Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Растворы высокомолекулярных соединений (растворы ВМС)

    За последние 15 лет работами многих ученых, в первую очередь В. А. Каргина, С. М. Липатова и других, было доказано, что системы, называвшиеся лиофильными золями, на самом деле представляют собой истинные растворы высокомолекулярных соединений, т. е. системы гомогенные и термодинамически равновесные, в противоположность лиофобным коллоидам (золям) — системам гетерогенным и термодинамически неравновесным. Структурной единицей лиофильных золей является не мицелла, а сильно сольватирован-ная макромолекула высокомолекулярного (высокополимерного) соединения. Растворы таких веществ, с одной стороны, проявляют свойства истинных растворов, с другой стороны, обнаруживают свойства, сближающие их с коллоидными растворами. Этот вопрос Б дальнейшем будет рассмотрен более подробно. [c.299]


    Растворы высокомолекулярных соединений нмеют значительную вязкость, которая быстро возрастает с увеличением коицеитрации растворов. Повышение концентрации макромолекулярных растворов, добавки веществ, понижающих растворимость полимера, и, часто, понижение температуры приводят к застудневанию, т. е. превращению сильно вязкого, но текучего раствора в сохраняющий форму твердообразный студень. Растворы полимеров с сильно вытянутыми макромолекулами застудневают ири небольшой коицеитрации раствора. Так, желатин и агар-агар образуют студии и гели в 0,2—1,0% растворах. Высушенные студни способны вновь набухать (существенное отличие от гелей). [c.315]

    В химической, микробиологической, пищевой, фармацевтической и других отраслях промышленности часто встречается задача очистки растворов высокомолекулярных соединений (полимеров, белков и т. д.) от низкомолекулярных примесей (неорганических солей, спиртов и т. д.). Исследования, проводимые за последние годы, показали, что для этой цели можно с высокой эффективностью использовать диафильтрацию. Д и а ф и л ь т р а ц и я — это способ проведения обратного осмоса и ультрафильтрации, используемый в случаях, когда мембрана обладает заметно различной селективностью по отношению к разделяемым компонентам раствора. При диафильтрации в раствор вводится растворитель, расход которого равен количеству отбираемого фильтрата. Компонент раствора, плохо задерживаемый мембраной (НС), переходит вместе с растворителем в фильтрат, и таким образом в аппарате происходит [c.239]

    Большинство растворов высокомолекулярных соединений и золи некоторых гидрофобных коллоидов способны при известных условиях переходить в особое состояние, обладающее в большей или меньшей степени свойствами твердого тела. Твердообразная текучая система, образованная коллоидными частицами или макромолекулами высокомолекулярного соединения в форме пространственного сетчатого каркаса, ячейки которого заполнены иммобилизованной жидкостью, называется гелем. Таким образом, гели или, как их еще называют, студни, представляют собой коллоидные системы, потерявшие текучесть в результате возникновения в них внутренних структур (опыт 118—121). [c.229]

    Среди высокомолекулярных соединений важное место занимают белки. Они играют основную роль во всех жизненных процессах, а продукты их переработки — в технике и производстве. Белки являются полимерными электролитами, так как их молекулы содержат ионогенные группы. Поэтому растворы белков имеют целый ряд особенностей по сравнению с растворами других полимеров. В состав молекул белков входят разнообразные а-аминокислоты, в общем виде формула их строения может быть записана в форме КНг — К — СООН. В водном растворе макромолекула представляет амфотерный ион КНз — К — СОО . Если числа диссоциированных амино- и карбоксильных групп одинаковы, то молекула белка в целом электронейтральна. Такое состояние бедка называют изоэлектрическим состоянием, а соответствующее ему значение pH раствора — изоэлектрической точкой (ИЭТ). Чаще всего белки — более сильные кислоты, чем основания, и для них ИЭТ лежит при pH < 7. При различных pH изменяется форма макромолекул в растворе. В ИЭТ макромолекулы свернуты в клубок вследствие взаимного притяжения разноименных зарядов. Б кислой и щелочной средах в макромолекуле преобладают заряды только одного знака, и вследствие их взаимного отталкивания молекулы распрямляются и существуют в растворе в виде длинных гибких цепочек. Поэтому практически все свойства растворов белков проходят через экстремальные значения в изоэлектрическом состоянии осмотическое давление и вязкость минимальны в ИЭТ и сильно возрастают в кислой и щелочной средах вследствие возрастания асимметрии молекул, минимальна также способность вещества к набуханию, оптическая плотность раствора в ИЭТ максимальна. Изучение всех этих свойств используется для определения изоэлектрической точки белков. [c.443]


