Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кристаллизация диффузионная

    III. Массообменные процессы связаны с переходом вещества из одной фазы в другую в результате диффузии. Поэтому их называют также диффузионными. К этому классу относятся перегонка, ректификация, абсорбция и десорбция, адсорбция, экстракция, сушка, кристаллизация и др. Движущей силой массообменных процессов является разность концентраций. Скорость процесса определяется законами массопередачи. [c.13]


    Книга содержит следующие разделы гидравлика и гидродинамические процессы (перемещение жидкостей, разделение газообразных и жидких неоднородных систем, перемешивание), теплопередача и тепловые процессы (нагревание, охлаждение, конденсация, выпаривание и кристаллизация), диффузионные процессы (основные законы фазового равновесия и диффузии, перегонка жидкостей, сорбционные методы разделения газов, экстрагирование, сушка), термодинамические процессы (сжатие газов, охлаждение до низких температур) и механические процессы (измельчение, грохочение и дозировка твердых материалов). [c.2]

    Таким образом, скорость выделения твердой фазы из раствора на образовавшихся центрах кристаллизации в значительной мере зависит от вязкости среды, средней длины диффузионного пути молекул к центрам кристаллизации, среднего радиуса молекул твердых углеводородов и разности между концентрацией раствора и растворимостью выделившейся твердой фазы при температуре кристаллизации. [c.133]

    Массопередача или диффузионные процессы (перенос массы вещества при дистилляции, абсорбции, сушке, кристаллизации и др.). [c.19]

    Если рост кристаллов не зависит от диффузионного сопротивления и определяется только интенсивностью собственно процесса отложения вещества на поверхности растущих кристаллов, то размер частиц затравки к моменту т после начала кристаллизации определяется уравнением [c.175]

    Когда сопротивление подводу кристаллизующегося вещества из раствора к поверхности растущей грани велико, а собственно кристаллизация происходит быстро, то пересыщение раствора у поверхности может быть близким к нулю (ДСа=0) [27]. В этом слу чае движущая разность концентраций диффузионного переноса равна пересыщению основной массы раствора, а скорость линейного роста кристалла сферической формы находится следующим образом  [c.175]

    Анализ промежуточной кинетики представляет известные трудности, так как в этом случае пересыщение у поверхности кристалла устанавливается из соотношения между сопротивлениями внешнего диффузионного переноса и процесса собственно кристаллизации подведенного к поверхности вещества. В статистической теории образования двумерных кристаллов выводится следующая зависимость скорости роста от пересыщения в кинетической области процессов  [c.176]


    Величину АСа можно определить из равенства скорости диффузионного переноса и скорости процесса кристаллизации на поверхности [c.176]

    Проведенные исследования подтверждают гипотезы, положенные в основу модели кристаллизации (3.250) —(3.254), (3.255) — (3.257) 1) рост кристаллов происходит в диффузионной области из-за сильного влияния перемешивания 2) вторичные центры образуются за счет истирания кристаллов несущей фазы в зависимости от критерия Вебера 3) явления дробления и агрегации отсутствуют. [c.314]

    Химическое производство представляет собой иерархическую структуру по горизонтали подготовка сырья, химическое превращение и выделение продуктов. Каждая из стадий может содержать произвольное количество разнородных процессов, отличающихся природой определяющих явлений, а именно а) гидродинамические процессы перемещение жидкостей и газов в аппаратах и трубопроводах получение и разделение неоднородных систем газ - жидкость (туманы), газ - твердое вещество (пыли), жидкость - твердое вещество (суспензии), жидкость -жидкость (эмульсии) б) тепловые процессы кипение, испарение и конденсацию, выпаривание в) диффузионные процессы экстракцию, абсорбцию, адсорбцию, кристаллизацию, мембранные, ректификацию и т. д. г) химические процессы химические превращения в реакторах д) биохимические процессы биохимические превращения в реакторах, аэротенках и т. д.  [c.15]

    Экстракция из пористых твердых тел, растворение, кристаллизация, адсорбция и сушка, широко используемые в технологии контактных масс, относятся к массообменным (диффузионным) процессам. Наиболее часто, практически во всех технологических схемах, применяют сушку различных материалов. [c.96]

    Процессы, связанные с диффузионным переходом вещества (массы) из одной фазы в другую (процессы массообмена). Процессы диффузионного массообмена могут протекать между твердой, жидкой и газообразной фазами. К этой группе процессов относятся перегонка, ректификация, абсорбция, адсорбция, экстракция, сушка, кристаллизация, растворение. [c.7]

