Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Макромолекулы и высокоэластичность

    В непористых мембранах из-за отсутствия пор в плотном слое резко сокращается количество вещества, адсорбированного поверхностью, решающую роль играет растворимость газов в матрице мембраны. Процесс идет по механизму абсорбции, который условно включает стадии поверхностной сорбции и последующего растворения газа при этом возможна диссоциация молекулы газа или образование нового химического соединения. Таким образом, проникающее вещество и матрица мембраны образуют растворы, которые могут быть однофазными (в высокоэластичных полимерах) или гетерофазными (в полимерах композиционно-неоднородной структуры). Во втором случае необходимо различать дисперсную фазу и дисперсионную среду. В полимерах роль дисперсной фазы играют структурные образования, характеризующиеся периодичностью расположения макромолекул и большой плотностью упаковки. Обычно принимают, что проникающее вещество растворяется и мигрирует только в дисперсионной среде, обычно аморфной фазе, обладающей значительной долей свободного объема и большей подвижностью элементов полимерной матрицы. Мембраны, изготовленные из композиционных материалов с наполнителями или армирующими элементами, представляют собой многофазные системы. [c.71]


    Высокоэластичное состояние. Свойства, характерные для высокоэластичного состояния, обусловлены тем, что в этом температурном интервале тепловое движение становится достаточным для преодоления отдельными звеньями макромолекул взаимного притяжения и связи их со смежными звеньями соседних макромолекул, но является еще недостаточным для придания макромолекуле в целом способности перемещаться относительно смежных молекул, т. е. для того, чтобы перевести материал в текучее состояние. [c.573]

    В таких условиях большое значение приобретает гибкость цепей полимера, обусловленная возможностью внутреннего вращения отдельных частей макромолекулы относительно других ее частей ( 22). Это вращение вызывается тепловым движением молекул и усиливается с повышением температуры. Оно не бывает вполне свободным даже в газообразном состоянии вещества, а в твердом состоянии полимера прн тесном сближении смежных макромолекул эти стеснения становятся весьма значительными и вращение в этих условиях может вырождаться в крутильные колебания, т. е. в маятниковое вращение около некоторого среднего положения. Именно гибкость цепей полимера и является основной причиной особых свойств, характерных для высокоэластичного состояния. [c.573]

    С повышением температуры в системе (а иногда в результате введения добавок) физические связи превращаются в химические (вулканизация каучука, спекание электродных масс) при этом система переходит в твердое состояние и обладает упругими свойствами. В отличие от пластических деформаций упругие деформации обратимы — после прекращения действия внешней нагрузки они исчезают. Вулканизованные углеродонаполненные каучуки характеризуются высокоэластичной деформацией — разновидностью упругой деформации. При высокоэластичной деформации — значительной деформации при относительно малых внешних нагрузках— перемещается не вся макромолекула связующего, а только та ее часть, в которой отсутствуют пространственные сшивки. [c.79]

    В области высокоэластичности степень полимеризации связана с гибкостью макромолекул следующим соотношением  [c.132]

    Вопрос о гибкости не столь прост, ибо, как мы видели в гл. I, гибкость должна экспоненциально убывать с температурой согласно формуле Флори (I. 11). Это и породило спор о фазовой или релаксационной природе стеклования если считать стеклование именно а-переходом, то причиной его может быть не усиление межмолекулярных взаимодействий, а полное распрямление макромолекул, т. е . исчезновение тех самых сегментов, движение которых обеспечивает высокоэластичность. Правда, при этом возникает неспецифичная для стекол твердообразная нематическая структура, которая, обладая сильной анизотропией, должна обладать и большой хрупкостью. [c.102]


    В классической теории нам не требовались уточнения, обусловленные тем, что макромолекулы подчиняются термодинамике малых систем. Это тоже понятно, ибо такие осложнения могли бы возникнуть при фазовых превращениях (т. е. возникли бы при очень больших удлинениях) или в связи с термокинетическими эффектами, которые были рассмотрены в гл. II и III и в учете которых в данной главе не было необходимости. Эти эффекты в связи с высокоэластичностью будет уместнее затронуть в гл. VI после краткого рассмотрения некоторых свойств полимеров в вязкотекучем состоянии (гл. V). [c.161]

    Прекращение повышения Тс в полимергомологическом ряду и возникновение высокоэластичности обусловлено гибкостью макромолекул. Действительно, подвижность отдельных участков (сегментов) гибкой цепной молекулы не зависит от ее полной длины, если только последняя значительно больше длины этих участков. [c.141]

