Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Методы механических испытаний динамические

    Метод закручивания шнура —это динамический метод исследования механических свойств полимеров . Образцы для испытания готовят нанесением полимера на инертный материал (шнур). Изменения динамических механических характеристик с температурой (или других переменных) связаны с изменениями, происходящими в самом полимере. В противоположность классическим методам механической динамической спектроскопии, в которых используются образцы строго определенной формы и размеров, этот метод дает возможность исследовать любой полимер (или иное соединение), нанесенный на шнур или синтезированный на нем. В некоторых случаях его можно использовать для определения температур переходов первого и второго рода, а также переходов, связанных с разложением. Наибольший эффект этот метод может дать в сочетании с методами дифференциального термического анализа и термогравиметрии. [c.31]


    Предыдущие исследования процесса отверждения эпоксидных смол производили методом дифференциального термического анализа (ДТА) в сочетании с термогравиметрическим анализом (ТГА) [1, 2], измерениями диэлектрической релаксации [3] или динамических механических характеристик [4, 5]. В настоящем исследовании было применено сочетание методов дифференциальной сканирующей калориметрии (ДСК) и термомеханического анализа (ТМА), описанных в приложениях 1 и 2 соответственно. Особое внимание было обращено на выявление влияния металлического наполнителя на кинетику реакции и механические характеристики изучаемых адгезивов. Кроме того, проведен сравнительный анализ результатов различных физико-химических методов испытания процесса отверждения в целях выявления оптимального подхода к выбору композиции и контролю за процессом отверждения. [c.82]

    РД 50-344-82. Методические указания. Расчеты и испытания на прочность. Методы механических испытаний металлов. Определение характеристик вязкости разрушения (трещиностойкости) при динамическом нагружении.-М. Изд-во стандартов, 1983.-52с. ил- (Гос. стандарты СССР). [c.416]

    В брошюре изложены научные основы методов механических испытаний дисперсных пористых материалов, описаны универсальные приборы для оценки их прочности и долговечности и приведены результаты исследования механических характеристик таких материалов на примере разнообразных катализаторов, сорбентов и носителей в условиях истирания, в статических условиях и динамическом режиме, в том числе в ходе каталитической реакции. [c.4]

    При динамических механических испытаниях образец под действием приложенной нагрузки не разрушается. Такие испытания называют динамическими, поскольку механические свойства полимера изучаются при колебательном воздействии на образец. Среди многочисленных измерительных устройств особенно хорошо зарекомендовал себя метод торсионных колебаний [129, 130]. При этом один конец образца, имеющего форму прямоугольного параллелепипеда, жестко укрепляется, а другой конец прикрепляется к колеблющемуся диску торсионного маятника. Образец находится в термостате. [c.99]

    Особое значение имеют механические и динамические методы испытаний для оценки эксплуатационных характеристик пластичных смазок в условиях, максимально приближенных к эксплуатации. Многообразие требований, предъявляемых к пластичным смазкам, обусловило разработку большого числа методов испытаний с целью определения пригодности этих смазок к применению в подшипниках качения [12.71 ]. В последнее время большое значение приобрели системы FAG, в которых пластичные смазки испытывают в различных подшипниках качения в изменяющихся условиях нагрузки, скорости и температуры [12.72, 12.73]. [c.441]


    Наряду с измерениями упругих свойств акустическим методом проводились механические испытания материала для определения значения упругих постоянных в соответствии с ГОСТом 9550—60. Механическим испытаниям подвергались те же самые образцы, на которых были определены динамические упругие характеристики акустическим методом. [c.175]

    Динамический метод исследования полимеров имеет перспективы и в прикладном смысле — как метод исследования механических свойств, не требующий осуществления больших деформаций, что сохраняет целостность материала и позволяет проводить механические испытания готовых изделий без их разрушения. [c.177]

    Важным моментом методики испытания является оценка стойкости бетона. Для этого, как известно, применяется освидетельствование внешнего вида образцов, определение изменения механической прочности (обычно на сжатие), потерь в весе, результатов соответствующих химических анализов. Однако недостаточно внимания уделяется использованию электронно-акустических методов для исследования коррозионной стойкости бетона. Наряду с явными преимуществами (меньшее количество образцов, возможность проводить повторные определения на одних и тех же образцах) эти методы, особенно резонансный, являются более чувствительными при обнаружении структурных изменений бетона в агрессивной среде, чем механическое испытание. Вследствие этого поведение образцов в разных средах в первую очередь оценивалось по изменению динамического модуля упругости, а приведенные выше показатели определялись дополнительно к электронно-акустическим методам. [c.81]

