Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Возникновение квантовой теории

    В этой главе рассматриваются опытные данные, которые привели к возникновению квантовой теории, а в следующей — математическая форма, в которую они теперь облечены. Конечно, строго разграничить материал на фактический и формальный невозможно, но все н е, следуя здравому смыслу, некоторое разделение можно попытаться провести. [c.88]

    Попытки приложения статистических методов к расчету теплоемкости и других термодинамических функций кристаллических веществ относятся к началу XX столетия, т. е. к периоду возникновения квантовой теории. Однако, несмотря на ряд фундаментальных исследований Эйнштейна, Нернста и Линдемана, Дебая, Борна и Кармана и последующее развитие этих работ Блэкманом, Тарасовым, Лифшицем и др., не удалось разработать практические методы расчета термодинамических функций веществ в твердом состоянии, в которых бы не использовались результаты экспериментальных измерений теплоемкости. Существующие теории теплоемкости находят лишь ограниченное применение, главным образом в качестве методов экстраполяции данных по теплоемкости к абсолютному нулю. [c.138]


    Это противоречие было разрешено с возникновением квантовой теории химической связи, когда, исходя из основных положений электронной теории, оказалось возможным (1927) объяснить на примере молекулы водорода образование ковалентной [c.98]

    С возникновением квантовой механики во второй половине 20-х годов наступил новый этап и в теории электронного строения органических соединений. Методы теоретической физики были применены для решения принципиальных вопросов химии для разработки учения о строении атомов и, что имело в глазах химиков особенно важное значение, строения их электронных оболочек для разработки учения о валентности атомов, о природе химической связи для интерпретации и затем расчета электронного строения и некоторых связанных с ним свойств молекул, сначала, конечно, простейших—типа молекулы водорода, а затем все более сложных, включая ароматические соединения. В конечном итоге методы квантовой механики нашли применение к основному объекту хили и — к превращениям химических соединений, к химическим реакциям, особенно к трактовке строения и свойств промежуточных продуктов реакций — ионов, радикалов, переходных (активированных) комплексов, а также сил межмолекулярного взаимодействия, роли катализатора и т. д. Часть квантовой механики, объектом изучения которой были частицы, интересующие химика, и реакции между ними, выделилась в относительно самостоятельную дисциплину, получившую название квантовой химии. [c.159]

    Запомним формулу (16). С ней связаны очень важные вопросы, относящиеся к возникновению квантовой теории. Мы их коснемся потом . Но вот на что я хочу указать теперь же. Может показаться, что мы вывели основную формулу (16) кинетической теории газов из законов Ньютона. Но в действительности она из них не следует. Мы молча сделали одно предположение,— предположение о том, что существует определенное, одинаковое давление на все стенки сосуда. Если бы, скажем, скорости всех молекул были параллельны оси х, то не было бы давления на боковые стенки. Понадобилось, таким образом, кроме законов Ньютона, добавочное предположение. Такого рода постулат всегда необходим в кинетической теории газов. [c.97]

    Квантовая теория света оперировала понятием светового кванта, который обладает свойства ми частицы. Эта частица получила название фотона. Квантовой теории были чужды понятия волны и колебаний. Она успешно- объясняла возникновение и поглощение света, но не могла объяснить явлений, связанных с прохождением света через вещества. Такое положение сложилось в физике к двадцатым годам текущего века. [c.44]


    Электронная теория объясняет зависимость теплового эффекта хемосорбции от величины адсорбции и ряд других закономерностей катализа. Однако без использования основных положений квантовой теории химической связи нельзя объяснить специфику взаимодействия катализатора с конкретной молекулой. Электронная теория катализа описывает состояние катализатора. Квантовая теория химической связи описывает взаимодействие молекул, осуществляющееся через взаимодействие атомов. Рассматривая взаимодействие молекулы субстрата с поверхностью катализатора, завершающееся возникновением химической связи, необходимо определить реакционные центры, т. е. атомы в молекуле и на поверхности катализатора, которые могут взаимодействовать. При определении реакционных центров и качественной оценке энергии взаимодействия между ними можно руководствоваться основными положениями метода возмущенных орбиталей (см. 214), положением о необходимости соответствия взаимодействующих орбиталей. [c.659]

