проста. В настоящее время ее применяют сравнительно редко, но она прекрасно служила больше четверти века химии координационных соединений для объяснения некоторых свойств комплексов. Затем обсудим электростатическую теорию с акцентом на теорию кристаллического поля. Хотя она возникла в 1929 г., особый интерес к ней проявился у химиков в течение десяти лет—с 1952 по 1962 г. Эта теория помогает объяснить многие физико-химические свойства координационных соединений. Большое число ограничений и приближений привели к необходимости учета в чисто электростатической теории эффекта ковалентного связывания. В результате появилась теория поля лигандов, которая будет рассмотрена после теории молекулярных орбиталей в применении к комплексам. Теория молекулярных орбиталей является наиболее общей, все остальные можно рассматривать как ее частные случаи. Однако из-за сложности применения ее к многоатомным системам в большинстве случаев с ее помощью нельзя получить точную трактовку строения того или иного комплекса. [c.399]

    Объяснение комплексообразования является трудной задачей, не рассматриваемой в данной книге. Наиболее успешно химическую связь в комплексных соединениях и их геометрическое строение объясняет теория поля лигандов. Интересующиеся найдут обсуждение этих вопросов в специальной литературе. [c.222]

    Тесная связь между промежуточными соединениями в катализе и лабильными неорганическими комплексами была очевидной уже давно, и тем не менее только в самое последнее время бурное развитие химии комплексных соединений в связи с применением теории поля лигандов, а также возобновлением интереса к гомогенному катализу, позволило осуществить новый, более химический подход к проблеме катализа [3]. [c.15]


    Бальхаузен К., Введение в теорию поля лигандов, пер. с англ., Москва, 1964. Барнард Дж., Современная масс-спектроскопия, пер. с англ., Москва, 1957. Бацанов С. С., Электроотрицательность элементов и химическая связь, Новосибирск, 1962. [c.102]

    А. В., Химическая связь в комплексных соединениях, Кишинев, 1962 Бальхаузен К., Введение в теорию поля лигандов, пер. с англ.. М., 1964 В о л ь к е н ш т е й н М. В., Строение и физические свойства молекул, М.—Л,, [c.318]

    Проблема взаимосвязи структуры и свойств вещества затрагивается в книге еще не раз так, для описания кристаллов используются соответственно их структурным особенностям зонная теория или теория вандер-ваальсовых сил, а для объяснения своеобразия координационных соединений последовательно применяются разные подходы электростатическая модель ионной связи, метод ВС (или локализованных МО), теория кристаллического поля и, наконец, теория поля лигандов (или делокализо-ванных МО). Таким образом, читатель получает возможность ознакомиться с проблемами химической связи на самых разных уровнях-от доквантового до современного. [c.7]

    И ИХ свойств. Развитие представлений о химической связи в комплексных соединениях переходных металлов прошло четыре стадии. Оно началось с простейшей электростатической теории, которую сменила теория валентных связей, или локализованных молекулярных орбиталей в дальнейшем появилась теория кристаллического поля и, наконец, теория поля лигандов, или делокализованных молекулярных орбиталей. Каждая из этих теорий стала развитием предьщушей. Их последовательное рассмотрение является хорошим способом проследить за развитием представлений о химической связи и дает возможность показать, что одни и те же физические факты можно объяснить в рамках различных и на первый взгляд противоположных предположений. [c.223]

    Большие изменения произошли в изложении квантовой химии и теории химической связи в переводной и отечественной литературе и в преподавании теории строения вещества. Поэтому нам представлялось бесцельным повторно знакомить студентов III курса с качественными представлениями теории валентных связей и электронным строением молекул (форма электронных орбиталей, гибридизация, направленные валентности и др.), изучаемыми ими на I курсе. В то же время в ряде переводных и отечественных учебных пособий появилось вполне доступное изложение приближенных методов расчета молекул, основанных на методе молекулярных орбиталей метод молекулярных орбиталей в приближении Хюккеля (МОХ), теория кристаллического поля, теория поля лигандов и др. В связи с этим изложены количественные квантовохимические расчеты на основе строгого решения уравнения Шрёдингера для атома водорода (введение трех квантовых чисел п, I и [c.3]