    Контроль интегральным методом собственных колебаний. Этот метод применяют для определения упругих характеристик бетона, его прочности и других рабочих параметров. Прочность тем выше, чем больше динамический модуль Юнга и чем меньше потери. При испытаниях образцов и изделий простых форм (брусков, стержней) измеряют собственные частоты и затухание изгибных или продольных колебаний ОК, после чего находят модуль Юнга и характеризующие потери логарифмический декремент б или добротность Q. По измеренным параметрам судят о физико-механических свойствах бетона. [c.771]

    Высокую прочность, эластичность, хорошее сопротивление раздиру, высокие динамические свойства этих вулканизатов сразу связали (Браун, 1955 г.) с ионным характером возникающих вулканизационных связей, так как сшивание по карбоксильным группам с образованием ковалентных связей приводит к получению вулканизатов с низкими физико-механическими свойствами, характерными для обычных ненаполненных вулканизатов каучуков нерегулярного строения. Химическая реакция между оксидами металлов и карбоксильными группами была доказана различными методами и привела вначале к представлению о солевых поперечных связях, которые, как считали, способны легко перегруппировываться при приложении нагрузки или повышении температуры испытания. Это допущение противоречит высокому значению энергии солевых связей, поэтому предположили (Б. А. Догадкин, 1960 г.), что перегруппировка связей облегчается в результате скольжения ионизированного карбоксила по ионам металла на поверхности частиц оксида. [c.56]

    Методы 43, 44, 45 — показатели 55, 56, 57. Для оценки этих показателей из образца ПИНС массой 100—500 г испаряют растворитель. Оставшийся сухой остаток анализируют по комплексу квалификационной оценки пластичных смазок. Определяют температуру каплепадения, динамическую вязкость, предел прочности и термоупрочнение, механическую и коллоидную стабильность, содержание свободных кислот, щелочей и воды, давление насыщенных паров, испаряемость и противокоррозионные свойства. Если все эти характеристики сухого остатка укладываются в нормативы на пластичные смазки, проводится их испытание на соответствующих машинах трения, качения и скольжения. Если сухой остаток не отвечает этим нормативам, то продукт оценивают хуже нормы . ПИНС, находящийся на уровне смазок (солидол, консталин), оценивают по показателям 55, 56, 57 как норма , а находящийся на уровне [c.113]

    Исходя из сформулированного выше подхода к проблеме измерения механических свойств пластмасс, в книге рассматриваются три группы методов испытаний, которые непосредственно отвечают поставленной задаче. Это различные варианты долговременных испытаний, в том числе измерения релаксации и ползучести (первая часть книги, написанная А. А. Аскадским) динамические испытания пластмасс, в которых варьируемым параметром является частота нагружения (вторая часть книги, ее автор—А. Я. Малкин) наконец, наиболее часто встречающиеся в инженерной практике измерения механических свойств пластмасс на разрывных машинах, копрах, твердомерах и т. п. (третья часть книги, написанная В. В. Ковригой). Рассмотренные методы, хотя и не исчерпывают возможностей измерения механических свойств пластмасс, однако дают наиболее общий и физически обоснованный подход к оценке объективных характеристик полимерных материалов. [c.7]


    Определение динамического модуля упругости и тангенса угла механических потерь на установке с использованием принципа бегущих волн. Обычные методы и установки [33] для исследования динамических механических свойств полимеров не дают возможности определять модуль упругости Е и тангенс угла механических потерь tg б в широком интервале достаточно высоких частот при одноосном растяжении. Для измерения и tg б в интервале частот от 100 до 40 ООО Гц разработана установка с использованием принципа бегущих волн 31]. Особенностью установки является возможность испытания деформированных образцов. Сущность метода заключается в том, что вдоль образца движется каретка, в которой с противоположных сторон закреплен вибратор и приемник при помощи генератора в образце создается бегущая продольная волна, которая фиксируется приемником. [c.235]

    Для иллюстрации зависимости фактора сдвига от частоты были вычислены значения функции lg аг(со) при различных температурах тройного блок-сополимера строения полистирол — полибутадиен — полистирол при двух частотах 10 и 10 Гц со значениями = 0,7 и — 0,3. Большинство лабораторных методов измерения механических характеристик вязкоупругих материалов укладывается в этот диапазон частот, причем верхняя область перекрывается динамическими испытаниями, а нижняя — исследованиями переходных ре жимов. [c.69]