    С момента своего возникновения квантовая химия была связана главным образом с изучением электронного строения молекул, т.е. электронного распределения в стационарных состояниях, а также состава входящих в волновую функцию молекулярных орбиталей, взаимного расположения уровней энергии занятых и виртуальных орбиталей и т.п. Были предприняты многочисленные попытки интерпретировать такие понятия классической теории, как валентность, химическая связь, кратность химической связи и др. Одновременно были введены и многие новые понятия, такие как гибридизация, а- и л-связи, трехцентровые связи и т.д., часть из которых прочно вошла в язык современной химической науки, тогда как другие оказались менее удачными и сейчас уже хорошо забыты. К тому же и содержание большинства понятий, возникающих внутри квантовой химии, заметно трансформировалось с течением времени. В квантовой химии было введено большое число различных корреляций между экспериментально наблюдаемыми для вещества и вычисляемыми для отдельных молекул величинами. Сама по себе химия является в существенной степени корреляционной наукой, базирующейся прежде всего на установлении соответствия между свойствами соединений и их строением и последующем предсказании требуемой информации для других соединений. По этой причине богатейший набор информации о строении, в том числе электронном строении соединений, предоставляемый квантовой химией, оказался как нельзя кстати для дальнейшего активного развития химической науки. Так, на основе квантовохимических представлений была развита качественная теория реакционной способности молекул, были сформулированы правила сохранения орбитальной симметрии, сыгравшие важную роль при исследовании и интерпретации реакций химических соединений. [c.4]

    Теория ковалентной связи, возникнув на химической почве,. получила затем исчерпывающее обоснование в чисто физической по своему происхождению квантовой теории. Она является более общей, чем теория электровалентной связи, так как и отрицательно-заряженные ионы образуются в результате возникновения электронных пар. Так, превращение атома хлора в ион сводится к тому, что к трем электронным парам, сформированным уже в атоме хлора, присоединяется четвертая, образованная непарным электроном атома хлора и электроном, захваченным от атома электроположительного элемента. [c.66]

    После возникновения волновой механики стало известно, что валентные электроны, как, впрочем, и все электроны молекулы или атома, находятся в непрерывном движении и что это движение не подчиняется законам классической (ньютоновской) механики. Корпускулярная и одновременно волновая природа частиц, обладающих очень малой массой, делает невозможным определение в каждый данный момент положения электрона по отношению к ядрам. Однако методы расчета, используемые волновой механикой, позволяют опреде- лить вероятность нахождения электрона в данной точке пространства. Други,ми словами, квантовая теория позволяет утверждать не то, что электрон находится в данной точке пространства, но что вероятность его нахождения в этой точке больше или меньше, чем в другой. [c.12]

    Однако более глубокое понимание процессов превращения энергии возможно только при проникновении в микромир, то есть при исследовании свойств атомных и молекулярных структур, которые лежат в основе процессов возникновения и разрыва химических связей. Этими вопросами занимается наука о строении вещества, в частности атомная физика и квантовая теория. Структура атомов и молекул чрезвычайно сложна, поэтому упрощенное представление ее (хотя оно и возможно) весьма грубо отражает действительность. Полученные на основании такого представления результаты часто недостаточно хорошо согласуются [c.47]


    Теорию валентных связей (ВС) широко применяли химики до появления теории поля лигандов, а теория была сформулирована в основном Полингом вскоре после возникновения квантовой механики, и она непосредственно развивала представления Льюиса — Лангмюра — Сиджвика о координационной связи, основанные на квантовой механике. В настоящее время теория валентных связей еще сохраняет некоторое значение для качественного объяснения стереохимии, магнитных и некоторых других свойств комплексных соединений. Учитывая, что с 1935 г. до конца 50-х годов в литературе по координационной химии эту теорию применяли очень широко, здесь необходимо коротко изложить ее, а также установить связь между методом ВС и другими более совершенными методами. [c.107]

    Каждая электронная теория включает некоторую модель электронного строения ооединений, объяснение с помощью этой модели ряда их свойств, а с возникновением квантовой химии и расчет тех Или иных молекулярных параметров по данной модели с использованием соответствующего математического алгоритма. [c.73]

    Создание квантовой механики оказало глубокое влияние на развитие расчетных методов в органической химии, а особенно на отношение к этим методам. Во-первых, сначала с возникновением квантовой механики были связаны преувеличенные надежды на то, что она позволит заменить полуэмпирический или эмпирический подход на строго теоретический . Во-вторых, квантовая механика, как основное средство теоретического познания микромира и как его основная теория, волей-неволей приводила к попыткам теоретически обосновать установлением той или иной связи с ней уже [c.321]