    РАСТВОРЫ ВЫСОКОМОЛЕКУЛЯРНЫХ СОЕДИНЕНИЙ (РАСТВОРЫ ВМС) [c.351]

    Рассмотренные ранее (см. гл. ХП—XV) гетерогенные системы представляют собой одну из двух больших групп коллоидов. Растворы высокомолекулярных соединений (растворы ВМС) представляют вторую группу коллоидных систем. [c.351]

    Так же как и в коллоидных растворах ПАВ, в реальных растворах высокомолекулярных соединений в равновесии находятся макромолекулы и их ассоциаты — мицеллы. Крайними случаями этого равновесия являются идеальный молекулярный раствор и лиофобный золь. Между ними возможны различные переходные системы, обладающие одновременно свойствами коллоидных систем и молекулярных растворов. Для таких систем предложен термин — молекулярные коллоиды. При обычных условиях растворы высокомолекулярных соединений по своим [c.254]

    К красителям, проявляющим в растворах все особенности, свойственные растворам коллоидных ПАВ, относится ряд синтетических красителей, например, бензопурпурин, ночной голубой и т. д. Ионогенными группами у коллоидных красителей служат карбоксильные группы, фенольные группы, сульфо-группы, аминогруппы и т. д. Растворы этих красителей сходны с растворами высокомолекулярных соединений — они обладают сравнительно высокой агрегативной устойчивостью, а образующийся, при введении электролитов осадок способен диспергироваться в чистой воде Растворы этих красителей проявляют такие же аномалии в отношении электропроводности и осмотического давления, как и растворы мыл и таннидов. С. М. Липатов показал, что благодаря большому размеру молекул красителей ассоциация в растворах протекает значительно в большей степени, чем в растворах мыл, и весьма сильно зависит от концентрации, температуры, pH системы, присутствия электролитов и других факторов. Как и мыла, многие красители, дающие коллоидные растворы в воде, в спирте образуют молекулярные растворы. [c.415]

    Промежуточные системы, стоящие между растворами высокомолекулярных соединений и типичными коллоидными растворами или же способные переходить из одного класса растворов в другой, не следует смешивать с растворами коллоидных поверхностноактивных веществ, отличающимися тем, что в одних условиях они проявляют свойства истинных растворов, а в других — типичные свойства золей. [c.422]

    Следует отметить, что даже разбавленные растворы высокомолекулярных соединений обладают очень большой вязкостью, значительно превосходящей вязкость концентрированных растворов низкомолекулярных соединений. Высокомолекулярные вещества растворяются гораздо медленнее, чем низкомолекулярные, кроме того, их растворению предшествует набухание. Некоторые высокомолекулярные соединения не растворяются ни в каких раствори-лелях. Обычно при удалении растворителя из растворов высокомолекулярных веществ образуются не кристаллы, как это происходит с низкомолекулярными соединениями, а пленки. Выдавливая вязкий раствор через мельчайшие отверстия (фильеры), можно получить волокна. Подобные пленки и волокна могут быть приготовлены также из расплавленных высокомолекулярных соединений. Все природные волокнистые вещества (целлюлоза, шерсть, лен, шелк и т. д.) — высокомолекулярные соединения, некоторые из них (целлюлоза) могут быть переработаны в пленки или снова в волокно, если их предварительно перевести в жидкое состояние. [c.7]