    Механическая прочность катализаторов, оцененная по сопротивляемости динамическим нагрузкам ио методу разбивания гранул на копре, имеет значение для выбора способа загрузки промышленного реактора. Для определения механической прочности гранулы сбрасывают с разной высоты на массивную плиту или грузы (бойки) на гранулы [344]. Прибор для определения механической прочности гранул методом динамических испытаний представлен на рис. 80. [c.185]

    Рис. 80. прибор для определения механической прочности гранул методом динамических испытаний  [c.185]

    Ряд работ, опубликованных в 1957—1958 гг., относится к изучению динамических механических свойств бутадиенстирольных каучуков и резин [366, 368, 418—437]. В некоторых из этих работ изучается влияние условий полимеризации, рецептуры смесей и молекулярного веса каучука на его механические свойства при динамических деформациях, а также на физические свойства [418—420]. Описываются новые методы и приборы для определения динамических свойств [421, 422], специальное оборудование для испытаний прй высоких и низких температурах [426, 427]. Приводятся свойства каучуков при статических и динамических деформациях [423—425] в различных температурных условиях. [c.638]

    Большое внимание уделено количественному анализу компонентов резин [1392—1407]. Среди этих работ встречаются исследования по разработке экспресс-методов [1401, 1406, 1407]. Ряд работ относится к разработке методов определения механических свойств каучуков при динамических деформациях [1408—1425]. Опубликованы работы по исследованию различных свойств резин и разработке методов испытаний как резин, так и изделий из нее 1426—1475]. Много работ посвящено описанию устройства новых приборов, рекомендуемых для различных испытаний каучуков с приведением методик исследований [1476— 1500]. [c.668]

    Реакция полимера на механическое воздействие зависит от температуры, продолжительности воздействия, молекулярного строения, морфологии и состава. В этом разделе рассмотрены различные факторы, в том числе молекулярная (и сегментальная) подвижность, определяющие те состояния, в которых могут существовать полимеры. Коротко обсуждены исследования вязкоупругих свойств при малых деформациях методами динамической механической спектроскопии, релаксации напряжения и испытаний на ползучесть. Для сопоставления большого числа экспериментальных данных и предсказания свойств полимеров при различных временах механического воздействия и температурах используется принцип температурно-временной суперпозиции. Более подробное изложение затронутых вопросов можно найти в оригинальных работах, в которых, кроме того, описаны и другие методы исследования полимеров, например, дилатометрия, ЯМР, метод диэлектрической релаксации. [c.32]

    Независимо от показателя, по которому определяется скорость термического или термоокислительного распада полимера, наиболее совершенными методами определения стабильности композиции в процессе переработки являются те, которые учитывают воздействие механических усилий, т. е. все методы, включающие наблюдение за изменением свойств композиции непосредственно в процессе переработки. Наиболее сложной является оценка стабильности непластифицированных композиций, предназначенных для переработки методами экструзии и литья под давлением. Как отмечается в литературе, надежную характеристику стабильности в динамических условиях дает лишь непосредственное испытание композиций на опытных экструзионных или литьевых машинах. В работе [142] испытание термической стабильности поливинилхлорида рекомендовано проводить при непрерывной циркуляции определенного количества материала через экструдер до начала разложения полимера. В работах [143—146] дается обзор методов переработки поливинилхлорида и некоторых требований, предъявляемых к термостабилизаторам. [c.169]

    Известно большое число методов механического испытания конструкционных материалов. К методам статических испытаний, осуществляемых плавным и постепеннььм нагружением образца до разрушения, относятся испытания на растяжение, сжатие, изгиб, кручение, срез, устойчивость, смятие, а также испытание на твердость. При динамических испытаниях на ударный разрыв, сжатие и изгиб снимаются показатели ударной вязкости и хрупкости материала. При испытаниях на усталость, возникающую при повторно-переменных нагружениях, определяется величина предела выносливости. [c.353]