    Высокоэластическая деформация. Этот вид деформации характерен для полимеров, находящихся в высокоэластичном состоянии,и может являться составляющей общей деформации полимеров в пластичном состоянии. Деформативные свойства, характерные для высокоэластичного состояния, обусловлены тем, что в этом температурном интервале тепловое движение становится достаточным для преодоления отдельных звеньев макромолекул взаимного притяжения и связи их со смежными звеньями соседних макромолекул, но является еще недостаточным для придания макромолекуле в целом способности перемещаться относительно смежных молекул, т. е. для того чтобы перевести материал в текучее состояние. [c.216]

    Высокоэластическая деформация, как было указано, сопровождается изменением положения звеньев и участков цепей, но при этом обязательным условием является отсутствие поступательного перемещения макромолекул в целом друг относительно друга. В противном случае материал обладал бы текучестью. Состояние высокоэластичности поэтому промежуточное между [c.18]

    Линейные и разветвленные макромолекулы из-за способности атомов и групп атомов вращаться вокруг ординарных связей постоянно изменяют свою пространственную форму, или, другими словами, имеют много конформационных структур. Это свойство обеспечивает гибкость макромолекул, которые могут изгибаться, скручиваться, распрямляться. Поэтому для линейных и разветвленных полимеров характерно высокоэластичное состояние, т. е. способность к обратимой деформации под действием относитель- [c.357]

    Для проявления высокоэластичности необходимо соблюдение двух условий достаточно большой гибкости макромолекул и высокой скорости изменения их формы. Любое взаимное перемещение звеньев цепных молекул при растяжении, изгибе, кручении и т. д. протекает во времени, из-за чего высокоэластические деформации оказываются неравновесными и носят релаксационный характер. Релаксационными называются процессы, в которых равновесие устанавливается во времени (см. 3). [c.397]

    Поразительно развитым упругим последействием, называемым высокоэластичностью или просто эластичностью в отличие от упругости, обладают каучуки и резины на их основе. Эластичность вызвана гибкостью длинных цепей макромолекул каучуков-полиме-ров, называемых по этому основному их признаку эластомерами. Тогда как в обычных (низкомолекулярных) твердых телах упругое последействие составляет несколько процентов и не более десятой доли от истинно упругих деформаций, у эластических тел замедленная (эластическая) деформация в десятки и даже сотни раз превышает истинно упругую. [c.12]

    Высокая молекулярная масса и гибкость макромолекул— важные характеристики, с которыми связаны особенности физико-химических свойств полимеров. Особенности полимеров выражаются в следующем 1) могут пребывать в характерном только для них высокоэластичном состоянии, обусловленном гибкостью их длинных молекул 2) способны набухать в жидкостях 3) растворы полимеров обнаруживают ряд аномалий по сравнению с растворами низкомолекулярных веществ 4) могут образовывать волокна, пленки, отличающиеся высокой анизотропией свойств 5) способны к своеобразным химическим превращениям. [c.469]

    Протяженные участки макромолекул, содержащие гибкие сегменты, имеют свернутые конформации (спираль, клубок), а группы, находящиеся в них, обладают малой энергией межмол. взаимодействия, напр. (кДж/моль) 2,8 (СН2), 4,2 (О) и 12,1 (СОО) т. стекл. соед., содержащих такие сегменты, от —40 до — 60°С. Более высокие энергии межмол. взаимодействия уретановых и карбамидных групп коротких жестких сегментов (36 и 59 кДж/моль соотв.) обеспечивают образование т. наз. физических поперечных связей и небольших участков кристаллизации. Сочетание гибких и жестких сегментов в макромолекулах создает каучукоподобную структуру, способную к высокоэластичной деформации при небольшом усилии, а относит, удлинение при разрыве достигает 400-700%. Эластич. св-ва и макс. значения деформации растяжения нити можно регулировать, меняя структуру сегментов в полиуретане. [c.29]

    Уравнения статистической физики отдельной макромолекулы мы применили для теории высокоэластичности полимерных сеток, у которых роль отдельных полимерных цепей, связанных между собой химическими узлами, играют цепи сетки — участки полимерных цепей между соседними узлами сетки. Число звеньев и сегментов в таких цепях сетки еще достаточно велико (редкие сетки, характерные для сшитых эластомеров). Классическая статистическая теория высокоэластичности полимерной сетки, предложенная Куном, Марком и Гутом, имеет дело с невзаимодействующими цепями сетки, подчиняющимися гауссовой статистике. Эта модель идеальной сетки, где силы при деформации передаются только через узлы сетки, приводит к чисто энтропийной природе высокоэластичности. [c.173]