    Особенности растворов высокомолекулярных соединений. Растворы высокомолекулярных соединений (ВМС) по сравнению с золями, с одной стороны, и с истинными растворами низкомолекулярных веществ — с другой, обладают следующими специфическими особенностями. [c.360]

    Общие свойства. Устойчивость. В растворах высокомолекулярных соединений (белков, нуклеиновых кислот, полисахаридов, каучука и других веществ) каждая взвешенная частица представляет собой не мицеллу, а макромолекулу, размер которой 10 —см. Имея молекулярную или ионную дисперсность и будучи гомогенными, растворы высокомолекулярных соединений являются истинными растворами. Близость размеров макромолекул и частиц дисперсных систем объясняет наличие у них некоторых общих свойств. Так, например, частицы высокомолекулярных соединений не проходят через диализа-ционные мембраны, имеют сравнительно небольшую скорость диффузии, способны под влиянием внешних факторов осаждаться из раствора, рассеивать свет и т. п. Таким образом, растворы высокомолекулярных соединений обладают рядом свойств, характерных как для истинных растворов, так и для коллоидных систем. Кроме того, они обладают рядом специфических свойств. [c.113]

    В настоящее время деление коллоидных систем на две основные группы — лиофильные и лиофобные коллоиды в известной мере устарело, хотя эти термины еще широко распространены в литературе. За последние 20 лет трудами таких ученых, как В. А. Каргин, С. М. Липатов и др., доказано, что системы, ранее называвшиеся лиофильны-ми золями, на самом деле представляют собой не что иное, как истинные растворы высокомолекулярных соединений. В отличие от лиофобных золей эти растворы являются системами гомогенными и термодинамически равновесными. Исследования показали, что основной структурной единицей лиофильных золей является не мицелла (как у лиофобных золей), а сильно сольватированная (гидратированная) макромолекула высокомолекулярного. или высокополимерного соединения. Причем для многих полярных полимеров и белков сольватация является хотя и главным, но не единственным фактором устойчивости их растворов. В значительной мере характер поведения высокомолекулярных соединений в растворах определяется свойствами их длинных цепеобразных частиц — макромолекул. Огромные размеры макромолекул, превышающие в отдельных случаях размеры коллоидных частиц, объединяют эти системы с коллоидно-дисперсными системами. Сближает их и то обстоятельство, что при концентрировании растворов высокомолекулярных соединений они обращаются [c.364]


    Большинство растворов высокомолекулярных соединений и золи некоторых гидрофобных коллоидов способны при известных условиях переходить в особое состояние, обладающее в большей или меньшей степени свойствами твердого тела. Твердообразная текучая система, образованная коллоидными частицами или макромолекулами высокомолекулярного соединения в форме пространственного сетчатого каркаса, ячейки которого заполнены иммобилизованной жидко- [c.479]

    Когда Гильдебранд впервые описал понятие о регулярных растворах, он предположил, что атермическое растворение не всегда следует закону идеального растворения. Значительно позже, когда физико-химия растворов высокомолекулярных соединений была исследована подробно, стало очевидным, что разница в размерах молекул растворенного вещества и растворителя может привести к очень большим отклонениям от идеальности растворов даже в том случае, если образование растворов не сопровождается каким-либо тепловым эффектом. Поэтому было сделано предложение [53] о том, чтобы изменить определение регулярного раствора как такого, тепловое движение в котором достаточно, чтобы обеспечить практически полную беспорядочность . Это означает, что энтропия смешения, определенная для таких растворов, не равна энтропии идеального раствора и может весьма существенно отклоняться в системах, содержащих полимерные растворенные вещества. Преимущество этого определения заключается в том, что теоретическая интерпретация термодинамического поведения раствора мон ет быть дана лишь при отдельном рассмотрении энтропии смешения на основе расчета возможных конфигураций и теплоты растворения при условии беспорядочного смешения. [c.45]

