Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Химические свойства полиформальдегида

    Химические свойства полиформальдегида [c.261]

    Изучение химических свойств полиформальдегида развивалось в двух основных направлениях исследование различного вида деструкции и изучение возможности модификации свойств исходного полимера за счет взаимодействия его концевых групп с различными соединениями. Оба направления были вызваны необходимостью стабилизации полиформальдегида с целью повышения теплостойкости и улучшения некоторых других его свойств. [c.169]


    Приведенные данные свидетельствуют о хорошей химической стойкости полиформальдегида в растворах солей, включая окислители, и в большинстве органических сред. Так же как и для других термопластов, наблюдается значительный разброс данных по деформационным свойствам (модуль упругости) полиформальдегида в агрессивных средах. [c.94]

    Ряд статей, касающихся свойств термически устойчивого полиформальдегида, опубликован группой исследователей фирмы Дюпон [10, 36—39]. Устойчивость этого полимера позволила тщательно исследовать молекулярный вес и кристаллическую структуру, а также другие физико-химические свойства высокомолекулярных полимеров формальдегида. [c.421]

    По физико-химическим свойствам (стабильности, растворимости, жесткости) он должен занимать промежуточное место между каучукоподобным нестойким атактическим полиацетальдегидом кристаллическим полиформальдегидом. [c.142]

    Полиформальдегид — хороший диэлектрик, поэтому из него делают электро- и радиотехнические детали. Комплекс высоких физикомеханических, теплофизических, электрических и химических свойств разрешает применять полиформальдегид как конструкционный, антифрикционный и электротехнический материал в производстве деталей для автомобильной, приборостроительной, радио- и электротехнической промышленности, а также изделий народного потребления. [c.173]

    Доступность исходного сырья и высокие механические свойства полиформальдегида, а также возможность формования волокна из расплава определили целесообразность использования полиформальдегида для производства синтетических волокон. Такие работы были проведены преимущественно в Советском Союзе на кафедре химических волокон Киевского института легкой промышленности под руководством А. В. Юдина, а также в Германской Демократической Республике и в других странах. [c.176]

    Заманчивая идея получения высокомолекулярного (л > 1000) полимера из формальдегида привлекала многих известных химиков Первым полиформальдегид описал еще А М Бутлеров в середине XIX века Второе рождение полимер получил благодаря работам немецкого химика Г Штаудингера, одного из основателей химии полимеров, выполнившего основные фундаментальные исследования по синтезу и свойствам высокомолекулярного полиформальдегида, в том числе и по химическим методам повышения его стабильности Однако преодолеть огромные трудности с инженерным воплощением синтеза и наладить промышленный выпуск и переработку высокомолекулярного полиформальдегида удалось впервые только в 1959 году (фирма Дюпон ) [c.576]


    Полиформальдегид — белый непрозрачный, легко окрашиваемый материал. Полимер не изменяет своих свойств при длительном нагреве до 80 °С и при кратковременном нагреве до 120 °С. Сильные кислоты и щелочи его разрушают. Полиформальдегид сочетает в себе ряд ценных свойств — высокую механическую прочность, стабильность, теплостойкость и относительно высокую химическую стойкость. Это определило его применение для изготовления втулок, шестерен, труб и других деталей, используемых в химическом машиностроении. Пленка из этого полимера получается очень прочной и упругой. Посуда (тарелки, чашки и др.) не растрескивается и не ломается при ударах. [c.353]

    Изменение механических свойств стандартных образцов полиформальдегида после контакта с различными химическими средами [c.338]

    Описан способ получения прозрачной пленки из непрозрачного полиформальдегида вальцеванием под давлением при температуре вальцов 120° С Для улучшения адгезионных свойств полиформальдегидной смолы поверхность изделий из нее подвергают химической обработке  [c.171]

    Полиформальдегид (—СН2—О—) нерастворим при низких температурах во всех обычных растворителях, стоек к воздействию многих химических сред, плесени, насекомых, имеет высокие диэлектрические и механические свойства. Полимер жесткий, твердый и сохраняет все свойства при нагревании до 120° С. Его используют для получения шестерен, вкладышей подшипников скольжения, труб, листов и т. п. [c.241]