    Во многих случаях в одном аппарате может одновременно протекать несколько процессов, например, диффузионный процесс кристаллизации сопровождается процессом теплообмена, химический процесс может протекать одновременно с массообменом и теплообменом и т. д. Такое совместное протекание процессов осложняет их изучение и делает несколько условной приведенную классификацию. [c.7]

    Для образования первоначального тонкого слоя отложений может играть существенную роль температурный градиент у самой стенки в диффузионном подслое. Это особенно важно в тех случаях, когда температурный профиль скважины может оказаться н монотонным. Такая картина наблюдается в скважинах Западной Сибири из-за наличия зон вечной мерзлоты на различных глубинах /21/. В таких случаях на колебания температур у стенки оперативно будет реагировать, прежде всего, пограничный подслой, тогда как на средней температуре потока небольшие колебания градиента по сечению трубы могут не сказаться. Между тем даже небольшие колебания температуры в пограничном слое приведут к существенному изменению его состояния как дисперсной системы. При этом из-за изменения скорости возникновения центров кристаллизации существенные колебания будут происходить в наиболее высокодисперсной части спектра распределения частиц дисперсной фазы, всецело определяющей интенсивность формирования отложений в гидродинамических условиях. Такого рода аномалии были отмечены при обработке результатов исследований ряда скважин Западной Сибири /21/. [c.123]

    Массообменные (диффузионные) процессы, характеризующиеся переносом одного или нескольких компонентов исходной смеси из одной фазы в другую через поверхность раздела фаз. Наиболее медленной и по-атому обычно лимитирующей стадией массообменных процессов является молекулярная диффузия распределяемого вещества. К этой группе процессов, описываемых законами массопередачи, относятся абсорбция, перегонка (ректификация), экстракция из растворов, растворение [и экстракция из пористых твердых тел, кристаллизация, адсорбция и сушка. [c.13]

    Диффузионная теория роста кристаллов не объясняет ряд явлений, происходящих при кристаллизации (различная скорость роста граней, дефекты, слоистость и пр.). Согласно этой теории, процесс растворения и кристаллизации обратимы, однако доказано, что это не так. Часто при одинаковых значениях движущей силы (разности концентраций) рост кристаллов протекает гораздо медленнее, чем растворение. [c.635]

    Размер кристаллов. Более крупные кристаллы получаются при медленном их росте и наибольших степенях пересыщения раствора. Существенное влияние на размер кристаллов оказывает перемешивание раствора. С одной стороны, интенсивное движение раствора облегчает диффузионный перенос вещества к граням кристаллов, способствуя их росту, с другой стороны, вызывает образование зародышей, т. е. накопление мелких кристаллов. Таким образом, перемешивание раствора порождает два противоположных явления. Нахождение оптимальной скорости движения раствора, определяющей желаемое соотношение между производительностью кристаллизатора и требуемыми размерами кристаллов, является одной из важнейших задач рациональной организации процесса массовой кристаллизации. Для ряда кристаллизуемых веществ эти соотношения найдены экспериментально. [c.636]


    Необходимо по характеру данной зависимости определить природу замедленной стадии, считая, что разряд и кристаллизация протекают без затруднений. Для случаев, когда торможения вызваны замедленной диффузией, рассчитать предельную диффузионную плотность тока на неподвижном электроде, если известна толщина диффузионного слоя 5 . [c.145]

    Предлагаются результаты измерения катодной плотности тока I процессов электроосаждения ряда металлов при нескольких значениях температуры I, но при одном и том же значении перенапряжения т]. Руководствуясь температурно-кинетическим методом, установить для каждого металла природу замедленной стадии (торможениями химической стадии и стадии кристаллизации можно пренебречь), в зависимости от которой и вычислить либо предельную диффузионную плотность тока либо плотность тока обмена 0 при заданной температуре I.  [c.150]

    Нормальный рост граней кристалла чрезвычайно чувствителен к возникновению диффузионной кинетики. Нарушение питания катионами активных участков кристаллизации вызывает изменение роста слоев, появление новых зародышей и усиленный рост кристаллов в направлении градиента концентрации. [c.94]

    Как уже говорилось, при кристаллизации жидкого чугуна, а также при распаде аустенита содержащийся в этих фазах углерод обычно выделяется в виде цементита. Однако в рассматриваемых условиях цементит термодинамически неустойчив. Его образование обусловлено только тем, что зародыши его кристаллизации образуются гораздо легче и требуют меньших диффузионных изменений, чем зародыши графита. Поэтому в условиях очень медленного охлаждения жидкого чугуна углерод может кристаллизоваться не в виде цементита, а в виде графита. Образование графита сильно облегчается также в присутствии мелких частиц примесей (особенно примесей графита) в расплавленном чугуне. [c.629]