    В результате изменения конформации молекул при перемещении лишь малых участков длинных цепных молекул, а макромолекулы в целом не перемещаются, проявляется высоко-эластическая обратимая деформация, свойственная высокоэластичным материалам (каучукам, резинам, в известной мере поливинилхлориду и полиэтилену). Благодаря тепловому движению после снятия внешней силы молекулярные цепи постепенно переходят к исходным конформациям, определяющим наиболее вероятное равновесное состояние материала. [c.67]

    Поворотно-изомерная теория дает количественное истолкование физических характеристик макромолекул в растворе — размеров и формы клубков, дипольных моментов и оптических свойств. Теория хорощо согласуется с опытом [2, 3, 5]. Она раскрывает физический механизм растяжения полимеров — высокоэластичность каучука. При растяжении цепи происходит изменение набора ее конформаций. Механизм такого изменения — поворотная изомеризация. Поясним сказанное с помощью одномерной модели макромолекулы. Представим каждое звено стрелкой длиной I, которая может смотреть или вправо, или влево. Одному поворотному изомеру (обозначим его t) отвечают две соседние стрелки, смотрящие в одну сторону, другому (обозначим его s)—две соседние стрелки, смотрящие в разные стороны. Общая длина цепи выражается алгебраической суммой длин всех стрелок. На рис. 3.12, а изображена цепь, состоящая из [c.136]

    Физическая сущность высокоэластичных свойств цепных полимеров заключается в распрямлении изогнутых длинных и гибких макромолекул при действии нафузки и в обратном их самопроизвольном сгибании и свертывании при удалении нафузки. Эластичные свойства высокополимеров являются следствием гибкости их цепных макромолекул. Поэтому факторы, определяющие гибкость цепной макромолекулы, обуславливают и эластичность соответствующего высокополимера. [c.427]

    С увеличением, а также с повышением сегментальной подвижности макромолекул высокоэластичность системы возрастает. Вследствие этого наличие высокомолекулярных фракций в полимере при увеличении т и у приводит к заметному проявлению эффектов, обусловленных большими (более 100%) высокоэластическими деформациями, т.е. эффектов Барруса и Вайссенберга. По мере повышения т и у высокоэластичность проявляется у фракций с меньшей молекулярной массой. Связь [c.201]

    Ответ. Повышение температуры образца приводит к интенсификации сегментального движения макромолекул. Поэтому полимерные цепи при нагревании полимера стремятся занять наиболее выгодное в энергетическом отношении положение. В условиях изометрического нагрева эта тенденция проявляется в росте напряжений до тех пор, пока волокно находится в стеклообразном состоянии. При подъеме температуры до Т и выше увеличивается скорость релаксационых процессов, что приводит к возрастанию сегментальной подвижности полимерных цепей. Это в свою очередь приводит к значительному проявлению высокоэластичности, связанной с повышением подвижности макромолекул. При этом происходит спад напряжений, и вся система становится термодинамически более стабильной [c.134]

    Сера является наиболее распространенным вулканизирующим веществом для многих каучуков. Степень чистоты применяемой серы должна быть не менее 99,5 %. Равномерное распределение серы в смеси — необходимое условие для достижения оптимальных физико-механических показателей вулканизатов. Наличие в резинах свободной серы указывает на неправильную рецептуру смеси или на недовулканизацию. Суть процесса вулканизации заключается в образовании трехмерной сетчатой структуры из линейных макромолекул каучука при нагревании его, например, с серой. Атомы серы присоединяются по двойным связям макромолекул и образузот между ними сшивающие дисульфидные мостики, как показано на рис. 3.1. Се тчатый полимер прочнее и проявляет повышенную упругость — высокоэластичность. В зависимости от количества сшивающего агента (серы) можно получать сетки с различной частотой сшивки. Предельно сшитый каучук — эбонит — не обладает эластичностью и представляет собой твердый материал. Температура вулканизации должна быть выше температуры плавления серы (120 °С), но ниже температуры плавления каучука (180-200 °С). [c.24]

    В стеклообразном состоянии (малые нaпpялieния) наблюдается только упругая деформация еупр с высоким модулем упругости ( = 2,2-10 - 5-10 МПа), Такая деформация связана с изменением средних межатомных и межмолекулярных расстояний в полимере, а также с деформацией валентных углов макромолекул. Выше температуры стеклования к этой деформации добавляется высокоэластическая составляющая евэл, которая превосходит упругую составляющую в тысячи раз и характеризуется модулем высокоэластичности вэл = 0,1-ь1 МПа. Выше температуры текучести проявляется [c.32]