    Дальнейшему развитию теории гетерогенного катализа способствовало использование метода молекулярных орбиталей (МО) — теория поля лигандов для комплексных соединений. Поскольку в этой теории рассматриваются молекулярные орбитали адсорбированных молекул (атомов) и атомов катализатора, она дает возможность установления связи между их химической способностью и каталитической активностью катализатора. Для расчетов обычно используется метод линейных комбинаций атомных орбиталей (МОЛКАО). Широкому использованию кваптоЕомеханических расчетов в в атализе в настоящее время препятствуют трудности математического описания сложных многоатомных систем субстрат — катализатор. А [c.304]

    Несмотря на успешное приложение теории поля лигандов к объяснению химической связи в комплексных соединениях и их свойств, она имеет существенный недостаток — рассматри-нает в образовании связи -электроны и не принимает во внимание участие в связи s- и р-электронов комплексообразователя и лигандов. [c.208]

    В теории кристаллического поля (ТКП) лиганды выступают только как Источник создаваемого ими поля. Химическая связь центральный ион — лиганд рассматривается как ионная (например, в [СоРе] ) или ион-дипольная ([Ре(Н20) ), электронная оболочка центрального иона— как автономная, а oбoJЮЧки лигандов вообще не рассматриваются. Такой подход является приближенным. Опыты по электронному парамагнитному резонансу показывают, что электронная плотность ие сосредоточена на лигандах и центральном ионе, а частично размазана в объеме комплексного иона, т. е. что связь в координационных соединениях — ковалентная с большей или меньшей полярностью. Для описания такой связи необходимо привлечь теорию молекулярных орбита-лей, как более общую, чем электростатическая теория ионной связи. В ней находят объяснение Т01якие магнитные эффекты, интенсивность спектров поглощения и другие свойства, не получившие объяснения в ТКП. Сама же ТКП оказывается частным случаем более общей теории МО ЛКАО, получившей в химии координационных соединений название теории поля лигандов (ТПЛ), основы которой заложены Ван-Флеком. [c.247]

    Взаимодействие между комплексообразователем и лигандами, природу связи, между ними объясняют с помсццью различных методов метода валентных связей (см. гл. Ill, 2), метода молекулярных орбиталей (см. гл. III, 6) и, наконец, с помощью электростатической теории, рассматривающей взаимодействие химических частиц как взаимодействие жестких шаров, обладающих определенным электрическим зарядом. Электростатическая теория развилась в теорию кристаллического поля, которая, в свою очередь, в сочетании с методом молекулярных орбиталей дала наиболее полную теорию связи в комплексах — теорию поля лигандов. [c.121]

    Большинство книг о химической связи следует хронологиче< скому принципу изложения. Вначале вводят два основных тода теории валентности метод молекулярных орбиталей и ме-тод валентных схем, которые сначала применяют к простым системам типа Н " и Нг, математически строгое рассмотрение которых было возможно даже в 30-е годы. Далее обычно переходят к обсуждению эмпирических теорий, таких, как теория Хюк-келя и теория поля лигандов, и в зависимости от уровня, на ко-тором написана книга, в ней излагают некоторые более усовершенствованные эмпирические и неэмпирические теории, развитые в последние годы. Именно в этом стиле написана наша книга Теория валентности , опубликованная в 1965 г. [c.9]

    Перейдем теперь к более глубокому рассмотрению природы химической связи в координационных комплексах, основанному на представлениях теории поля лигандов, которая позволяет объяснить окраску, магнитные свойства и другие особенности поведения этих соединений. Обсудим влияние электрического поля, создаваемого несколькими заряженными лигандами, на валентные электроны центрального иона. Отрицательно заряженные лиганды отталкивают электроны центрального иона, причем максимальное влияние они оказывают на самые внешние электроны. В частности, наиболее сильное воздействие со стороны лигандов испытывает диффузное облако валентных -электронов центрального иона, т. е. электронов, находящихся на самом внешнем /-подуровне. У свободного (или, как говорят, изолированного) иона все пять d-op6ma-лей имеют одинаковую энергию. Если на й(-под-уровне находится один электрон, он может занимать любую из пяти /-орбиталей с равной вероятностью. Представим себе теперь, что мы приближаем к катиону шесть одинаковых лигандов, образующих вместе с ним октаэдрический комплекс типа А1Рб . Из рис. 23.10 видно, что при этом /,2- и с1 2 , ,2-орбитали центрального иона окажутся сконцентрированными вдоль координатных осей, в направлении к приближающимся лигандам, тогда как с1 - и ,,-орбитали концентрируются в областях между координатными осями. Если на /-уровне центрального иона имеется один электрон, он будет предпочтительно располагаться на с1 -, - или / -орбиталях, избегая отталкивания электрическим полем лигандов. Другими словами, энергетический -подуровень расщепляется на два новых подуровня, одному из которых отвечают три орбитали, а другому — [c.414]