    Таким образом, перед физиками-теоретиками стала важная проблема развития рациональной системы квантовой механики. Совокупность ранних работ обычно называют старой квантовой теорией она состоит из нескольких квантовых постулатов, которыми дополняется классическая кинематика и динамика. Под квантовой механикой мы имеем в виду значительно более совершенную теорию атомной физики, которой мы обязаны де Бройлю, Гейзенбергу, Шредингеру, Дираку и др. Мы дадим только беглый очерк возникновения новой теории. Она получила быстрое развитие, начиная с 1925 г., сначала по двум совершенно различным линиям, между которыми была быстро установлена тесная связь. [c.16]

    Друде [46] показал, что когда заряд движется вдоль спирали, его поступательное перемещение вызывает появление электрического дипольного момента, тогда как вращательное движение приводит к возникновению магнитного дипольного момента. В зависимости от правого или левого направления спиральной траектории, электрический и дипольный моменты могут быть параллельными или антипараллельными. Квантовая теория оптической активности позволяет расширить эти представления и объяснить происхождение вращательной способности электронных переходов, имеющих параллельные или антипараллельные электронные и магнитные моменты перехода. [c.167]

    Взаимодействие частиц, свойственных каждому полю, описывается в квантовой теории полей при помощи процессов возникновения и уничтожения этих частиц. Так, после преобразования функции Ф как функции нормальных координат в функцию операторов возникновения и уничтожения оказывается, что Фз характеризует такие элементарные процессы взаимодействия, в которых участвуют три фонона деление одного фонона на два или уничтожение пары фононов при одновременном возникновении нового фонона (рис. П. 28). При этом соблюдается закон сохранения энергии [c.118]

    В. В. Марковников, Н. А. Меншуткин, А. Кекуле и др. Значительные успехи физики и химии в конце XIX и на протяжении XX вв. оказали огромное влияние на развитие X. с. т. во всех ее направлениях. Особенно большое значение для развития X. с. т. имело электронное истолкование природы химической связи, а теория электронных смещений является прямым дальнейшим развитием класспческой теории химического строения органических веществ. Одновременно X. с. т. развивается в связи с возникновением квантовой химии. Но несмотря на новые пути развития X. с. т. в старой, классической форме не потеряла своего значения для установления химической природы и порядка связи во всяком новом органическом соединении. [c.275]

    Процесс возникновения электронной пары при связеобразо-вании впоследствии получил обоснование с точки зрения квантовой теории. Хотя модель Льюиса (с дополнениями Лангмюра) дала возможность понять некоторые экспериментальные факты, в настоящее время она совершенно оставлена. [c.244]

    После торжества теории атома Бора стало ясно, что молекулу связывают в единое целое электрические силы притяжения электронов и ядер. Однако до возникновения квантовой механики нельзя было построить удовлетворительной теории даже для такой простой молекулы, Как Н,. Нильс Бор предложил для нее простую модель два электрона вращаются по круговой орбите, осью которой служит линия, соединяю-щая ядра.. Притяжение электронов удерживает ядра, а центробежная сила не дает электронам сойти с круговой траектории. Однако эта модель не смогла объяснить спектр мо.лекулы и ряд ее свойств, например диамагнетизм. Неясно было также, почему в то время как кулоновская электрическая сила — дальнодействующая, химическое взаимодействие проявляет себя главным образом ни очень коротких pa тoянияxi как возникает свойство насыщаемостю) химических сил. [c.79]

    Квантовая теория ковалентной связи. Ковалентная связь возникает за счет образования общей пары из холостых электронов с противоположными спинамр[, принадлежащих в простейшем случае двум атомам. При образовании ковалентной связи выделяется энергия, называемая энергией связи. Возможность возникновения молекулы водорода из двух атомов с параллельными и антипараллельными спинами электронов представлена на рис. 57. В случае параллельных спинов электронов кривая энергии лежит в области отталкивания атомов последние не соединяются. Если в, точках О и Р находятся два атома водорода с антипараллельными спинами электронов и расстояние ОР велико, то взаимодействия между атомами нет. По мере приближения атома из точки Р к точке [c.111]

    Вьщающиеся открытия в физике в кон. 19 в. (рентгеновские лучи, радиоактивность, электрон) и развитие теоретич. представлений (квантовая теория) привели к открытию новых (радиоактивных) элементов и явления изотопии, возникновению радиохимии и квантовой химии, новым представлениям [c.259]