    Свойства нового полимера оказались необычайными он не разлагался ни в концентрированных кислотах, ни в щелочах (вспомните чувствительный к ним полиформальдегид). Особенный успех полиэтилену принесла не химическая стойкость, а выдающиеся электроизоляционные свойства. Во время войны из него изготовляли оболочки электрических кабелей для самолетов, подводных лодок, радиолокационных установок. [c.35]

    Перечень пластмасс, пригодных для изготовления подшипников скольжения, содержит несколько десятков наименований. Химическая промышленность пополняет этот перечень новыми материалами. По свойствам при обработке они делятся на термореактивные и термопластичные. К термореактивным относится, например, текстолит, текстолитовая крошка, из которой прессуются вкладыши. Термопластичные допускают повторную термическую переработку без потери физико-механических свойств. Сюда относятся полиамиды — марки 54, 68, АК-7, 548, капрон поликарбонат (дифлон) полиформальдегид пентапласт пластики на основе политетрафторэтилена (тефлон, фторопласты). [c.187]

    В 30-х годах текущего столетия была отмечена его способность к образованию волокон, поэтому полученный продукт характеризовали как высокомолекулярное вещество [5]. Однако методы изготовления полиоксиметилена в то время не обеспечивали образования продукта с должными механическими свойствами и достаточной теплостойкостью. И только в середине 50-х годов текущего столетия, т. е. почти через 100 лет после открытия полиоксиметилена Бутлеровым, были найдены методы синтеза и стабилизации этого полимера с комплексом свойств, обеспечившим широкое его применение. Так, он может быть получен по непрерывному методу путем введения газообразного полиформальдегида в инертную углеводородную реакционную среду при комнатной температуре и обычном давлении. Стабилизацией макромолекул предотвращают их деструкцию и устраняют чувствительность к воздействию химических реагентов. [c.506]

    В настоящее время в конструкциях действующих моделей отечественного автомобиля применяются разнообразные полимеры полиолефины, ПВХ, полистирол, фторопласты, полиметилакрилат, полиамиды, полиформальдегид, поликарбонат, стеклопластики, фенольные пластики, полиуретаны, этролы и др. В табл. 3.1—3.4 приведены их физико-механические, теплофизические, химические и электрические свойства. [c.127]

    Удачное сочетание высокой механической прочности и малой плотности с хорошими антифрикционными и диэлектрическими свойствами, химической стойкостью к маслам и бензину делают полиамиды одними из важнейших конструкционных материалов. Детали из ПА выдерживают нагрузки, близкие к нагрузкам, допустимым для цветных металлов и сплавов. Исследование антифрикционных свойств ПА в зависимости от нагрузки, скорости скольжения и рода смазки (или при отсутствии ее) показало, что ПА характеризуются низким коэффициентом трения и уступают в этом отношении только фторопласту и полиформальдегиду. Однако по износостойкости и несущей способности ПА, особенно наполненные, значительно превосходят фторопласт, полиформальдегид и поликарбонат. При этом, чем выше давление, тем меньше коэффициент трения ПА. Данные о зависимости динамического коэффициента трения ПА-6 и ПА-610 по стали от состояния поверхности трения и нагрузки (скорость 1,17 см/с) приведены в табл. 3.5. Значения коэффициентов трения некоторых полиамидов по стали приведены ниже  [c.139]

    Физические и механические свойства поликарбонатов, полиформальдегида и пентопласта представлены в табл. 32, а данные химической стойкости в гл. III. [c.93]

    Роль концевых групп в химических превращениях полимеров впервые отметил Штаудингер [3]. Проведенное им сравнение полиоксиметиленов с различными концевыми группами убедительно иллюстрирует их влияние на свойства полимеров. В дальнейшем большое внимание было уделено полиоксиметиленам с гидроксильными концевыми группами, так как при синтезе высокомолекулярного полиформальдегида образуются главным образом такие продукты. [c.104]


