Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

эффект этерификация

    Пример У1-8. Зная теплоту сгорания реагентов, рассчитать тепловой эффект реакции этерификации метанола уксусной кислотой  [c.144]

    Пример. Определить тепловой эффект реакции этерификации щавелевой клслоты метиловым спиртом, протекающей по уравнению [c.198]

    Вернемся еще раз к свойствам аминогруппы глицина она проявляет более сильные основные свойства (более высокое значение рКа), чем обычный органический амин. Можно ожидать, что единичный отрицательный заряд карбоксильной группы приведет к повышению электронной плотности на аминогруппе и что электростатическое притяжение (эффект ноля) между аммоний-катионом и карбоксилат-апионом затруднит отрыв протона от аммонийной группы. Это действительно так, и оба эффекта играют важную роль. Тем не менее рКа аминогруппы глицина равен 9,60, тогда как у метиламина 10,64 (табл. 2.1). Это происходит потому, что наиболее важным, или определяющим, эффектом является оттягивание электронов карбоксильной (карбонильной) группой. Так, если нейтрализовать весь заряд карбоксильной группы путем превращения ее в амид, то рКа аминогруппы глициламида равен 8,0, а для глицилглицина 8,13. При этом не возможны ни повышение электронной плотности карбоксилат-ани-оном, ни эффект поля (электростатическое влияние) единственным эффектом остается оттягивание электронов амидной карбонильной группой. Отметим, что этерификация аспарагиновой и глутаминовой кислот аналогичным образом влияет на свойства полученных соединений (табл. 2.1). Аминогруппы диэтиловых эфиров обладают кислыми свойствами. [c.40]


    В дизельном топливе, содержащем нестабильные фракции вторичного происхождения, при действии растворенного кислорода в условиях хранения и эксплуатации накапливаются низкомолекулярные продукты окисления (гидропероксиды, карбоновые кислоты, альдегиды и т. д.), вступающие в реакции уплотнения (этерификации, конденсации, полимеризации) с образованием высокомолекулярных соединений, часть которых медленно коагулирует в нерастворимые соединения. Катализаторами реакций уплотнения являются кислотные продукты, поэтому введение в топливо веществ основного характера (третичных аминов), нейтрализующих кислоты и способных эффективно ингибировать радикально-цепное окисление, оказывает стабилизирующий эффект [11, 43, 46]. Анализ результатов [83-86, 99] свидетельствует, что этим требованиям отвечает основание Манниха ионола (Агидол-3). [c.183]

    Еще Оствальд заметил, что для этой и аналогичных реак-ций между каталитической активностью системы и ее электропроводностью имеется однозначная связь. Аррениус подтвердил это и, кроме того, обнаружил, что во-первых, при добавлении к катализирующей реакцию кислоте ее соли, что согласно классической теории электролитической диссоциации должно умень-шить концентрацию ионов водорода, каталитический эффект не только не уменьшается, но в некоторых случаях даже возрастает (например, при этерификации трихлоруксусной кислоты). З то явление получило название вторичного солевого эффекта. Так как при добавлении к раствору кислоты ее соли увеличивается концентрация анионов и недиссоциированной кислоты, то из наличия солевого эффекта следует, что и недис-социированная кислота, и ее анионы обладают каталитической активностью. [c.287]

    Термодинамика реакций этерификации. Взаимодействие спиртов с карбоновыми кислотами в жидкой фазе протекает практически без какого-либо поглощения или выделения тепла (АЯ = 0). Соответствеино, алкоголиз, ацидолиз и переэтерификация также имею тепловой эффект, близкий к нулю. Следовательно, константы равновесия этих реакций ие зависят от температуры. В отличие от этого, этерификация спиртов хлораигидрндами кислот, а также первая стадия этерификации спиртов ангидридами являются экютермическими процессами. [c.205]