    Следует отметить и некоторую отстраненность автора от современных теоретических концепций. Квантово-химические представления он использует лишь на уровне теории поля лигандов. Впрочем, такую позицию можно и понять материал, с которым А. Уэллсу приходится иметь дело, настолько широк, что его детальное теоретическое обсуждение в рамках существующих модельных концепций неизбежно привело бы к возникновению непреодолимых противоречий. Да и размер книги не допускает ее дальнейшего разбухания . Последнее относится также к более детальному и последовательному отражению связи между строением и физико-химическими свойствами кристаллических веществ. [c.7]

    Кроме того, оказалось, что эти представления не могут объяснить некоторых структурных особенностей комплексов и магнитных и оптических свойств их. Сделано это было с привлечением квантовомеханических представлений о строении атома применительно к комплексным соединениям. На этой основе созданы три теории, объяснившие химическую связь в комплексах и их электронное строение теЬрия валентных связей, теория кристаллического поля и теория поля лигандов. Рассмотрим кратко только основные положения двух последних теорий, которые находят сейчас самое широкое применение. [c.71]

    Основные положения теории кристаллического поля изложены здесь очень кратко. Теория позволяет успешно интерпретировать в очень многих случаях спектры поглощения растворов, содержащих ионы переходных элементов. Следует, однако, иметь в виду, что при исследовании комплексов с ковалентными связями необходимо пользоваться теорией поля лигандов, которая является объединением теории кристаллического поля с методом молекулярных орбит Малликена [15]. В последние два-три года появились несколько статей и книг, посвященных этим вопросам, на русском языке. Среди них можно отметить статью Т. Данна в монографии Современная химия координационных соединений [16], книгу И. Б. Бер-сукера и А. В. Аблова Химическая связь в комплексных соединениях [17], книгу Л. Оргела Введение в химию переходных металлов [18] и особенно книгу К. Бальхаузена Введение в теорию поля лигандов [5]. [c.115]

    Некоторые свойства ионных кристаллов — соединений металлов с частично заполненными З -оболочками —хорошо объясняются в. рамках теории поля лигандов, созданной на основе предложенной Бете и Ван-Флеком теории кристаллического поля для твердых тел. Согласно теории поля лигандов, химическая связь в кристаллах соединений металлов является чисто ионной, ионы рассматриваются как точечные заряды, а их электрическое поле (с несферической симметрией ) вызывает расщепление Зй-уровня иона металла. Теорик> поля лигандов можно использовать для объяснения строения как комплексных соединений, так и различных твердых веществ, и в общем виде с учетом связывающих орбиталей лигандов она ближе к теории молекулярных орбиталей, чем к теории кристаллического-поля. Для учета отклонений от простого кулоновского взаимодействия точечных зарядов вводятся параметры, включающие степень ковалентности связи, поляризационные искажения за счет соседних зарядов величину отклонения от сферической симметрии ионов с частично-заполненной -оболочкой. С помощью теории групп можно объяснить и предсказать расщепление атомных уровней, соответствующее тому или иному типу симметрии внутреннего электрического поля в кристалле. [c.47]

    В разд. 5.2 было отмечено, что под влиянием работ Вернера и ею современников, а также представлений Льюиса и Сиджвика об образовании химической связи за счет пары электронов возникла мысль о том, что лиганд представляет собой группу атомов, способную отдавать пару электронов иону металла или какому-либо другому акцептору, в результате чего образуется так называемая координационная связь. Эти представления о характере химической связи в комплексных соединениях в дальнейшем были развиты Полингом и сформулированы в виде теории валентных связей. Теория Полинга пользовалась широкой популярностью среди химиков в период 30—40-х годов. Однако в 50-е годы в дополнение к ней получила распространение теория поля лигандов. Эта теория была разработана физиками, главным образом Ван Флеком и его учениками, в период 30—40-х годов и вновь открыта химиками-теоретиками в начале 50-х годов. Теория поля лигандов в ее современном виде является развитием чисто электростатических представлений, впервые сформулированных в 1929 г. Г. Бете в виде так называемой теории кристаллического поля. [c.48]

    Теория кристаллического поля подобно родственной ей, но более усложненной теории поля лигандов создана для объяснения причин и следствий расщепления (спектроскопического) внутренних орбиталей ионов под действием окружающих их атомов и ионов в химических соединениях [142]. Так как в теории кристаллического поля используется приближение о точечном распределении заряда и допущение о том, что все связи эффективно и полностью электровалентны, она дает только полуколичественные объяснения различных химических явлений. Тем не менее Дауден и Уэллс [143]. [c.251]

