Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Динамические магнитные методы

    Динамические магнитные методы [c.383]

    В последнее время магнитные методы снова получают широкое распространение в связи с развитием динамического метода измерения парамагнетизма — метода электронного парамагнитного резонанса (ЭПР). В магнитном поле энергетический уровень неспаренного электрона расщепляется на два подуровня — эффект Зеемана. Эти подуровни отвечают разной ориентации спина электрона. Разность энергии этих двух состояний равна где — напряженность постоянного магнитного поля g — фактор спектроскопического расщепления, который для свободного электрона равен 2,0023 р — магнетон Бора. [c.23]


    Для детектирования свободных радикалов имеется и другой магнитный метод, использующий обычный спектрометр ЯМР. Этот метод стал применяться после того, как было открыто явление химически индуцированной динамической поляризации ядер [126, 127]. Если спектр ЯМР снимать в ходе реакции, то одни сигналы могут усиливаться либо в положительном, либо в отрицательном направлении, а другие могут ослабевать. Когда это наблюдается для продукта реакции, это означает, что по крайней мере часть такого продукта образуется через промежуточный свободный радикал [128]. К примеру, возник вопрос, участвуют ли радикальные интермедиаты в реакции обмена между этилиодидом и этиллитием (реакция 12-38). [c.241]

    Измерения вязкости нематиков при изменении внешнего давления позволяют установить связь величины вязкости с молекулярной упаковкой и свободным объемом, так как при увеличении давления уменьшается межмолекулярное расстояние. В [67] проведены измерения динамической вязкости методом падающего шарика, в [94] — вращательной вязкости методом вращающегося магнитного поля. На рис. 2.3.7 схематически показано, как выглядит камера для измерения вращательной вязкости при высоком давлении [94]. Устройство прецизионной трубки Т, соединяющейся через капилляр К (диаметр 0,8 мм) и цилиндр Ц с проволокой (диаметр 30 мкм, длина 70 см) с известной постоянной кручения О, аналогично описанному в 2.3. [c.49]

    Измерения вязкости нематиков при изменении внешнего давления позволяют установить связь величины вязкости с молекулярной упаковкой и свободным объемом, так как при увеличении давления уменьшается межмолекулярное расстояние. В [67] проведены измерения динамической вязкости методом падающего шарика, в [94] — вращательной вязкости методом вращающегося магнитного поля (см. 2.3). [c.146]

    Зауэр и Вудворд [506] исследовали методом ядерного магнитного резонанса переходы в полиамидах и других полимерах и сравнили с результатами, полученными динамическим механическим методом. Метод ядерного магнитного резонанса нозволяет обнаружить переходы, соответствующие движению боковых ответвлений. [c.363]

    Наряду с развитием приборостроения в области классической масс-спектрометрии , начиная с 1950 г., предложен ряд оригинальных методов разделения ионов и осуществлено создание большого числа типов приборов, относимых обычно к так называемым динамическим масс-спектрометрам. В динамическом масс-спектрометре с циклоидальной фокусировкой применяются скрещенные электрическое и магнитное поля. Развертка спектра осуществляется путем изменения величины одного из полей [7]. [c.7]


    Изучение структуры органических соединений методом спектроскопии адер-ного магнитного резонанса (ЯМР) требует определения многих спектральных параметров. Для решения этих задач в современной методологии ЯМР постоянно появляются новые многомерные методики. В книге рассмотрены методы, основанные исключительно на селективных радиочастотных импульсах и полевых градиентах. Предложена новая методика исследования медленных динамических процессов на основе мультиплетно-селективного возбуждения связанных спиновых систем. [c.2]

    Магнитный резонанс признан уникальным методом для изучения диссипативных динамических процессов, таких, как химический обмен или кросс-релаксация [1.69—1.71]. Двумерная спектроскопия дала новый импульс в этой области и оказалась особенно успешной для наглядного отображения пути кросс-релаксации, ядерных эффектов Оверхаузера, спиновой диффузии и медленного химического обмена [1.102—1.104]. [c.28]

    Ядерный магнитный резонанс оказался мощным и гибким методом изучения процессов химического обмена. Большая часть имеющихся у нас современных данных о динамических процессах в химии и биологии получена благодаря исследованиям с помощью ЯМР [9.32, 9.33]. В зависимости от диапазона скоростей могут быть использованы различные методики, начиная с изучения времен релаксации и кончая анализом формы линии и экспериментами по переносу намагниченности. Обменная 2М-спектроскопия имеет много общего с одномерными экспериментами по переносу поляризации (см. разд. 4.6.1.4), и она наиболее подходит для изучения медленно- [c.621]