    Снижение СОЕ катионита (табл. 2) при обработке различными реагентами можно объяснить сольватацией активных центров катионита. Повышение констант скорости (табл. 4) при этерификации диэтиленгликоля монокарбоновыми кислотами в присутствии набухшего катионита, видимо, объясняется различными эффектами разрыхления пространственной сетки и улучшением условий доступа реагирующих молекул к активным центрам катализатора. [c.115]


    Снижение СОЕ катионита (табл. 2) при обработке различными реагентами и повышение констант скорости (табл. 4) при этерификации, видимо, можно объяснить сольватацией активных центров катионита и различными эффектами разрыхления пространственной сетки полимера [2]. Термически обработанный катионит при 160° в гликоле (как катализатор этерификации) менее эффективен из-за процессов его десульфирования, константа скорости этерификации энантовой кислоты снижается до 16,65 (табл. 4) [c.116]

    Первые публикации, посвященные исследованию влияния МВИ на ход реакций органического синтеза, в научной литературе появились сравнительно недавно — в 1986 г. [4, 5]. Авторы высказывают различные точки зрения на источники эффектов, получае.мых при проведении реакций в микроволновом поле, отсутствует систематизация знаний в этой области. В связи с этим представляет интерес обобщить имеющиеся сведения по исследованию влияния микроволнового нагрева на реакции разных типов. В настоящей работе сделана попытка дать обзор по применения МВИ для интенсификации реакций этерификации. [c.37]

    На примере приведенных реакций этерификации показано, что МВИ может быть применено в качестве источника тепла и позволяет интенсифицировать реакции. Настоящий уровень знаний в области микроволновой химии не позволяет окончательно судить о действительном влиянии на ход реакций волн микроволнового диапазона. Однако, даже не принимая во внимание интенсифицирующие эффекты МВИ, можно предположить, что неопровержимые преимущества мик- [c.40]

    Прн реакции спирта с кислотой выделяется молекула воды Вследствие обратимости процесса этерификации выход сложного эфира повышается, если один из компонентов берется в избытке. Такого же эффекта можно достигнуть удалением воды или образующегося эфира из сферы реакции. [c.244]

    При непрерывном процессе в реакционном пространстве всегда поддерживается упругость паров, равная равновесной при данной температуре, и процесс идет с постоянной скоростью, равной первоначальной. Это отличие в протекании непрерывного и периодического процесса показано на рис. 4.21. Кривая 1 характеризует скорость образования ксаитогената при ксантогенировании щелочной целлюлозы, содержащей 32% целлюлозы при 35°С и количестве S2, равном 40% от целлюлозы. Кинетика отклоняется от реакции нулевого порядка уже через 15 мин, процесс замедляется, и реакция завершается через 60—75 мин. При непрерывном процессе (кривая 2), когда упругость паров в реакционной массе постоянна и равна равновесной, при 35°С процесс идет с постоянной скоростью и необходимая степень этерификации 7 = 55—60 достигается всего через 25—30 мин. Учитывая, что за счет эффекта дополнительного ксантогенирования в растворителе у может повышаться на 15 единиц (см. рис. 4.5), процесс может быть прерван через 15—20 мин и завершен в растворителе за счет использования химически сорбированного S2. При повышении температуры до 40—45 °С продолжительность процесса сокращается до 7—10 мин, что позволяет создать аппарат производительностью выше 50 т/сут. [c.103]

    Реакция этерификации в отсутствие катализаторов протекает чрезвычайно медленно вследствие уже упоминавшейся низкой способности карбонильной группы в карбоновых кислотах подвергаться нуклеофильной атаке (за счет +М-эффекта группы ОН, Понижающего эффективный положительный заряд на атоме углерода). Однако в присутствии минеральных кислот (серной, хлороводородной) реакция существенно ускоряется. [c.199]

    В каком порядке следует расположить кислоты ио легкости их этерификации с этиловым спиртом, если даны 1) масляная, 2) триметилуксусная, 3) муравьиная Объясните, почему высокая концентрация минеральной кислоты производит антикаталитнческий эффект (скорость этерификации резко снижается). [c.70]