    В табл. 41 приведены данные о стойкости ацетальных смол к действию различных органических жидкостей. Эти данные свидетельствуют об исключительно высокой стойкости ацетальных смол к действию нейтральных органических жидкостей. Эта особенность полиформальдегида привела к тому, что поиск растворителей для физико-химического анализа полимера превратился в самостоятельную проблему (см. гл. И). В качестве растворителей было испытано 406 веществ, относяш,ихся к 27 различным классам соединений [36]. Ни одно из них не растворяло полимер (концентрация 1%) при температурах ниже 60 °С. Температура гелеобразования обычно была на 10—40 °С ниже температуры растворения. При температуре выше 100 °С полиформальдегид хорошо растворим в фенолах, ароматических аминах и других соединениях. Данные о поглош ении растворителей показывают, что имеется прямая связь между количеством растворителя, поглош епного полимером, и изменением свойств. Характеристикой растворенного вещества и растворителя, обладающего аналогичным строением, является удельная энергия когезии (УЭК) — количество тепла, необходимое для испарения единицы объема вещества  [c.259]

    Растворимость полимеров, как и другие их физические свойства, определяется молекулярным весом, геометрической формой и химическим строением их макромолекул. Кристаллические полимеры обычно растворяются только при температуре, близкой к их температуре плавления. Например, полиэтилен, полиформальдегид растворяются во многих растворителях только при нагревании. Если между полимером и растворителем происходит специфическое взаимодействие (например, возникают водородные связи), то раствор может быть получен и при более низкой температуре. Так, полиамид на основе адипиновой кислоты и гексаметилендиамина растворяется в холодной муравьиной кислоте [1]. [c.64]

    За последние годы ассортимент пластических масс, выпускаемых в Советском Союзе, необычайно расширился. Внедрены в промышленную практику технологические процессы получения новых высокомолекулярных соединений полиэтилена низкого и среднего давления, противоударного полистирола, изотактического полистирола, поликарбонатов, полиформальдегида и др. Путем модификации свойств уже широко известных синтетических смол (фенолоформальдегидных, полиамидных, кремний-органических) получены новые типы смол и пластмасс различного целевого назначения пластмассы повышенной теплостойкости или повышенной химической и механической прочности. Разработаны и внедрены в промышленную практику десятки новых марок пресс-композиций общего и специального назначения. Разработаны и освоены новые технологические процессы переработки пластмасс в изделия. [c.77]

    Полиформальдегид представляет собой твердый пластик с высокой температурой плавления. По физическим свойствам он напоминает полиэтилен, хотя и отличается от последнего своей химической природой. Полиформальдегид имеет более высокую температуру плавления, и это свойство, вероятно, объясняется более плотной упаковкой в кристаллическом состоянии. В табл. 18 сопоставляются физические свойства полиэтилена, полиформальдегида и политетрафторэтилена [46]. По предположениям Линтона и Гудмана [46], высокая плотность полиоксиметилена связана главным образом с более плотной упаковкой вдоль оси цепи благодаря присутствию связей С—О, более коротких, чем связи С—С. Показано [46], что при наличии в соединениях аце-тальных связей вместо метиленовых число повторяющихся звеньев, приходящихся на единицу длины цепи в кристаллической решетке, увеличивается на 32% количество цепей, проходящих через единицу площади, лежащей в плоскости, перпендикулярной оси цепей, увеличивается на 7% молекулярный вес мономерного звена возрастает на 7%. Более плотная упаковка полиоксиметилена по сравнению с полиэтиленом, по-видимому, обусловливается более высоким значением энергии когезии атома кислорода и большей гибкостью цепей. Из-за отсутствия взаимного отталкивания атомов водорода ацетальная связь полиоксиметилена более подвижна, чем парафиновая связь полиэтилена. По оценке Олсопа и сотрудников [47], плотность энергии когезии для полиоксиметилена составляет около 124/шл/сж . Известно, что соответствующая величина длй полиэтилена приблизительно равна 64 кал1см [48]. Возможно, что более высокая температура плавления полиоксиметилена объясняется разницей в значениях плотности энергии когезии . [c.43]