    Улучшение механических характеристик — прочности, долговечности катализаторов, носителей и сорбентов — становится все более важной задачей химической технологии в связи с интенсификацией каталитических процессов. Отыскание и научное обоснование оптимальных методов приготовления катализаторов с заданными физико-химическими и механическими свойствами, а также задачи стандартизации и выбора правильных критериев для сргкнительной оценки качества материалов, выпускаемых различными предприятиями, настоятельно требуют дальнейшей разработки и усовершенствования методов и приборов для механических испытаний катализаторов [1]. Эти испытания должны включать ряд методов, позволяющих оценивать материал с разных сторон, -в соответствии с различными возможными условиями механических воздействий [2]. Действительно, в металловедении, например, для всесторонней оценки механических свойств материала давно используются разнообразные, в совершенстве разработанные статические, ударные и усталостные испытания аналогично и в рассматриваемом иами специфическом случае высокодисперсных тонкопористых материалов — катализаторов, носителей, сорбентов, где работы в данном направлении еще только начинают развиваться, оценка механических характеристик также должна быть всесторонней и проводиться в различных условиях статических и динамических нагрузок. Этот комплекс методов должен включать испытания в условиях, отвечающих реальным условиям эксплуатации, поскольку в ходе реакции, при совместном действии механических напряжений, температуры и активной среды, могут наблюдаться резкие изменения прочности и долговечности гранул [14—18]. Вместе с тем для повседневного контроля качества материала на основе такого все-сторойнего обследования целесообразно выделение лишь одно-го-двух методов, самых характерных для данного типа гранул,— как пра вило, таких, которые наиболее чувствительны к минимальным значениям прочности. [c.5]

    Определение вязкости расплава прн нулевой скорости сдвига (т1, ) и при низких ее значениях проводили в соответствии с эмпирическим правилом Кокса—Мерца методом динамических испытаний на механическом спектрометре. [c.617]

    Методом ядерного магнитного резонанса (ЯМР) были изучены полибутадиены с преобладающим содержанием цисЛ,4- и транс-1,4-звеньев. Сужение линии спектра ЯМР, отвечающее переходу из стеклообразного в высокоэластическое состояние, для ifii -полибута-диепа наблюдается при —90° С, а для транс-полибутадиена — при —46° С. Сравнительное исследование процесса стеклования в цис- и транс-полибутадиенах с помощью методов ЯМР и дилатометрии было выполнено также японскими авторами i . Для полибутадиена, содержащего 93% г ыс-1,4-звеньев, значения оказались равными —102° С (дилатометрия) и —101° С (ЯМР). В случае же транс-полибутадиена (97% транс-групп) соответствующие величины были равны —58 и —65° С. С этими результатами согласуются данные Баккаредда и Бутта полученные при использовании метода динамических механических испытаний. Температура стекло- [c.64]

    Подобная картина свойств необходима в широком диапазоне изменений как температуры, так и частоты и к тому же для более чем одной моды деформации, поскольку интенсивность и положения переходов зависят от вида напряжения. На практике применяется растяжение (включая изгиб), сдвиг (включая кручение) и трехосное деформирование. Тем не менее, более естественно подразделение на типы колебаний, а не на виды напря-жения, потому, что виды деформации обусловливают диапазон частот в отличие от методов ступенчатого возбуждения (см. главу 5), которые не имеют подобных резко отличающихся временных интервалов. Основная классификация испытаний включает свободные колебания, вынужденные колебания (резонансные или нерезонансные) и волновое распространение, приближенно перекрывая соответственно следующие диапазоны частот 0,01— 10 Гц 10—5-10 Гц и 5-10 —16 Гц. Аналогичное подразделение имеется в экспериментах по диэлектрической проницаемости. Мостовая техника, соответствующая вынужденным методам механических колебаний, используется на частотах 10—16 Гц. Начиная с 10 Гц, применяются резонансные радиочастотные схемы. Выше 10 Гц начинает доминировать индуктивность, и методы ламповых схем приходится заменять методами распределенных цепей, опирающимися на волновое распространение через диэлектрическую среду. Это соответствует распространению колебаний на ультразвуковых частотах в вязкоупругой среде, причем связанных с теми же самыми экспериментальными трудностями потерь энергии на границах раздела сред, отражением волн, эффектом согласования генератора с образцом и т. п. Как правило, амплитуда возбуждения уменьшается с ростом частоты из-за ограничения энергетических возможностей аппаратуры, но даже на самых низких частотах большинство типичных экспериментов проводится в области линейности. Этим объясняется, почему анализ относительно прост. Значительно более важно то, что функция динамического отклика не определяется через интеграл свертки, так что уникальные среди вязкоупругих функций комплексные модуль и податливость могут быть непосредственно подставлены в качестве упругого модуля или упругой податливости в любые формулы зависимости напряжения от деформации, и для вязкоупругих материалов могут быть выбраны известные решения упругих колебательных систем. Это свойство будет использовано в следующих разделах. [c.61]