    В реакциях, протекаюш,их практически без тепловых эффектов (например, реакции этерификации), изменение температуры не вызывает смеш,ения равновесия. В этом случае повышение температуры приводит лишь к более быстрому установлению того же равнозесия, какое было бы достигнуто в данной системе и без нагревания, но за более длительный отрезок времени. [c.153]

    Резкое понижение скорости может быть связано со стерическим затруднением, прямой преградой нуклеофильной атаке. Другим примером стерического затруднения служат 2,6-диза-мещенные бензойные кислоты, которые с трудом поддаются этерификации независимо от того, проявляют ли заместители в положениях 2 и 6 резонансный эффект или эффект поля. Если же 2,6-дизамещенпую бензойную кислоту удается этерифи-цировать, полученный сложный эфир трудно гидролизовать. [c.362]

    Существенную роль в реакции этерификации играют стерические эффекты, поскольку атом углерода карбонильной группы кислоты в переходном комплексе П переходит из плоской тригональной структуры (sp -гибридизация) в тетраэдрическую структуру sp -тибридизация). Для определения влияния стерических эффектов иа скорость этерификации алифатических кислот полезно правило шести Ньюмена, но лучшим способом оценки стерических факторов является изучение моделей [17]. При применении обычных методов этерификации влияние оказывают также за. 1естнтелн, находящиеся в о/огао-положении ароматических кислот. В случае о,о-ди-алкилзамещенных можно проводить этерификацию, приливая раствор кислоты в 100% -ной серной кислоте к спирту [18] Успех этой реакции, по-видимому, зависит от образования плоского иона кар- [c.284]


    Современная Т. включает произ-во прецизионной калориметрич. аппаратуры. Выпускаемые серийно в ряде стран микрокалориметры отличаются высокой чувствительностью, практически неограниченной продолжительностью измерений и широко применяются при определении небольших тепловых эффектов и теплот медленных р-ций, недоступных ранее для прямого термохйм. изучения (гидролиз сложных эфиров, этерификация, гидратация оксидов, твердение цемента и др.). Развитие микрокалориметрии открыло возможности для термохйм. изученйя биохим. процессов и превращений макромолекул. Изучаются тепловые эффекты, сопровождающие ферментативные р-ции, фотосинтез, размножение бактерий и др. Дифференциальные сканирующие калориметры позволяют ускорить и упростить измерение теплоемкостей и теплот фазовых переходов по сравнению с классич. приборами, действующими па принципе периодич. ввода энергии. [c.547]

    Высокоспецифичный эффект структурных изменений в непосредственной близости от реакционного центра был впервые обнаружен Мейером [481 в катализируемой кислотами этерификации карбоновых кислот и назван пространственными препятствиями. Одна метильная или нитрогруппа, один атом галогена в о-положении заметно уменьшают скорость этерификации бензойной кислоты, а при наличии двух таких заместителей в обоих о-положениях скорость падает так резко, что обычные в этих условиях количественные выходы снижаются до исчезающе малых. Характерными особенностями этого, да и других подобных случаев является неожиданно большое влияние дизамещения, одинаковое направление влияния метильной и нитрогруппы, увеличение эффекта с объемом заместителя и относительно большой эффект даже одного о-заме-стителя. Резко выраженное тормозящее действие двух 0-заместителей очень широко проявляется в реакциях амидов, эфиров и галогенангидридов карбоновых кислот, в реакциях нитрилов, кетонов и аминов. Эта закономерность хорошо известна в препаративной органической химии. [c.476]