    В гл. 1 было рассмотрено гкдаятие о сегменте макромолекулы. Вперш>1 это понятие было введено Куном, Гутом и Марком, когда на первом этапе была предложена статистическая теория макромолекул как линейных систем, состоящих из независимых отрезков— статистических сегментов. Эта модель свободно сочлененных сегментов (рис. 4.4) привела к полному описанию основны.к черт высокоэластичности полимеров в блочном состоянии. [c.88]

    СвН,) , полимер изопрена, высокоэластичный материал растительного происхождения, применяемый для изготовления резины и резиновых изделий. К. н. содержится в млечном соке (латексе) гевеи, кок-сагыза и других растений-каучуконосов. Товарный К. н. получают почти исключительно из млечного сока бразильской гевеи. К. н. набухает, растворяется в бензине, бензоле, хлороформе, сероуглероде и др. В воде, спирте, ацетоне К. н. практически не растворяется и не набухает. При температуре свыше 200 С К. н. разлагается с образованием низкомолекулярных углеводородов, среди которых всегда находится изопрен. Огромное практическое значение имеет взаимодействие К. н, с серой, хлоридом серы 0), органическими пероксидами и другими веществами, вызывающими вулканизацию, т. е. соединение атомами серы макромолекул К. н. с образованием сетчатой структуры. Это придает К. н. высокую эластичность в широком интервале температур. Благодаря высокой эластичности, водо-и газонепроницаемости, прекрасным электроизоляционным свойствам, устойчивости против агрессивных сред К. н. чрезвычайно широко применяется во всех областях техники и в быту. В сыром виде используется не более 1% добываемого К. н. (резиновый клей, подошва для обуви и др.). Большая часть К. н. используется для изготовления резины и автомобильных шин. Основная масса (свыше 2 млн. т) К. н. добывается в Индоне- [c.123]

    Сшитые аморфные полимеры при небольшом числе химических поперечных связей между макромолекулами характеризуются термомеханической кривой, приведенной на рис. V. 5. Узлы сетки препятствуют относительному перемещению центров тяжести полимерных цепей. Поэтому вязкое течение не наблюдается даже при высоких температурах. Температурная область высокоэластичности расширяется, и ее верхней границей становится темпёратура химического разложения полимера (Гразл) (см. рис. V. 5). [c.142]

    Сополимеризация двух простейших мономеров — этилена и пропилена — осуществляется на катализаторах Циглера — Натта, которые применяются и для получения гомополимеров из каждого из этих мономеров. Интересной особенностью этой сополимеризации является ее статистический характер в сополимере этилена и пропилена отсутствует регулярность чередования звеньев мономеров в цепях, и расположение групп СНз в звеньях пропилена атактичное. Этот сополимер характеризуется высокоэластическими свойствами в широком температурном интервале, тогда как гомополимеры пропилена и этилена, полученные на подобных каталитических системах, высококристалличны, имеют строго регулярное чередование звеньев в цепи (изо- или синдиотактический полипрог илен линейный полиэтилен) и являются жесткими пластиками. Нарушение регулярности строения, беспорядочное чередование звеньев этих двух мономеров в полимерной цепи обусловливают гибкость макромолекул и их высокоэластичность. [c.66]

    Определяющей характеристикой сетчатой структуры полимера является молекулярная масса, или размер участка цепи между двумя сшитыми звеньями (узлам1и). От размера этих участков зависит проявление свойств индивидуальных макромолекул в сетчатой структуре полимера. Если эти участки значительно больше размеров сегмента макромолекулы, то сетчатый полимер сохранит, в принципе, основные свойства, присущие исходному полимеру (например, высокоэластичность. химическая реакционноспособность). Такой сетчатый полимер будет ограниченно набухать в характерных для исходного полимера растворителях. Если же размер участка цепи между сшитыми звеньями (узлами) близок к размеру сегмента или меньше его, то свойства исходного полимера существенно изменяются резко падает гибкость цепи, а, следовательно, уменьшаются высокоэластические свойства, снижается или теряется совсем способность к набуханию в растворителях данного полимера. [c.296]

    Резиновые смеси изготовляют на основе высокоэластичных полимеров, называемых эластомерами, или каучуками. Существенная составная часть резиновых смесей — вулканизирующие агенты. Благодаря им макромолекулы соединяются поперечными связями, образуются полимерные соединения пространственной структуры. Вулканизирующим агентом для каучуков, имеющих двойные связи, служат сера или серусодержащие [c.29]