    Индукционный метод измерения магнитной (динамической) проницаемости основан на том, что если поддерживать неизменной амплитуду напряженности намагничивающего поля, то амплитудная (или динамическая) проницаемость будет пропорциональна амплитуде индукции в контролируемой детали (если ее размеры остаются неизменными). Обычно используют дифференциальную схему, с помощью которой и определяют изменение магнитной проницаемости контролируемой детали по сравнению с магнитной проницаемостью образца. [c.367]

    Предметом данной книги являются, с одной стороны, введение в теорию химической связи в объеме, необходимом для овладения полуэмпирическими методами квантовой химии (этому посвящена гл. 10, которой заканчивается методическая часть книги), а, с другой стороны, изучение взаимосвязей между строением молекул и их свойствами. Что касается свойств, под ними понимаются как статические характеристики (термохимические, электрические, магнитные, оптические), так и динамические характеристики, т. е. реакционная способность, определяемая константами равновесий и скоростей. Следует уточнить, как мы будем толковать понятие структура . В узком смысле слова под структурой понимается расположение атомов в молекулах, а также упаковка молекул в кристаллической решетке. То, что понимается под структурой в этом смысле, во многих случаях теперь определяется непосредственно методами рентгеноструктурного анализа. Что же касается интересующих нас проблем, мы будем чаще всего подразумевать под структурой исследуемого соединения его расчетные теоретические характеристики, которые сравниваются со свойствами, найденными экспериментально. [c.10]

    К этому же типу испарителей относят электроннолучевые, в которых путем статических и динамических методов электрической и магнитной фокусировки пучок электронов с энергией несколько килоэлектронвольт направляется на геттер. Локальный нагрев геттера пучком электронов позволяет вести интенсивное испарение активного металла из расплавленной капли, осуществляя жидкофазное испарение. [c.54]

    В работе Несмеянова [66] описан ряд методов, используемых для определения состава газовой фазы 1) метод измерения скоростей движения молекул 2) метод измерения отклонения молекулярного пучка в магнитном поле 3) метод магнитного резонанса 4) спектроскопический метод 5) масс-спектрометрический метод 6) крутильный вариант эффузионного метода (торсионный метод) 7) метод измерения плотности пара 8) динамический метод. [c.91]

    При изучении строения и теплового движения макромолекул диэлектрич. метод дополняют др. методы механический, динамический, дилатометрический, ядер-ного магнитного резонанса и др. [c.371]

    Динамич. методы развиты гл. обр. для двух типов воздействий — гармонических и импульсных. В первом случае изучают температурную и частотную зависимость амплитуды и угла сдвига фаз деформации, поляризации, намагниченности и др. релаксирующих характеристик при синусоидальном воздействии соответствующего силового поля (см., напр., Александрова— Лазуркина частотно-температурный метод. Динамические свойства) во втором случае задают форму, величину, длительность и частоту импульсного воздействия механич. напряжения, напряженности электрич. или магнитного поля и измеряют изменение со временем соответствующей реакции полимерной релаксирующей системы — деформации, поляризации, намагниченности. [c.166]


    С открытием эффекта динамической поляризации ядер ]55— 57] (эффект Оверхаузера — Абрагама) соль Фреми неожиданно приобрела исключительно важное практическое значение 158— 60]. Эффект Оверхаузера, лежащий в основе метода двойного ядер-но-электронного резонанса, позволяет исследовать СТС спектров ЭПР сильно разбавленных растворов свободных радикалов в слабых. магнитных полях, где обычный метод ЭПР недостаточно чувствителен. [c.11]

    Разработанный нами магнитный метод измерения текущих концентраций меченых частиц позволил провести измерения перемешивания твердой фазы в аппаратах, секционированных провальными тарелками. Провальные тарелки с живым сечением в 20— 30% могут эффективно заменять трудно регулируемые перетоки в многосекционных аппаратах. Через отверстия в провальной решетке материал все время пересыпается из верхнего кипящего слоя в нижний. В свою очередь выбрасываемые из нижнего кипящего слоя в надслоевое пространство частицы через те же отверстия проникают в верхний кипящий слой. При отсутствии циркуляции через весь реактор (подача нового материала в верхний слой и вывод его из нижней секции) между противоположными потоками частиц через провальную решетку устанавливается динамическое равновесие, и кинетику процесса можно характеризовать одним коэффициентом обмена а [секг . [c.94]

    Исследование вырожденных перегруппировок аренониевых катионов методом динамического магнитного резонанса позволило установить кинетические характеристики 1,2-сдвига заместителей. Ниже в качестве примера приведены данные для перегруппировки в ряду бензолониевых ионов [37]  [c.113]