    Получение термически стабильных сополимеров представляет интерес потому, что в этом случае отпадает необходимость в блокировании концевых групп полиформальдегида путем специальной обработки. Преимущества сополимеризации как метода синтеза стабильного полиформальдегида не исчерпываются вопросами термической стабильности, хотя, безусловно, это является одним из важных моментов. Сополимеризация позволяет также в широких пределах варьировать физико-химические свойства продуктов. Так, для специальных целей можно получать сополимеры формальдегида с повьпиенной растворимостью, хорошей адгезией, эластичностью, огнестойкостью и т. п. [c.137]

    В настоящее время в промышленном масштабе выпускается два материала, имеющих полиоксиметиленовую структуру гомополимер с блокированными концевыми группами и сополимер, содержащий небольшое количество углерод-углеродных связей (не более 5%). В зарубежной технической литературе разновидности полиформальдегида получили общее название ацетальные смолы илп просто ацетали . Типичным примером гомополимера является дельрин — материал, производимый американской фирмой Дюпон . Это — гомополимер, содержащий ацетильные концевые группы. Выпускаемый в промышленности сополимер ( хостаформ С ) представляет собой сополимер триоксана и окиси этилена (производится западногерманской фирмой Хёхст ). Несмотря на некоторые различия в свойствах, обусловленные меньшей степенью кристалличности сополимера, оба материала относятся к одной группе термопластичных полимеров. Как известно, меняя условия синтеза и вводя различные ингредиенты, можно полимеру одной и той же химической структуры придавать различные свойства. Полиформальдегид в этом отношении не является исключением. Гомо полимер обладает высокой степенью кристалличности, жесткостью, твердостью, некоторой хрупкостью. Снижая степень кристалличности путем введепия сомономера или пластифицирующих добавок, можно добиться увеличения эластичности и повышения ударной прочности материала. В лаборатории на основе полиформальдегида синтезированы даже каучукоподобные материалы. Однако основное направление применения полиформальдегида за прошедшие семь лет его промышленного выпуска — конструирование из него различных деталей в машиностроении, приборостроении и других отраслях промышленности. [c.247]

    Полиформальдегид благодаря его полиацетальной структуре можно рассматривать как гомолог низкомолекулярных линейных ацеталей (формалей), отличающийся высоким молекулярным весом. Однако известно, сколь сильно на химические свойства полиоксиметиленов влияет природа концевых групп. Другим фактором, имеющим большое значение, следует считать действие различных примесей. По способу попадания в полимер их можно разделить па две группы. Первая группа — примеси, попадающие в полимер в процессе синтеза. Это — катализатор, химически связанный с полимерными цепями или сорбированный прп кристаллизации полимера, загрязнения из аппаратуры, примеси к ингредиентам вводимым на стадиях стабилизации, окрашивания и т. д. Вторая группа — примеси, образующиеся в процессе эксплуатации материала в результате окисления, старения, действия УФ-излучения, химических агентов и т. д. [c.257]

    Полиолефины — полиэтилен (ГОСТы 16337—Т1 и 16338—77), полипропилен, полистирол (ГОСТ 20282—74) — используют преимущественно в качестве футеровочиых материалов в средах средней и повышенной коррозионной активности. Из полиформальдегида, отличающегося высокой износостойкостью и повышенным пределом выносливости, изготовляют арматуру, зубчатые колеса и различные, детали сложной конфигурации. Фенопласты — пластические массы широкого ассортимента на основе фенолформальдегидных смол — применяют для получения различных технических изделий методами прессования и литья под давлением, слоистых полимеров, пленок, связующих, лаков и т, д., в чa тнo ти текстолита (композиционный конструкционный материал, оЗладающий высокими прочностью и устойчивостью во многих агрессивных средах), сохраняющего свои свойства в интервале температур —195... +125 X. Фторопласты (ГОСТ 10007—80) обладают химической стойкостью к минеральным и органическим кислотам, щелочам и органическим растворителям, а также имеют низкий коэффициент трения из фторопластов изготовляют ленты, пленки, прессованные изделия профильного типа, трубы, втулки и т. п. [c.103]