    Системы, представляющие физико-химический интерес, например, такие, как капля жидкости или отдельный кристалл, содержат огромное число частиц молекул, атомов, ионов и электронов. Естественно, что логически обоснованным щагом при теоретической разработке физической химии была попытка применить принципы динамики к системам, которые содержат большое количество мельчайших частиц при этом исходили из предиоло-жепия, что каждая из этих частиц подчиняется законам классической механики, выведенным для больших тел. Этот шаг сделала классическая статистическая механика, основываясь на представлениях об атомном строении материи, законах движения Ньютона и некоторых аксиомах теории вероятностей. Возникновение квантовой механики (см. гл. III и IV) привело к неожиданному выводу, что законы, описывающие поведение макроскопических и микроскопических тел, различны. И все же существуют широкие пределы экспериментальных условий, при которых макроскопические и микроскопические тела подчиняются одним и тем же законам именно эти случаи и рассматриваются в данной главеТПри этом из класситеского материала, сохранившегося ири квантовом землетрясении , отобрано лишь то, что не утратило своей ценности дпя физической химии. [c.33]

    Поразительно, что еще в XIX в. химики сумели ввести такие понятия о структуре вещества, которые хорошо согласуются с современными представлениями, основанными на квантовой теории химической связи и на непосредственном определении структуры соединений методами дифракции электронов или нейтронов либо при помощи рентгеноструктурного анализа. Еще более поразительно то, что в появившейся в 1916 г. теории Косселя и Льюиса решающая роль в развитии представлений о возникновении химической связи отводилась электронам. (Напомним, что электрон был открыт Томсоном лишь за 19 лет до этого и что всего пятью годами раньше Резерфорд предложил планетарную модель атома.) Основными понятиями этой весьма успешной и продуктивной теории были электровалентность и ковалентность— качественные представления, которые до настоящего времени хорошо служат химии. На указанных представлениях о химической связи основана теория мезомерного и индуктивного эффектов, которая успешно применялась для объяснения данных, полученных в органической и неорганической химии (Робинсон, Ингольд, Арндт, Эйстерт). Несомненно также важное значение работ выдающихся ученых прошлого Кекуле, Купера, Бутлерова, Вернера и (по пространственному строению) Ле Бела и Вант Гоффа. [c.11]

    Рассмотрим два атома инертных газов. Электронные облака в атомах инертных газов сферически симметричны. Следовательно, эти атомы не имеют постоянных электрических моментов. Поскольку речь идет о статическом распределении зарядов, такие атомы не должны влиять друг на друга. Но опыт и квантовая теория показывают, что частицы не могут находиться в состоянии покоя даже нрн абсолютном нуле температуры. В процессе движения электронов в отдельные моменты времени распределение зарядов внутри атома может становиться несимметричным. Иначе говоря, в атоме могут возникать виртуальные диполи. Эти очень быстро меняющиеся самопроизвольные или виртуальные диполи создают вокруг атома электрическое поле, которое индуцирует в соседних атомах дипольные моменты. Направление индуцированных моментов всегда таково, что возникает притяжение. РЬщуциро-ванные диполи находятся во взаимодействии с мгновенными диполями, послужившими причиной их возникновения. [c.64]

    Еще нельзя предвидеть развитие, которое получит старое понятие валентности под влиянием электронной концепции вещества, создание которой составляет заслугу Дж. Дж. ТомсЪна (1904), но открытие в конце прошлого века радиоактивности, а затем открытие супругами Пьером и Марией Кюри радия революционизировало почти все естественные науки. Возникновение под влиянием квантовой теории Планка (1900) атомной физики создало для химии новые проблемы и расширило ноле исследования. В настоящее время нельзя провести четкой границы между предметом химии и физики, и самые тонкие физические методы оказываются полезными при решений химических задач. Напомним в связи с этим об изучении кристаллической структуры с помощью рентгеновских лучей, что привело Брэгга к воссозданию истинной архитектуры вещества в твердом состоянии, о применении самых различных физических методов к изучению структуры макромолекул и о многих, многих других успехах, достигнутых в последние десятилетия, чье перечисление увело бы нас в чащу деталей из истории химии. [c.13]