    Растворы высокомолекулярных соединений. Растворы высокомолекулярных соединений обнаруживают некоторые свойства коллоидных систем. Высокомолекулярные соединения обладают огромной молекулярной массой (не менее 10—15 тыс.). Такие соединения встречаются в природе (белки, натуральный каучук, крахмал, целлюлоза и др.), бывают и синтетические каучуки и другие полимеры. Высокомолекулярные соединения состоят из больших цепеобразных молекул — макромолекул, длина которых иногда превышает 1 мк (10-< см). [c.333]

    Разбавленные растворы высокомолекулярных соединений — этс истинные, гомогенные растворы, которые при предельном разводе- [c.314]

    Поскольку с помощью радиоактивного излучения и последующей химической обработки можно получать мембраны с порами заданного диаметра, а распределение пор по диаметрам чрезвычайно узкое, ядерные мембраны очень перспективны для микроаналитических исследований в цитологии и элементном анализе, для фракционирования растворов высокомолекулярных соединений и их очистки. Ядерные мембраны с успехом применялись для изучения размеров и формы различных типов клеток крови (в частности, для выделения раковых клеток из крови), для изучения вязкости крови и слипания ее клеток в зависимости от различных условий, для получения очищенной от бактерий воды в полевых условиях и многих других целей [59, 65—67]. [c.57]

    При ультрафильтрации растворов высокомолекулярных соединений, особенно при высоких концентрациях, в расчетах следует учитывать неньютоновское течение этих растворов. Для подобных жидкостей получено [134] следующее уравнение для определения потери давления АР в ультрафильтрационном аппарате  [c.271]

    До сих пор были рассмотрены электрофизические свойства однородных систем, тогда как на практике чаще встречаются системы неоднородные или системы более сложные молекулярные растворы и растворы высокомолекулярных соединений, высокодисперсные и грубодисперсные гетерогенные системы. [c.39]

    Соотношение (4.1) справедливо лишь для сильно разбавленных растворов высокомолекулярных соединений. При набухании сополимера или образовании гелей высокомолекулярных соединений диссипации энергии беспорядочного движения диффундирующих молекул вызывается продвижением последних в микроканалах сополимера, т. е. необходимо рассматривать значение макроскопического коэффициента трения /, [c.303]

    Воюцкий С. С., Растворы высокомолекулярных соединений, Госхимиздат, [c.614]

    Механизм действия вязкостных присадок. Загущенные масла являются растворами высокомолекулярных соединений в дистиллятных маслах. Макромолекулы присадок по размерам в сотни раз превосходят молекулы масла, поэтому растворение полимера в масле приводит к повышению его вязкости. [c.144]

    Второе замечание относится к часто встречаемому в экспериментальной практике случаю применения смеси двух органических жидкостей в качестве растворителя. В более старой литературе такие системы рассматривали как бинарные системы, у которых свойства растворителя каким-ни-будь образом рассчитывали из свойств компонентов. Этот способ недопустим прежде всего тогда, когда (как это в большинстве случаев бывает) растворитель в сосуществующих фазах имеет различный состав. Особенно недопустимо определять критическую точку расслоения простым расчетом для бинарных систем. Скорее следует применять гораздо более сложные уравнения для тройных систем, которые в дальнейшем будут выведены. Это замечание также имеет значение прежде всего для растворов высокомолекулярных соединений. [c.226]

    Результаты аппроксимации приведены в таблице 1. Из теории растворов высокомолекулярных соединений известно, что а, = 1/М,, где а, -первый вириальный коэффициент, М, - молекулярная масса полимера. Оценка молекулярной массы полипропилена по а, дает значение 48609 у. е., что близко к значениям, определенным методом вискозиметрии. Коэффициент а = р, (0,5 - х) / М рД где Р, , Рз - плотности растворителя и полимера х - параметр Флори-Хаггинса - молекулярная масса растворителя. [c.112]