    Многообразие естественных и синтетических модификаций. Как и все летучие органические вещества, чистый формальдегид может находиться в одном из трех состояний — твердом, жидком или газообразном. Однако в этих состояниях фактически формальдегид может присутствовать в виде целого ряда модификаций, принципиально различающихся и по химическим, и тем более по физическим свойствам. Так, твердому состоянию могут отвечать и разнообразные модификации высокополимерного продукта — полиформальдегида, и циклические олигомеры (триоксан, тетраок-сан) и мономерный формальдегид. Все эти модификации могут находиться и в жидком состоянии, правда, при различной температуре. В парах формальдегид может присутствовать в основном в виде циклических олигомеров и мономера. И хотя вс без нс- [c.10]

    Как было показано выше, при спонтанной полимеризации газообразного или жидкого полимерного формальдегида образуется твердый, но механически непрочный полиоксиметилен. Этот продукт, мол. масса и структура которого зависят от температуры, получил название Еи-полиоксиметилена (см. табл. 3). Поскольку Еи-полиоксиметилен получается самопроизвольно, без применения каких-либо реактивов или катализаторов, он вполне может рассматриваться, как модификация чистого формальдегида. Еи-полиоксиметилен непрочен и в химическом отношении, легко подвергается сольволизу. Полимеру можно придать химическую стабильность и инертность, если концы полимерных молекул заблокировать устойчивыми функциональными группами, например ацетильными. Для регулирования мол. массы и механических свойств полимера полимеризацию проводят в присутствии катализаторов, с применением растворителей и, в некоторых случаях, еополимерных добавок [21]. Таким образом получают высококачественный конструкционный термопласт — полиформальдегид (см. гл. 7). Полиформальдегид, являясь синтетическим продуктом, содержащим небольшие количества ацетильных групп, уже несколько отстоит от естественных модификаций чистого формальдегида. [c.22]

    В виде бесцветного или беловатого осадка параформ выделяется из водных растворов формальдегида при охлаждении. На практике для получения параформа с наибольшим выходом водный раствор обычно предварительно упаривают под вакуумом в одну или несколько ступеней (см. гл. 7). Товарный продукт содержит до 10% воды, однако в химически связанном состоянии находится не более 6% воды. Параформ при нагревании легко возгоняется, превращаясь в мономерный формальдегид и воду, причем последняя концентрируется в первых порциях испаренного продукта. На этом основан один из препаративных способов получения мономерного формальдегида высокой концентрации. Разложение происходит и при обычной температуре, о чем свидетельствует характерный запах мономерного формальдегида (стабильные полиоксиметилены, например полиформальдегид, запаха не имеют). Параформ применяют на практике в случаях, когда присутствие воды по каким-либо причинам нежелательно. Таковы, например, синтезы тиоколов (гл. 7) или триоксепана (гл. 3). Характерное свойство параформа — его самопроизвольное старение (увеличение мол. массы) при хранении. [c.23]

    Молекулярная масса промышленных образцов полиформальдегида в среднем составляет 30 000—50 000 (до 100 000). Различаются две основных модификации полиформальдегида гомополимер, состоящий в основном из формальдегида, и сополимер, содержащий небольшое число связей —С—С— (обычно не более 3—5%), за счет сополимеризации с такими мономерами, как оксид этилена, диоксолан, производные альдегида, изоциановая кислота и т. д. Оба типа полимера представляют собой термопластический материал, обладающий высокой степенью кристаллизации. Полиформ-альдегидные пластмассы характеризуются высокой механической-прочностью, стойкостью к ползучести и истиранию, химической инертностью и низким водопоглощением, практическим отсутствием усадки и т. д. Эти свойства делают полиформальдегид пластмассой конструкционного типа, выдерживающей динамические нагрузки и успешно заменяющей многие металлы и сплавы. Различные модификации полиформальдегида выпускаются за рубежом под торговыми названиями дельрин, хостаформ С, целкон, полифайд, дуракон и др. [21]. [c.191]

    Полиформальдегид. Из полимеров ацетильного типа практическое применение в США находят пока лишь гомополимер и сополимеры формальдегида. Полиацетали сочетают хорошие физико-механические свойства с доступностью и низкой стоимостью исходного сырья 129]. Они обладают твердостью и механической прочностью, высокой стойкостью к истиранию, хорошими диэлектрическими свойствами, легкостью переработки, стойкостью к холодному течению, хорошей размерной стабильностью и низкой усадкой, химической стойкостью, а также низким коэффициентом трения и способностью окрашиваться во все цвета. Характерным свойством этих смол является высокий предел усталостной прочности. [c.202]