    Так как диффузионные процессы в твердой фазе всегда протекают значительно медленнее, чем в жидкости, то можно считать, что твердая фаза, попадая в область нагревателя, превращается в расплав практически без изменения состава. Если при этом скорость кристаллизации вещества позади двигающейся жидкой зоны мала (скорость кристаллизации равна скорости плавления или скорости передвижения зоны), то соотношение между концентрациями примеси в расплаве и в выпадающих из него кристаллах в каждый момент времени можно считать близкими к равновесному. Поэтому при а<1 и движении расплавленной зоны по слитку слева направо (рис. 31) примесь будет оттесняться в правый конец. Если а>, то примесь будет концентрироваться в левом конце слитка. [c.119]

    Выражение (III.115) аналогично выражению (11.50), характеризующему разделительную способность ректификационной тарельчатой колонны в безотборном режиме (гл. II, 6). Следовательно, в рассматриваемой схеме кристаллизационного каскада каждая его ступень эквивалентна тарелке ректификационной колонны. Отсюда следует, что уравнения, описывающие работу ректификационных колонн, будут справедливы и для работы кристаллизационного каскада. В частности, с помощью соотношения (11.85) можно оценить разделительную способность рассматриваемого кристаллизационного каскада в отборном режиме. Поскольку кристаллизация из раствора осуществляется при температуре, обычно весьма далекой от температуры плавления очищаемого вещества, следует ожидать, что эффект диффузионного массообмена между движущимися кристаллами и раствором в ходе процесса будет ничтожно мал. Поэтому достигаемая в процессе противоточной кристаллизации из раствора глубина очистки обусловлена в основном эффектом перекристаллизации и, таким образом, здесь возникает задача создания и поддержания благоприятных для его проявления условий. [c.159]

    Таким образом, нижним пределом существования режима III может считаться температура Гп1 = Г, при которой нуклеацион-ный механизм кристаллизации в интервале Г > Г > Г сменяется диффузионным механизмом в области Г < Г. [Примечательно, что в случае трехмерного гомогенного зародышеобразования, согласно соотношению (VIII. 2), условие а = Ьо достигается при более глубоком переохлаждении АГ = 0,4Г ]. В соответствии с приведенными ранее соображениями это означает, что смена нуклеа-ционного механизма кристаллизации диффузионным при гомогенном зародышеобразовании происходит при более низких температурах, чем в случае поверхностного зародышеобразования. Это предположение подтверждается данными других работ [303]). [c.209]

    Разные соединения одного и того же элемента имеют различные термодинамические, физико-химические и- гидродинамические параметры (свободные энергии, коэффициенты ионной и молекулярной диффузии). Поэтому процессы массопереноса (растворение, ионный обмен, кристаллизация, диффузионные и конвективно-диффузионные перемещения вещества в растворах), составляющие основу формирования химического состава подземных вод, невозможно правильно интерпретировать и прогнозировать без знания форм переноса элементов. Именно эти формы определяют возможность, геологическую значимость процессов, а также их кинетику. Имеются и другие геохимические вопросы, правильное рещение которых невозможно без знания состояний элементов в подземных водах. Так, при оценке степени насыщения подземных вод карбонатом или сульфатом кальция использование в расчетах суммарных активностей кальция, карбонатов и сульфатов без вычета тех их частей, которые связаны в сложных ионных и молекулярных соединениях, часто приводит к ошибочным выводам о пересыщениях ими подземных вод. Суждение о мнимом пересыщении, подземных вод этими соединениями широко распространено в гидрогеохимической литературе. При образовании устойчивых комплексных соединений происходит смещение равновесий в геохимических процессах (растворении, выщелачивании, осаждении и соосажде-нии, сорбции, ионного обмена, окислении, восстановлении) в сторону водной фазы. При этом чем устойчивее комплексное соединение, тем сильнее эти смещения. Экспериментально установлено, что комплексообразование предохраняет элементы-гидролизаты (Ре, А1, Ве, Си и др.) от полного гидролиза, тормозит образование гидроокисных соединений и удерживает эти элементы в околонейтральных и даже щелочных водах. Геохимическими последствиями этого является расширение кислотно-щелочного диапазона водной миграции гидролизующихся элементов, [c.33]