    Эти вопросы подробно рассмотрены в специальной литературе см. Бальхаузен К., Введение в теорию поля лигандов, Изд. Мир , 1964 Берсу к ер И. Б., Аблов А. В., Химическая связь в комплексных соединениях, Штиница , Кишинев, 1962 Оргел Л., Введение в химию переходных металлов, Изд. Мир , 1964 Драго Р., Физические методы в неорганической хи1ши. Изд. Мир , 1967 Грей Г., Электронная и химическая связь, Изд. Мир , 1967 М ар р е л Дж., Кетти С., Теддер Дж., Теория валентности. Изд. Мир , 1968. [c.5]

    С точки зрения координационной химии растворители классифицируют либо как акцепторы, либо как доноры, и реакции, протекающие в растворах, связаны со способностью молекул растворителей к координации. Для того чтобы установить, какие типы координационных соединений переходных металлов образуются в различных неводных средах, и скоррелировать эти результаты с различными свойствами растворителей, использовали данные, полученные разными физико-химическими методами в собственной лаборатории автора, а также имеющиеся нолуколичественные данные. Читатель, однако, не найдет в тексте обсуждения теории поля лигандов, аналитического применения некоторых реакций или электрохимии растворов (включая полярографию), так как эти, хотя и очень интересные, аспекты химии в неводных средах выходят за рамки данной книги. [c.7]

    В начале столетия с развитием электронных представлений в химии главные валентности Вернера были интерпретированы, как ионные связи, а побочные — как ковалентные связи. В то же время было отмечено, что лигандами обязательно являются атомы или молекулы, обладающие неподеленными парами электронов. Например, в приведенном выше комплексе кобальта (П1) во внутренней сфере находятся хлорид-ион [ С1 ] и молекулы аммиака HaN. Позднее для объяснения природы химической связи в комплексных соединениях были созданы три теории. Первой из них была теория кристаллического поля, сформулированная Г. Бете в 1924 г. Затем в 30—40-е годы были очень популярны представления, развитые Полингом на основе метода ВС. Наконец, приблизительно в то же время Ван-Флеком и его учениками была разработана теория поля лигандов, которая получила наибольшее распространение в 50-е годы. Эта наиболее исчерпывающая теория представляет собой синтез теории кристаллического поля и метода МО. Как будет видно из дальнейшего, согласно теории кристаллического поля природа взаимодействия между центральным атомом и лигандами чисто электростатическая, что является упрощением, игнорирующим ковалентный характер связей, и потому — основным недостатком этой теории. Метод МО в приложении к теории кристаллического поля позволяет преодолеть указанный недостаток, но расчеты становятся значительно более трудоемкими. В связи с этим возникает желание сохранить простоту расчетов многих характеристик комплексов такой, какова она в теории кристаллического поля, а эмпирическим путем ввести поправки на ковалентный характер связей. [c.210]

    Для описания связи в комплексах переходных металлов, что существенно для понимания свойств соединений и количественного описания химических процессов катализа, в настоящее время пытаются применить теорию поля лигандов. Такое название получил метод молекулярных орбиталей (МО) Гунда — Маликена в применении к специфическим свойствам комплексов переходных металлов. Обычно применяют полуэмпирический метод МО с использованием линейной комбинации атомных орбиталей (метод МО ЛКАО), предложенный Маликеном — Вольфсбергом — Гельмгольцем (МВГ). Необходимо заметить, что квантовохимические расчеты из-за их приближенности и ряда допущений хороши только в том случае, если они сочетаются с экспериментальными методами исследования строения молекул и кинетики химических превращений. [c.389]


Библиография для Химическая связь. Теория поля лигандов: [c.90]    [c.480]   
Смотреть страницы где упоминается термин Химическая связь. Теория поля лигандов: [c.128]    [c.128]    [c.87]    [c.216]    [c.253]    [c.68]   
Смотреть главы в:

Программированные задачи по общей химии -> Химическая связь. Теория поля лигандов




ПОИСК





Смотрите так же термины и статьи:

Поляна теория

Связь теория

Теория поля лигандов

Теория химическои связи

Теория химической связи

Химическая связь

Химическая связь связь

Химическая теория

Химический связь Связь химическая



© 2024 chem21.info Реклама на сайте