    На основании представлений, развитых в предыдущем разделе, можно установить связь между свойствами многих важных в промышленном отношении тер мо пластиков и эластомеров и их химическим строением. Теперь должно быть понятно, почему простые линейные полимеры типа полиэтилена, полиформальдегида и политетрафторэтилена представляют собой кристаллические вещества, обладающие довольно высокими температурами плавления. Полученные обычным способом поливинилхлорид, поливинилфторид и полистирол обладают гораздо меньшей степенью кристалличности и имеют более низкие температуры плавления у этих полимеров физические свойства сильно зависят от стереохимической конфигурации. Полистирол, полученный методом свободнорадикальной полимеризации в растворе, является атактическим. Этот термин означает, что если ориентировать углеродные атомы полимерной цепи, придав ей правильную зигзагообразную форму, то фенильные боковые группы окажутся распределенными случайным образом по одну и по другую сторону вдоль цепи (как это показано на рис, 29-7). При полимеризации стирола в присутствии катализатора Циглера (разд. 29-5,А) образуется изотактический полистирол, отличающийся от атактического полимера тем, что в его цепях все фенильные группы распо- [c.498]

    Полиоксиметиленовые цепи имеют весьма плотную упаковку в полимере, что определяет высокую степень кристалличности высокую теплостойкость и большую удельную ударную вязкость. Для органических жидкостей пленки полиформальдегида менее проницаемы, чем полиэтиленовые, а для воды — более. Полиформальдегид не изменяет заметно своих свойств от длительного прогревания при 80° и от кратковременного прогревания при 120° С. Сильные кислоты и сильные щелочи разрушают полимер. Однако сочетание достаточно высоких механических свойств, стабильности, теплостойкости и относительной химической стойкости определило применение полиформальдегида для изготовления втулок, шестерен, труб и других деталей для химического машиностроения. Коэффициент трения полиформальдегида по стали очень низок Цля сухих поверхностей— 0,2). [c.176]

    Вторым рождением полимер обязан немецкому химику Штаудингеру. Он первым предположил, что полимерные молекулы представляют собой нитевидные огромные макромолекулы с концевыми группами, способными участвовать в обьи-ньгх химических реакциях. Синтезируя полиформальдегиды с различной длиной полимерных цепей, он показал, как изменяются свойства материала. Он же вместе с учениками нашел химические методы повышения стабильности материала, обрабатывая различными реагентами, взаимодействуюпщми с концевыми группами. [c.29]

    Полимер, получающийся из триоксана при полимеризации с раскрытием цикла, обладает той же химической структурой, что и полиформальдегид. По своим свойствам полимер триоксана почти аналогичен недавно полученному полиформальдегиду — дельрину. [c.353]

    В последнее время особый интерес проявляется к новым химически стойким термопластичным материалам поликарбонатам, представляющим собой продукты взаимодействия дифенолов (например, дифенилол-пропана) с эфирами угольной кислоты или фосгеном полиформальдегиду — продукту полимеризации формальдегида и пентопласту — простому хлорированному полиэфиру (полипентаэритриту). Эти материалы образуют особую группу, во многих отношениях ломающую существующее представление о термопластах. Обладая комплексом ценных свойств, они эффективно используются для изготовления различных деталей, которые ранее изготовлялись из алюминия, меди, бронзы, латуни, нержавеющей стали и других ценных металлов и сплавов ". [c.92]


Смотреть страницы где упоминается термин Химические свойства полиформальдегида: [c.316]    [c.103]    [c.103]    [c.246]    [c.149]    [c.38]    [c.127]    [c.139]   
Смотреть главы в:

Справочник по пластическим массам Том 1 Изд.2 -> Химические свойства полиформальдегида




ПОИСК





Смотрите так же термины и статьи:

Полиформальдегид



© 2025 chem21.info Реклама на сайте