    При малой кратности растворителя к сырью, когда вязкость раствора велика, даже при малой концентрации твердых углеводородов и медленном охлаждении образующиеся кристаллы невелики, так как передвижению молекул к центрам кристаллизации препятствует выделяющийся из раствора парафин. В результате сужается область, из которой молекулы твердых углеводородов поступают к первично образовавшимся зародышам, что вызывает возникновение новых центров кристаллизации, увеличение числа кристаллов и, в конечном счете, образование мелкодисперсных труднофильтруемых осадков. Слишком большое разбавление сырья растворителем снижает концентрацию твердых углеводородов в растворе. При этом средняя длина диффузионного пути молекул настолько увеличивается, что даже при медленном охлаждении в начальный момент образуется слишком много центров кристаллизации, в результате чего конечные размеры кристаллов уменьшаются. Следовательно, и в этом случае эффективность процессов снижается. В работе [АТ] исследовалось влияние кратности растворителя на растворимость в нем нафтеновых и ароматических углеводородов (рис. 50). Повышение кратности растворителя приводит к увеличению растворимости в нем углеводородов, причем растворимость ароматических углеводородов, обладающих большими молекулярной поляризацией и дисперси- [c.146]

    Оценим кинетические константы. Для каждого падающего кристалла можно построить зависимость v=v i) и определить величину dvldt с точностью до малых первого порядка dvldt Lv—Подставив dvldt в уравнения (3.185), (3.186), можно разрешить их относительно диаметра сферы, масса которой совпадает с массой падающего кристалла. Подставив найденные значе- ния а в уравнения (3.185), (3.186), легко получить значения для скоростей роста кристаллов в соответствующих временных точках. Однако в нашу задачу входит не только определение скоростей роста по длине трубы, но и определение влияния на скорость роста кристалла пересыщения, температуры раствора, скорости обтекания кристалла раствором, вязкости и плотности среды, окружающей его. Если кристаллизация идет во внешней области (диффузионной), то массовую и линейную скорости роста кристалла можно представить в виде [c.295]

    После проведения экспериментального исследования кинетики кристаллизации аллюмоаммонийных квасцов можно было сделать выводы 1) с увеличением времени пребывания кристалла в аппарате размер его увеличивается 2) во всех экспериментах с увеличением числа оборотов средний размер кристаллов увеличивается, что свидетельствует о росте кристалла, происходящем в диффузионной области 3) во всех экспериментах с меньшей скоростью охлаждения (расходом охлаждающей воды) функция распределения кристаллов по размерам двугорбая, что свидетельствует о наличии вторичного зародышеобразования. Из рассмотрения кристаллов квасцов под микроскопом МБИ следовало, что они не дробятся и не агрегируют. Наличие не очень сильного второго горба в функции распределения и отсутствие явлений явного дробления свидетельствует в пользу гипотезы вторичного зародышеобразования путем истирания кристаллов несущей фазы 4) почти во всех экспериментах с большей скоростью охлаждения функция распределения с одним горбом . Причина отсутствия второго горба в следующем а) мелкие кристаллы более устойчивы к истиранию (критерий Вебера мал), б) быстрое снятие пересыщения в начальные моменты свидетельствует о том, что пересыщения недостаточно для роста вторичных центров (частицы не растут). Увеличение данного микроскопа недостаточно для фиксирования этих вторичных центров. [c.313]

    Последующая стадия процесса — созревание суперфосфата, т. е. образование и кристаллизация монокальцийфосфата, происходит медленно и заканчивается лишь на складе (дозревание) при вылеживании суперфосфата в течение 6—25 сут. Малая скорость этой стадии объясняется замедленной диффузией фосфорной кислоты через образовавшуюся корку монокальцийфосфата, покрывающую зерна апатита, и крайне медленной кристаллизацией новой твердой фазы Са(Н2Р04)2-Н20. Оптимальный режим в реакционной камере определяется не только кинетикой реакций и диффузией кислот, ио и структурой образовавшихся кристаллов сульфата кальция, которая влияет на суммарную скорость процесса и качество суперфосфата. Ускорить диффузионные процессы и реакции (а) и (б) можно повышением начальной концентрации серной кислоты до онтпмалыюй и температуры. [c.146]

    На основе диф зионной теории роста кристаллов рассяютрена кинетика кристаллизации парафиновых углеводородов при охлаждении парафинового дистиллята. Рост кристаллов парафина по длине кристаллизатора описывался системой дифференциальных уравнений, которая имела аналитическое решение. Значения отдельных параметров процесса определены исходя из свойств парафинового дистиллята и парафина применительно к проиышленноцу кристаллизатору. Расчеты по заданной программе выполнялись на ЭВИ "иинск-22". Установлены закономерности изменения по длине кристаллизатора толщины диффузионного слоя, поверхности кристаллов парафинов, коэффициента массообмена, пересыщения. Показано, что скорость роста существен- [c.151]