    Первые теории ковалентной связи [1] основывались на статических моделях атома, которые в этом отношении были прямыми наследницами моделей, послуживших фундаментом для создания представления об ионной связи. Статические модели были приняты Морозовым П907 г.), Штарком (1908 г.) и Томсоном (1914 г.). Планетарная модель атома, выдвинутая в 1911 г. Резерфордом, была теоретически обработана Бором в его известном классическом исследовании (1913 г.) и оказала, очевидно, влияние на Рамзая и Косселя (1916 г.). Тем не менее в работах Льюиса (1916 г.) и Лангмюра (1919 г.) представление о статическом атоме было снова положено в основу широкой теоретической системы. И только позднее, с возникновением квантовой механики, была окончательно доказана несостоятельность этого представления. Интересно поэтому выяснить, почему же при неверной исходно точке зрения Штарка и Льюиса им удалось разработать наиболее полно теорию электронного строения органических соединений и высказать много идей, вошедших почти в неизмененном виде в последующие теоретические построения как хорошее приближен 1е к действительности и с современной точки зрения. [c.56]

    Теория электронных смещений, как об этом очень определенно высказался Инголд (стр. 125) — это химическая теория электронного строения и реакционной способности органических соединений. Естественно сопоставить ее с физическими теориями, о которых также упоминает Инголд. Для этих теорий характерно — делать выводы о строении молекул, исходя из физических представлений о строении атома, о свойствах электрона, о природе валентности и химической связи. В главе И, а особенно в главе И1 мы уже встречались с примера.ми построения теории строения органических соединений поэтому принципу. Однако в то вре.мя физический фундамент подобных теорий не был разработан в достаточной степени. Иное положение создалось после возникновения квантовой механики. Теории, построенные на ее основе, продолжают успешно развиваться и в наши дни, оказывая глубокое влияние на всю теоретическую органическую химию. Этим теориям посвящены следующие главы. В заключительной главе физические теории сопоставлены с химической теорией электронных смеп1еннй, рассмотренной в настоящей главе, чтобы сделать выводы о перспективах развития современной электронной теории строения и реакционной способности органических соединений. [c.155]

    И это показывает сама практика. С момента возникновения бутлеровской теории химического строения (1861) до смерти ее автора (1886) прошло столько же времени, сколько и с момента создания квантовой мехаиики до наших дней. Между тем как много новых веществ и явлений было открыто при помощи бутлеровской теории и продолжает открываться до сих пор и как сравнительно с этим ничтожно мало могла дать за такой же отрезок времени квантовая химия в смысле предсказания нового, чего [c.311]

    П рямым развитием классич. теории химич. строения следует считать теорию электронных смещений (см. Индукционный эффект, Индуктомерный эффект, Мезомерия). Особенно большое значение имела теория электронных смещений для истолкования физич. смысла основных положений и частных правил, относящихся к взаимному влиянию атомов. Другой путь развития классич. X. с. т. наметился после возникновения квантовой химии. Ее методы сводятся к тому, что электронное строение молекул рассчитывается в тех или иных приближениях при помощи уравнений квантовой механики, а полученные данные о распределении электронов коррелируются со свойствами органич. частиц (молекул, радикалов, ионов) нли их структурных элементов. И нри таком методе представления о взаимном влиянии атомов приобретают более глубокий смысл. Напр., согласно одному из правил Марковникова, замещение по связям С—Н в предельных углеводородах идет в метиленовых группах легче, чем в метильных. Расчеты методом молекулярных орбит (К. Сандорфи, 1955) показали, что в пропане на связь С—Н в метиленово группе из общего а-электронного облака приходится 1,907, а на связь С—Н метильной группе 1,921 а-электрона. Отсюда очевидный вывод, что замещение в предельных углеводородах идет легче всего по связи С—Н с меньшим а-электронным зарядом. Квантово-химич. теории электронного строения органических соединений — теории количественные и в этом их преимущество как перед классической теорией химического строения, так и перед теорией электронных смещений. [c.330]


Библиография для Возникновение квантовой теории: [c.138]    [c.425]    [c.35]    [c.279]    [c.25]   
Смотреть страницы где упоминается термин Возникновение квантовой теории: [c.235]    [c.48]    [c.153]    [c.5]    [c.170]   
Смотреть главы в:

Общая химия -> Возникновение квантовой теории

Общая химия  -> Возникновение квантовой теории




ПОИСК





Смотрите так же термины и статьи:

Теория квантовая

возникновение



© 2025 chem21.info Реклама на сайте