    Обратившись к экспериментальным методам, рассмотрим сначала механические и диэлектрические свойства. Начало проявления молекулярной подвижности характеризуется появлением пика механических потерь, что можно объяснить началом вращения вокруг связей главной цепи. Если пик механических потерь обнаружен и идентифицирован, то положение его позволяет определять температуру перехода. Конечно, эта температура будет лежать несколько выше температуры перехода, измеряемой дилатометрически, причем разница зависит от частоты поля. Эта разница не вносит никаких осложнений, так как все образцы можно сравнивать при одних и тех же условиях опыта. В работах [44—50] были проведены исследования с целым рядом полимеров. Для того чтобы проиллюстрировать, какая при этом может быть получена информация, рассмотрим результаты динамических механических испытаний по данным Уолла, Сауэра и Вудворда. Они исследовали изотактические и атактические полистирол [49] и полипропилен [50] в интервале температур от 80° К до температуры плавления. Результаты для полистирола представлены на рис. 2. Из данных, приведенных на рисунке, видно, что пик потерь для изотактического изомера, как и следует ожидать, сдвинут в сторону более высоких температур вследствие эффектов, обусловленных кристалличностью. [c.18]

    Трубные доски. Трубные доски обычно изготавливаются путем ковки, причем наиболее предпочтительной является ковка с высадкой, т. е. ковка нз относительно толсгой бол-ыапки, а пе из плоского листа. Использование пластин для изготовления трубных досок обычно не принято из-за возможного расслоения в местах, где доска приваривается к кожуху. Трубные доски могут покрываться аустенитной хромоникелевой сталью путем сварки плавлением или с использованием методов взрыва II]. При нанесении покрытия взрывным методом полезно предусмо1реть меры против хрупкого разрушения, используя, напрнмер, про-шедщий динамические испытания лист при условии, что обработанные механическим способом канавки хорошо закруглены или лист предварительно нагрет перед сваркой. [c.314]

    Веверка [229], напротив, показывает невозможность описания поведения битума с помощью простых механических моделей типа Максвелла или Кельвина — Фойгта и считает необходимым использование для оценки упруго-вязких свойств битума спектров релаксации и ретардации. Для практического применения автсгр-рекомендует приближенные методы оценки модуля упругости битумов, в частности при динамических испытаниях, например с помощью ультразвука. Эти методы шозволяют установить зависимости от температуры и реологического типа битума. Исследования реологических свойств битумов в большинстве сводятся к описанию закономерностей течения, носящих зачастую эмпирический характер. При этом битумы характеризуют значениями эффективной вязкости, полученными в условиях произвольно выбранных постоянных напряжений сдвига или градиентов скорости [161, 190]. [c.72]

    Исследование скорости развития трещины в зависимости от уровня нагружения, свойств материала, среды и внешних факторов (поляризации, давления и температуры) [8,50]. При таком подходе данные о закономерностях роста трещин иод воздействием агрессивной среды и механических напряжений представляют в виде зависимостей скорости роста трещин при статическом (ко розионное растрескивание) или- динамическом (коррозионная усталость) нагружении от максимального (амплитудного) коэффициента интенсивности К цикла. При этом данные для построения указанных зависимостей (диаграмм разрушения) получают при испытании стаццаргньм образцов с трещинами, образовавшимися на образцах в процессе периодического (усталостного) нагружения их на воздухе. Подрастание трещины во времени измеряют по изменению электросопротивления образца, оптическим методам по податливости материала и т. п. Испытания проводят при заданной температуре среды, накладывая, по необходимости, на Образец анодную или катодную поляризацию. По полученнь м данным рассчиты- [c.132]

    Требования к методике дидамических испытаний гранул. Среди методов оценки механических характеристик высокодисперсных тонкопористых материалов особое место занимает измерение прочности материала в динамических условиях — оценка сопротивляемости гранул удару, раздроблению. В реальных условиях часто приходится иметь дело с подобными воздействиями между тем соответствующая характеристика материала (по аналогии с испытаниями конструкционных материалов ее можно назвать ударной вязкостью) не может быть получена, вообще говоря, ни при помощи обычных приборов для статических испытаний, ни в условиях истирания. В первом случае даже самые большие скорости, которые могут быть, как правило, обеспечены на таких приборах (порядка нескольких миллиметров в секунду), еще далеки от режима ударных воздействий. Во втором случае при правильной постановке опыта оценивается именно сопротивление истиранию — последовательному отделению мельчайших частиц С поверхности г ранул в отсутствие дробления гранул если же имеет место и дробление, например в шаровой мельнице, то в таком усложненном режиме не удается выделить объективных количественных характеристик ни истираемости, ни прочности при ударе. [c.42]