    Конечно, получение столь чистых металлов осуществляется в результате совокупности ряда последовательно проводимых приемов очистки, начиная с предварительной очистки исходных продуктов, подбора материалов для аппаратуры (тиглей и т. д.), не реагирующих с содержимым, и кончая усовершенствованием самих методов очистки. Среди этих методов очистки — дистилляции, возгонки, диффузионной кристаллизации (зонная плавка), переплавки в вакууме и в защитной газовой среде, немаловаж- [c.565]

    Массообменные или диффузионные процессы связаны с переходом вещества из одной фазы в другую за счет диффузии. В процессах массооб-мена всегда участвуют две фазы, например, жидкая и паровая, жидкая и газообразная, две жидкие фазы, твердая и жидкая и т. д. К этому классу процессов относятся перегонка, ректификация, абсорбция, адсорбция, экстракция, сушка, кристаллизация и др. [c.7]

    Современная химическая промыш.тенность выпускает десятки тысяч продуктов. Все многообразие химико-технологических процессов молено свести к пяти основным группам механическим, гидродинамическим, тепловым, диффузионным (массообменным) и химическим. Механические — это процессы дробления, измельчения, агломерации, транспортирования твердых материалов, гранулирования и т. п. Гидродинамические — это процессы перемещения жидкостей и газов по трубопроводам, перемешивания, псевдоожижения, очистка газов от пыли и тумана и др. Тепловые — это процессы нагревания, охлаждения, конденсации, выпаривания и т. д. Диффузионные (массообменные) — это процессы сорбции, ректификации, растворения, кристаллизации, сушки и т. д. [c.178]

    При восстановлении ионов металла на катоде построение кристаллической решетки совершается обычно со скоростью, значительно превышающей ско- оость, с которой происходит упорядочение структуры решетки, так как последний процесс относится к категории диффузионных, которые в металле при низких температурах завершаются в бесконечно большие промежутки времени. В условиях такой кристаллизации возникают кристаллы с неравномерно распределенными силовыми полями, обусловливающими появление в осадке внутренних напряжений. [c.107]

    Если взять крупинку никеля, тО В Начале наблюдается большая плотность тока разряда ионов меди на первичных зародышах и очагах кристаллизации и малая плотность анодного растворения никеля. Поэтому в первичной стадии не исключено воз-никно1вение диффузионной кинетики разряда ионов меди (см. рис. 173). [c.367]

    Несмотря на кажующуюся простоту метода противоточной кристаллизации из расплава, осуществляемый в кристаллизационной колонне процесс разделения имеет довольно сложную природу. Во-первых, помимо эффекта разделения, имеющего место при образовании твердой фазы в кристаллизаторе колонны, в общий эффект разделения будет входить и эффект отмывки кристаллов от захваченной (окклюдированной) жидкости движущимся противотоком расплавом. Во-вторых, в колонне идет процесс частичной перекристаллизации подобно тому, как в ректификационной колонне может иметь место частичные конденсация пара и испарение жидкости непосредственно в ректифицирующей части. И, в-третьих, поскольку движующиеся противотоком по колонне твердая и жидкая фазы находятся в контакте друг с другом, между ними будет происходить диффузионный массообмен, аналогичный диффузионному массообмену между жидкостью и паром в ректификации. Одновременно в кристаллизационной колонне протекают и другие явления, такие, как, например, изменение среднего размера кристаллов и ДОЛИ твердой фазы. Все это в целом затрудняет решение задачи оценки общего эффекта разделения в колонне. Этим и объясняется то, что для описания процесса противоточной кристаллизации в литературе предложены различные модели массообмена, каждая из которых основана на том или ином допущении об основной лимитирующей стадии процесса. [c.133]


Смотреть страницы где упоминается термин Кристаллизация диффузионная: [c.221]    [c.82]    [c.428]    [c.80]    [c.44]    [c.146]    [c.93]    [c.184]    [c.5]    [c.50]    [c.428]    [c.116]    [c.394]   
Процессы и аппараты химической технологии Часть 2 (2002) -- [ c.291 ]

Процессы и аппараты химической технологии Часть 2 (1995) -- [ c.291 ]




ПОИСК







© 2024 chem21.info Реклама на сайте