    МР-спектроскопия с импульсным фадиентом магнитного поля является чрезвычайно мощным инструментальным методом исследования динамических характеристик систем. К сожалению, несмотря на свои широкие возможности, он продолжает оставаться малодоступным по причине высокой стоимости и относительной уникальности оборудования. Метод импульсной ЯМ является одним из ответвлений классической ЯМР-спектроскопии. Ег о типичным применением является определение коэффициентов самодиффузии однокомпонентных чистых веществ и бинарных смесей. Долгое время считалось, что использование этого метода для таких сложных многокомпонентных смесей, как НДС, является малоинформативным и нецелесообразным. Однако пионерские исследования, проведенные в работе [17], на примере гудронов и битумов показали применимость этого метода для изучения высокомолекулярных НДС. Вы- [c.11]

    Довольно широкое применение в фотохимии при исследовании промежуточных продуктов нашли методы магнитного резонанса. Для исследований как дублетных радикалов, так и молекул в триплетном возбужденном состоянии используется собственно метод электронного парамагнитного резонанса (ЭПР). Хотя в газовой фазе молекулы с орбитальным моментом (например, Ог Дг) также дают парамагнитный резонанс, основной областью применения этого метода являются исследования в жидкой фазе. Один из недостатков собственно метода ЭПР заключается в ограниченном временном разрешении (около I мкс), преимущественно обусловленном параметрами микроволнового резонатора. Метод спинового эха позволяет достигать временного разрешения примерно 50 нс. Однако наилучшее временное разрешение порядка нескольких наносекунд дает метод оптически детектируемого магнитного резонанса (ОДМР). Этот метод относится к большой группе методов двойного резонанса. Переход в микроволновой области распознается не по поглощению, непосредственно измеряемому в микроволновом диапазоне, а по некоторому эффекту, например изменению поглощения или флуоресценции в видимой области вследствие изменений взаимодействия при перераспределении заселенностей спиновых состояний. Мы уже ссылались (см. разд. 3.7) на метод химической поляризации ядер и метод химически индуцированной динамической поляризации электронного спина при изучении поведения радикальных пар. В первом методе используется поляризация рекомбинирующих мо- [c.198]

    Растворитель для приготовления суспензии часто является определяющим фактором для качества упаковки. Так как суспензия должна сохранять стабильность, начиная от переноса ее в резервуар в течение всей упаковки, необходимо замедлить седиментацию или исключить ее. Для этого существует ряд способов. Один, называемый методом сбалансированной плотности и широко используемый, заключается в выборе растворителя с той же плотностью, что имеет силикагель. Этот растворитель состоит из смеси полигалогензамещенных углеводородов (обычно смесь тетрабромэтана и тетрахлорида углерода) так как плотность его равна плотности силикагеля, седиментации не происходит сколь угодно долго. Недостатком этого способа является высокая токсичность, дороговизна и трудность удаления из колонки полигало-генированных растворителей. Другой способ, называемый методом высокой вязкости , состоит в выборе растворителя с высокой вязкостью, в котором седиментация сорбента происходит достаточно долго. Обычно это растворители, содержащие глицерин, этиленгликоль или циклогексанол. Недостатком этого способа является длительность упаковки, доходящая до нескольких часов. Третий способ, называемый динамическим , состоит в использовании растворителей малой вязкости, упаковка при этом протекает быстро для улучшения стабильности и уменьшения седиментации иногда используют перемешивание суспензии магнитной мешалкой в процессе всей упаковки. [c.116]

    В частности, для нейтральных растворов этилендиаминтетраацетатов кобальта(П), никеля(П) и меди(П) методом ядерной магнитной релаксации было установлено, что среднее число молекул воды, входящей в состав этих комплексонатов, составляет 0,19 0,33 и 0,38 соответственно [252]. Эти данные были расценены авторами как свидетельство наличия динамического равновесия в указанных растворах между комплексами, имеющими к. ч б, с гексадентатными и пентадентатными лигандами. [c.437]

    Однако теперь следует различать и более конкретные свойства кинетических структонов, ибо динамическая структура может изменяться под действием факторов разной природы — электрических, магнитных, механических и т. д. Соответственно, надо различать типы релаксации и хорошо понимать, что участие в релаксационных процессах одинаковых по шкале геометрических масштабов кинетических структонов, отнюдь не означает тождественности процессов, регистрируемых, скажем, дина-момеханическими или электрическими методами. [c.179]