    Каталитическое влияние соединений титана, висмута, олова и других металлсодержащих катализаторов, которые в реакционной среде вряд ли существуют в виде свободных ионов, обусловлено, по-видимому, образованием комплексов с гликолем Н" (МеХОСНгСНзОН)", действующих по типу кислот Бренстеда, одновременно ускоряя основную реакцию этерификации и реакцию образования простого эфира [16]. Подтверждением протоноката-литичвского эффекта является снижение скорости основной и побочной реакций при добавлении оснований, связывающих протон указанного комплекса. [c.30]

    Наряду со струйным режимом ввода паров этиленгликоля был изучен [21 ] барботажный режим, при котором слой гранул терефталевой кислоты заливался продуктом этерификации. Исключение в данном случае байпасного эффекта прямого проскока паров этиленгликоля и увеличение поверхности контакта паров с жидкой фазой приводит к значительной интенсификации процесса этерификации. [c.31]

    Лимитирующей является вторая стадия. Характерные признаки этого механизма следующие. При проведении гидролиза в присутствии ОН2 кислород из воды переходит в кислоту (см. стадии 3 и 4). В отличие от механизма A q2 (см. ниже) эфир не обогащается изотопом 0 иначе чем через обратную этерификацию. Оптически активная конфигурация R сохраняется при гидролизе. Стерический эффект отсутствует. По этому механизму гидролизуется, в частности, метиловый эфир триметилбензойной кислоты в серной кислоте. Для механизма А/ с характерна линейная зависимость скорости реакции от Ао (а не от [Н3О+], как для механизма А/цс2). Для у4ас1 характерны также более высокие значения энтропии активации (Д%> 0), чем для у4ас2 (см. ниже). С изменением условий гидролиза его механизм может изменяться. [c.502]

    Теория орбитального управления была выдвинута на основании данных, приведенных в табл. 10.5. Различия в скоростях, между внутримолекулярной у-лактонизацией и соответствующей межмолекулярной этерификацией остаются очень большими даже после введения всех возможных поправок. Эти поправка учитывают эффект перевода реакции во внутримолекулярный режим (эффект сближения), эффект торсионного напряжения, появляющийся при циклизации, и наличие ряда конформацион ных изомеров при образовании цикла в ходе внутримолекулярной реакции. Наибольшее различие в скоростях наблюдается, в случае соединения 10.22 (2-10 -кратное). На основании этих данных был сделан вывод о том, что для протекания этой реакции простого соответствия реагирующих атомов недостаточно, а необходима точная подгонка молекулярных орбиталей взаимодействующих центров. Для того чтобы объяснить большие различия в скоростях, приведенных в табл. 10.5, следует допустить, что НЗО всех возможных конформаций в реакцию может вступать только та группа атомов, орбитали которых ориенти-рованы строго необходимым образом. Внутримолекулярные реакции представляются более выгодными , чем реакции межмолекулярные, в частности также потому, что ориентация реагирующих атомов в первых из них (в некоторых случаях) благоприятна для реакции, а доля продуктивных конформаций реагирующих атомов достаточно велика. Поэтому легко по нять при чины ВЫС0К1ИХ скоростей ферментативных реакций, в которых реагенты и функциональные группы катализатора ориентируются наиболее благоприятным для реакции образом. [c.275]

    Акриловая кислота представляет собой бесцветную жидкость с р,езким запахом, которая легко полпмеризуется в твердую полиакриловую кислоту. Она дает типичные реакции на карбоксильную группу и двойную связь С=С, например вступает в реакцию этерификации, озонируется, присоединяет галогены и галогеноводородные кислоты. В последней из упомянутых реакций в результате -/-эффекта карбоксильной группы наблюдается ориентация присоединения против правила Марковникова. [c.400]

    Для более крупных молекул — спиртов, дполов, их эфиров — время удерживания на ППГ и ПЕГ меньше, чем на ПЭГ, что позволяет анализировать более высококинящие вещества. Например, на колонке 200 X 0,4 см с поли-2,3-бутиленгликольсукцинатом при 150 °С проведен анализ многокомпонентной смеси дипервичных диолов С4 — Сю с первичными одноатомными спиртами Сд — С15 [43]. Уменьшение полярности полигликолей этерификацией гидроксильных групп (чаще всего адипиновой и янтарной кислотами) широко используется в практике. Еольшое значение в газохроматографическом анализе диолов имеют пространственные эффекты и водородная связь. [c.346]