    На этих участках НДС соответствует по своей консистенции состояниям геля и молекулярному раствору высокомолекулярных соединений нефти. На участке АБ нефть находится в состоянии аномально-вязкой жидкости. [c.44]

    В 13кость растворов высокомолекулярных соединений. Растворы высокомолекулярных соединений отличаются высокой вязкостью (или внутренним трением), обусловленной силами сцепления между молекулами жидкости. [c.191]

    Растворы высокомолекулярных соединений не являются коллоидными системами. Они отличаются от последних характерными признаками, будучи термодинамически равновесными системами, агрегативно устойчивыми без стабилизатора. Однако некоторые свойства коллоидных систем и растворов высокомолекулярных соединений одинаковы молекулы полимеров близки по размерам к коллоидным частицам, поэтому и те и другие системы обладают небольшой способностью к диффузии их можно диализовать растворы высокомолекулярных соединений, как и коллоидные системы, обнаруживают опалесценцию. Наконец, при определенных условиях в растворах полимеров и в коллоидных системах возможно структурирование. Поэтому многие физико-химические свойства высокомолекулярных соединений рассматриваются в курсе коллоидной химии. [c.69]

    Другой точки зрения на природу растворов высокомолекулярных соединеннй придерживался Штаудингер, считавший, что в разбавленных растворах этн вещества находятся в виде отдельных макромолекул Некоторое сходство в свойствах обычнык (мицел-лярных) коллоидных растворов и растворов полимеров, по его мР1е-н лю, объясняется огромными размерами макромолекул, достигающих величины коллоидных частиц Но вещества, образующие мицеллярные коллоидные растворы, при перемене растворителя нередко дают нормальные, истинные растворы Например, мыло с водой образует коллоидные системы, а со спиртом — истинные растворы Растворы высокомолекулярных соединений всегда отли- [c.478]

    Получение молекулярных и ионных растворов, как известно, сводится к растворению одного вещества в другом растворение же является процессом самопроизвольным. Растворы высокомолекулярных соединений, изучаемые в коллоидной химии и до недавнего времени неправильно относившиеся к коллоидным растворам (под названием лиофильных золей), являются, как уже указывалось, также молекулярными (гомогенными) растворами, а потому образование их сводится тоже к самопроизвольному процессу растворения. Вмешательство человека в зтот процесс выражается лишь в приемах, ускоряющих его (например, путем повышения температуры, перемешивания). Особенность получения растворов высокомолекулярных веществ (по существу— дисперсоидов) в отличие от получения обыкновенных растворов (дисперсидов) заключается лишь в том, что процесс растворения первых в большинстве случаев предваряется особой его стадией— набуханием. [c.20]

    Первые серьезные исследования растворов высокомолекулярных соединений (растворов желатины) реологическими методами были проведены Ф. Н. Шведовым (1889 г.). За последние годы реология, или, как ее называют иначе, физико-химическая механика дисперсных систем, в качестве большого и самостоятельного раздела коллоидной химии получила новое и плодотворное развитие в работах П. А. Ребиндера, В. А. Каргина, М. П. Воло-ровича, А. П. Александрова, Б. А. Догадкина, А. И. Рабинерсона и др., разработавших теоретические основы учения о деформации дисперсных систем и создавших ряд специальных—реологических—методов их изучения. [c.201]

    Одизкапозднее, благодаря работам советских ученых В. А. К а р -г и и а, С. М. Л и п а т о в а, зарубежных исследователей М е й е р а, М а р к а и др. было установлено, что лиофильные золи на самом деле не являются золями, а представляют собой истинные растворы высокомолекулярных соединений, т.е. системы гомогенные, молекулярно-или ионно-дисперсные. В растворах этих соединений взвешенными частицами являются не мицеллы (как в случае лиофобных коллоидов), а гигантских размеров макромолекулы. Вот почему термин золь для этих растворов является принципиально неправильным и употребляется он в настоящее время исключительно в силу традиции, поскольку термин лиофильные золи получил очень широкое распространение в литературе. [c.415]