    В 1979 г. появились первые сообщения об изучении эффекта акустоупрзтости в двух тесно связанных между собой организациях - исследовательском центре NASA в Лэнгли и университете г. Хьюстона. Руководят работами, соответственно, Дж. Хей-ман и К. Салама. С помощью продольных и сдвиговых волн исследуются приложенные и остаточные напряжения в цилиндрических и плоских образцах из различных сталей и алюминиевых сплавов [135, 138, 139, 161, 162, 165, 207, 284, 312, 313]. Имеется несколько статей и патентов, посвященных разработке ультразвуковых методов измерения усилий затяжки болтов [206, 208]. Большое внимание уделяется изучению взаимосвязи акустоупругого эффекта с тепловыми и магнитными явлениями в образце. Рассматривается возможность использования для контроля напряжений температурной зависимости скорости звука, причем не только в статистическом, но и в динамическом режиме, т.е. при импульсном нагреве образца, [c.22]

    Методы радиодефектоскопии основаны на использовании резонансных эффектов максимального поглощения энергии падающего элекфомагнитного излучения на определенных критических частотах и в ряде случаев -в присутствии внещнего магнитного поля. Основными резонансными эффектами являются ядерный магнитный (ЯМР), ядерный квадрупольный (ЯКР), элекфонный парамагнитный (ЭПР), ферромагнитный, антиферромаг-нитный и эффект динамической поляризации ядер (эффект Оверхаузена). [c.442]

    Существуют различные методы определения степени кристалличности. Ее можно оценить по измерению плотности, используя теплофизические методы, а также методы ядерного магнитного резонанса (ЯМР), инфракрасной спектроскопии (ИК-опектроокопии), рентгеноструктурного анализа. Значения степени кристалличности, полученные для одного и того же полимера разными методами, иногда не совпадают. Это несовпадение часто связано с тем, что разными методами определяются совершенно разные величины, порой лишь косвенно связанные с х. Например, методом ЯМР определяется динамическая степень кристалличности, представляющая собой отношение числа неподвижных звеньев к общему числу звеньев в полимерном образце. Очевидно, что найденная таким образом динамическая степень кристалличности в определенны.х условиях (например, при температурах, меньших температуры стеклования аморфной прослойки), никоим образом не может рассматриваться как истинная степень кристалличности. Другой причиной указанных расхождений в определении х является заведомо некорректное измерение этой величины, тогда как прецизионное определение степени кристалличности иногда оказывается очень трудоемким. [c.44]

    Надо отметить, что быстрый рост числа соединений (например, углеводородов) с ростом их молекулярного веса ие позволяет детально исследовать адсорбционные свойства каждого из этих веществ. Поэтому весьма важно научиться эти свойства предсказывать на основании строения молекул исследуемых соединений. В идеале хотелось бы уметь предсказать статические адсорбционные свойства и динамические условия разделепия смесей, зная только электрические, магнитные и геометрические свойства адсорбата и адсорбента, состав и концентрацию газовой илп жидкой смеси. Конечно, эта задача чрезвычайно трудная, и мы еще очень далеки от ее разрешения. Однако весьма важно ее поставить и уже теперь направить теоретическую и экспериментальную работу по этому пути. Некоторые вопросы относительно природы адсорбционных сил и возможности расчета энергии адсорбции и адсорбционных равновесий как будто проясняются, так что комбинация теоретических и полуэмпирических методов [1—4] уже в настоящее время помогает понять и полу количественно илп хотя бы качественно предсказать свойства многих практически ваншых адсорбционных систем. В настоящем сообщении этим вопросам уделяется основное внимапие. Мы начнем с анализа простейшего случая, т. е. с адсорбции на однородной поверхности неполярных, а затем и некоторых полярных адсорбентов, а дальше рассмотрим более сложные случаи, которые имеют место при химическом модифицировании поверхности адсорбента путем обр 13овапия или разложения на ней различных соединепий, в частности соединений, обладающих избирательностью по отноше- [c.45]

    Простой метод одновременного измерения предельной чувствительности и динамического диапазона детектора может быть реализован с помощью аппаратуры, изображенной на рис. 7. Она состоит из смесительной камеры объемом примерно 200жл, соединенной с источником газа-носителя и с испытуемым детектором. В сосуд помещают магнитную мешалку (смонтированную на стеклянных или каменных подшипниках), чтобы обеспечить полное перемешивание газа внутри колбы. [c.41]


Смотреть страницы где упоминается термин Динамические магнитные методы: [c.269]    [c.269]    [c.184]    [c.4]    [c.714]    [c.141]    [c.26]    [c.52]    [c.569]    [c.549]    [c.639]    [c.14]    [c.166]    [c.437]    [c.29]    [c.90]   
Смотреть главы в:

Методы исследования структуры и свойств полимеров -> Динамические магнитные методы

Методы исследования структуры и свойств полимеров -> Динамические магнитные методы




ПОИСК





Смотрите так же термины и статьи:

Метод динамический



© 2024 chem21.info Реклама на сайте