    Введение в состав основной цепи макромолекул полиэфира ароматических групп снижает гибкость макромолекул, а следовательно, повышает температуры стеклования и плавления полиэфира. Так, температура плавления полиэтиленгликольтерефталата, как уже указывалось, составляет 260—265°, а температура плавления полиэтиленгликольадипината всего 50°. Введение в состав макромолекул кислотных или спиртовых звеньев, в которых сочетаются ароматические и алифатические группы,, дает возможность еще больше варьировать свойства полиэфиров от твердых, жестких и высокоплавких материалов до высокоэластичных или низкоплавких воскоподобных. Например, полиэтиленгликолевый эфир п, га -дифе-нилендикарбоновой кислоты [c.709]

    Б реальном каучукоподобном материале высокоэластичност обусловлена не только свойствами отдельных макромолекул, но деформацией надмолекулярных структур. [c.166]

    Для объяснения надмолекулярной организации аморфных полимеров было предложено несколько моделей. В. А. Каргин, А. И. Китангородский. Г. Л. Слонимски[ предложили модель согласно которой аморфные полимеры могут состоять либо из глобул, образованных свернутыми макромолекулами, либо И2 развернутых цепей, собранных в пачки. Однако последующие исследования показали, что пачечная> теория ошибочна. Она в частности, находится в противоречии с основными положе ниями кинетической теории высокоэластичности (см. гл. 4), ко торая хорошо подтверждается экспериментом. Так, с позици этой модели практически невозможно объяснить способносп некоторых полимеров к большим обратимым деформациям. [c.52]

    Термомсханичсска кривая также очень чувствительна ) изменению молекулярной массы полимера и конфигураци макромолекул, С уменьшением молекулярной массы плат( высокоэластичности уменьшается, при определенном ее значе НИИ (М,I,) исчезает (см рис 4.1, б) и поведение материал  [c.230]

    Природа высокоэластичности наиболее подробно и.зучена на примере эластомеров (каучуков), т. е. поли.меров, характе-рн.зуютихся высокой термодинамической и кинетической гибкостью. которые находятся в высокоэластичсско.м состоянии прн комнатной температуре. Расс.мотрим с различных позиций деформацию (растяжение) макромолекулы каучука. [c.242]

    Высокоэластичность является причиной механической деструкции макромолекул прн течении. При высокоэластической деформации происходят локальные разрывы связей, что приводит к уменьшению молекулярной массы, увеличению разпетв-ленности и, следовательно, к росту аномалии вязкости. [c.313]

    Вдоль этих границ происходит скольжение больших блоков макромолекул. Нечто похожее ( энергетическая высокоэластичность ) наблюдалось для полиолефинов — типично кристалло-аморфных полимеров после внезапного погружения их в жидкий азот. Этот эффект независимо наблюдали Андрианова и Пе-терлин [61]. Геометрически он похож на а-переход при резком охлаждении рвутся напряженные цепи, и кристаллиты оказываются соединенными весьма ограниченным числом проходных цепей. Области между кристаллитами сильно разрежены, а отдельные не взаимодействующие проходные цепи играют роль каучукоподобных жгутов, делающих низкотемпературные боль- [c.308]

    Как уже отмечалось выше, высокоэластичность полимерных материалов является особым состоянием вещества, которое определяется тенденпией к увеличению энтропии, тогда как, например у стали, возвращение к равновесию определяется тенденцией к уменьшению внутренней энергии. Энтропийная природа упругости объясняет тот факт, что напряжение растянутой резиновой ленты возрастает с температурой, в то время как у стальной проволоки оно снижается при растяжении макромолекулы переходят из статистически наиболее вероятной формы клубка в статистически наименее вероятное состояние растянутых цепочек. Чем выше температура, тем выше подвижность цепей и тем больше потеря эн тропии при переходе в растянутое состояние, при котором подвижность цепей сильно ограничена (ближний порядок, см. раздел 14.1). Таким образом, с повышением температуры увеличивается стремление вернуться в исходное состояние с более высокой энтропией. [c.40]

    Для производства высокоэластичных волокон [58], например спандекс, ликра, вайрин (США), применяют полимеры, сходные по строению с невулканизованным вулколланом, но так как макромолекулы слишком коротки для получения волокна, их удлиняют путем обработки полимера диаминами  [c.314]


Смотреть страницы где упоминается термин Макромолекулы и высокоэластичность: [c.49]    [c.459]    [c.14]    [c.84]    [c.357]    [c.310]    [c.59]    [c.233]    [c.242]   
Смотреть главы в:

Биофизика -> Макромолекулы и высокоэластичность




ПОИСК







© 2025 chem21.info Реклама на сайте