    Перенапряжение скелетных связей при деформации макромолекул, сопровождаемое искажением орбиталей межатомных связей боковых групп, вызывает их активацию. Активирующий эффект проявляется наряду с эффектом вскрытия новых, адсорбционно ненасыщенных поверхностей при механодиспергировании жестких полимеров. Например, при механодиспергировании волокон поли-акрилонитрила (ПАН) в вибромельнице в присутствии омыляю-щего агента 0,35%-ным ЫаОН и при омылении тем же раствором предварительно диспергированного волокна обнаружено проявление [124, 125] собственно механоактивации и постэффекта (см. рис. 13). Особенно существенен эффект собственно механоактивации, позволяющий в 6 раз ускорить процесс и увеличить степень омыления до 50%. Несомненно, что подобная механоактивация будет происходить и при других полимераналогичных превращениях любых полимеров, например этерификации или омылении эфиров целлюлозы, омылении поливинилацетата, полиакрилатов и т. д. [c.47]

    Температура застывания сложноэфирных продуктов Л типа также зависит от их симметрии. Несимметричные сложные эфщ)ы, полученные при этерификации смеси карбоновых кислот с различной длиной и раз-ветвленностью алкильных цепей, имеют заметно более яиз1 у1) температуру застывания по сравнению с симметричными эфирами. Как показали исследования, понизить температуру застывания можно и путем смешения эфиров разнотипного строения [11,54]. 1Ьучеяие этого интересного явления показало, что при этом можно получеть как эффект синергизма, так и антагонизма (рис.1). Это, по-видимому, обусловлено [c.15]

    Подавляющее большинство соединений, представляющих биологический интерес, содержат не только каталитически активную серу, но и азот в виде аминогрупп, также обладающий способностью катализировать выделение водорода. Наблюдаемый в растворах таких соединений каталитический эффект определяется общим действием всех активных групп в молекуле. Сунахара [795] на примере волн, вызываемых цистином и его производными, в которых блокированы либо аминогруппы (N,N-диaцeтилци тин), либо карбоксилы (диэтиловый эфир цистина), показал, что блокирование аминогрупп приводит к полной потере каталитической активности цистина, тогда как этерификация карбоксилов почти не сказывается на каталитической волне. Можно поэтому пред- [c.235]

    Экранирующее действие часто оказывает особенно сильное влияние на реакции карбоксильных групп или их производных (см. рис. 41, 42). Пространственный эффект проявляется, в частности, при реакции получения сложных эфиров алпфатпческпх или ароматических кислот действием спирта и соляной кислоты, протекающей по тримолекулярному механизму (см. стр. 326,327). В качестве примера укажем, что относительные скорости этерификации замещенных уксусных кислот при введенип метильных заместителей убывают в следующем порядке  [c.423]

    Наоборот, в случае галоидуксусных кислот скорость этерификации не уменьшается так резко с увеличением числа заместителей, так как неблагоприятное влияние последних компенсируется увеличением кислотности (см. стр. 195) за счет —/-эффекта, вызываемого ими. [c.424]


Смотреть страницы где упоминается термин эффект этерификация: [c.318]    [c.168]    [c.79]    [c.80]    [c.179]    [c.373]    [c.45]    [c.111]    [c.44]    [c.462]    [c.336]    [c.501]    [c.810]    [c.169]    [c.115]    [c.115]    [c.110]   
Начала органической химии Книга первая (1969) -- [ c.104 , c.171 ]




ПОИСК





Смотрите так же термины и статьи:

Этерификация



© 2025 chem21.info Реклама на сайте