    Испытания посредством динамического механического анализа (ДМА) позволяют определить модули потерь и упругости, а также тангенс угла потерь как функции температуры, частоты и/или времени. Соответствующие графики представляют вязкоупругие характеристики полимера. Поскольку характер молекулярного движения в образце изменяется с температурой (или частотой), происходит переход в другое фазовое состояние. Наиболее важные температуры переходов — это температура стеклования, Т , и температура плавления, Т . Кроме того, может существовать несколько субтемператур стеклования, которые также имеют большое значение при определении трещиностойкости материала. В тех температурных диапазонах, в которых наблюдаются изменения в характере молекулярного движения, некоторые механические параметры, например, модуль упругости, быстро уменьшаются с увеличением температуры (при постоянной или почти постоянной частоте) или увеличиваются с ростом частоты (при постоянной температуре). Поэтому испытания методом ДМА (в рамках теста ASTM D4065 [30]) позволяют определить температуры переходов, модуль упругости и модуль потерь в широком интервале температур (от -160° до температуры де- [c.318]

    Испытания методом ДМА включают в себя лабораторные измерения для определения динамических механических свойств полимерных пленок, подвергнутых различным циклическим деформациям с помощью специального оборудования (часто их называют динамическими механическими анализаторами, механическими спектрометрами или даже вязкоэластометрами). [c.319]

    Определение механических свойств. Элементарные волокна прикрепляли к зажимам при помощи глифталевой эмали. Титр каждого волокна и его исходную длину (25 мм) измеряли виброскопическим методом [7]. Каждое волокно подвергали растяжению до разрыва на динамометре Инстрон [8] при постоянной скорости движения рычага (12 mmImuh, или увеличение длины волокна на 50% в 1 мин.). Испытания проводили при относительной влажности 65% и температуре 21°, а также вводе при температуре 21°. Перед динамическими испытаниями волокна кондиционировали в течение не менее суток, а перед испытанием на приборе Инстрон —не менее 2—4 суток (это необходимо для полного затвердения цементирующего вещества). Для проведения опытов в воде на приборе Инстрон перед испытанием волокна кондиционировали в течение ночи. [c.88]

    Поэтому нельзя оценивать эластичность полимерных деталей, работающих при различных динамических режимах, по их эластическим свойствам, определенным в статических, или почти статических, испытаниях (разрывные машины, эла-стометр Шора и т. п.). Совершенно очевидно, например, что оценку механических свойств резины, предназначенной для работы в шлангах, лентах транспортеров, ремнях, автошинах и, наконец, в авиашинах, нельзя производить одним и тем же методом, а необходимо для каждого из этих изделий про- [c.65]

    При сравнении усталостных свойств резин, различающихся своими физико-механическими показателями и условиями эксплуатации, необходимо принимать во внимание режимы испытаний отдельных образцов и методы сопоставления получаемых данных [2, 5]. При этом следует учитывать, что в зависимости от способа сопоставления результатов, выводы могут быть диаметрально противоположными. Обычно сопоставление усталостных свойств резин, незначительно различающихся вязкоупругими свойствами, проводят при одинаковых напряжениях (условных или истинных) (т= onst или при одинаковых деформациях за цикл е = onst. Резины с существенно разными вязкоупругими свойствами целесообразно сопоставлять при одинаковых заданных энергиях динамического нагружения onst. Такой способ сравнения находит в последнее время все более широкое распространение, так как позволяет единообразно учесть как механические, так и немеханические воздействия [4]. [c.158]


Смотреть страницы где упоминается термин Методы механических испытаний динамические: [c.132]    [c.147]    [c.42]    [c.137]    [c.147]    [c.340]    [c.400]    [c.157]    [c.152]    [c.34]    [c.34]    [c.99]    [c.500]    [c.827]   
Механические испытания каучука и резины (1964) -- [ c.16 ]




ПОИСК





Смотрите так же термины и статьи:

Метод динамический



© 2025 chem21.info Реклама на сайте