    НИИ подчиняются общим законам разбавленных растворов. Растворы высокомолекулярных соединений могут быть приготовлены также с высокой концентрацией по массе — до десяти и более процентов. Однако мольная концентрация таких растворов мала из-за большой молекулярной массы растворенного вещества. Так 10%-иый раствор вещества с молекулярной массой 100 000 представляет собой лншь примерно 0,0011 М раствор. [c.314]

    Седнментируют только достаточно крупные частицы. Так, пяти-микронные (5 мкм) частицы кварца оседают в воде за час на 3 см. Седиментации одномикронных (1 мкм) и более мелких частиц препятствует броуновское движение. Поэтому истинные и коллоиД ные растворы, включая растворы высокомолекулярных соединений, седнментацнонно устойчивы, а суспензии — неустойчивы. [c.319]

    В данном разделе рассматривается установка для концентрирования растворов высокомолекулярных соединений (ВМС) с применением ультрафильтрации. Концентрирование растворов ВМС путем выпаривания обычно неэффективно вследствие разрушения ВМС (особенно биохимических препаратов). Применение ультрафильтрацпи позволяет довести концентрацию ВМС до уровня, при котором возможно непосредственное использование раствора в технологическом процессе или извлечение из него ВМС другими методами разделения. [c.201]

    Порог коагуляции данного положительного золя определяли 0,01 % растворами ЫаС1 и М 504 в отсутствие и при введении ПВС, содержащего 11 % ацетатных групп. Устойчивость дисперсий в присутствии ПВС, который наряду с ионно-электростатическим и сольватным факторами устойчивости стабилизирует систему, в 4 раза выше. Известно, что растворы высокомолекулярных соединений и стабилизированные коллоидные растворы мало чувствительны к добавлению электролитов, поэтому наиболее приемлемым методом очистки стоков должен быть метод гетерокоагуляции. [c.98]

    При анализе растворов высокомолекулярных соединений в гепловом движегти участвуют не только молекулы как целое, но и фрагменты молекул fSOj. Кроме поступательного и вращательного движений нужно учесть колебания и относительное вращение всех звеньев макромолекулы друг относительно друга. Появляющиеся дополнительные внутренние степени свободы являются причиной отличия поведения растворов высокомолекулярных соединений от обычных растворов. Описание явлений становится существенно более сложным вследствие того, что в больших молекулах устанавливаются связи между их частями. Образуются структуры, пронизанные молекулами растворителя. Такие растворы, являясь молекулярнымя, гораздо ближе по своим свойствам к коллоидным системам, чем к истинным растворам. Вместо одного характерного времени т в случае малых молекул для описания теплового движения макромолекул в растворах используют уже спектр времен п — характерное время, за которое фрагменты макромолекулы смещаются на расстояния порядка радиуса действия мел<молекулярных сил т-2 — время распространения конформационной перестройки по молекуле то — время вращательной корреляции (или характерное время затухания корреляционной функции) и т. д. [81]. Физический смысл величины то в том, что она является средним временем, за которое макромолекула поворачивается на угол 1 радиан за счет теплового движения. [c.44]

    При ннзюгх и средних температурах в растворах высокомолекулярных соединений нефти формируются структуры с обратимыми прочностными контактами I типа, а при высоких — возникают структуры с необратимо разрушающимися истинными фазовыми контактами II типа, [c.130]


Смотреть страницы где упоминается термин Растворы высокомолекулярных соединений (растворы ВМС): [c.327]    [c.37]    [c.211]    [c.315]    [c.272]    [c.90]   
Смотреть главы в:

Физическая и коллоидная химия -> Растворы высокомолекулярных соединений (растворы ВМС)




ПОИСК





Смотрите так же термины и статьи:

Высокомолекулярные соединени

Высокомолекулярные соединения

Растворы высокомолекулярных соединени



© 2025 chem21.info Реклама на сайте