Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полимеры на основе кремнийорганических соединений

    Кремнийорганические соединения и полимеры на их основе. Кремнийорганические соединения содержат органические радикалы, но основная Цепь полимера состоит из атомов кремния, соединенных между собой через атомы кислорода, — силоксановая связь. [c.490]

    ПОЛИМЕРЫ НА ОСНОВЕ КРЕМНИЙОРГАНИЧЕСКИХ СОЕДИНЕНИЙ [c.161]

    Принцип регулярного чередования активных и неактивных по отношению к покрытию групп на поверхности подложки может быть применен для улучшения свойств покрытий, формирующихся на непористых изотропных подложках. По данным работы [95], модификаторы такого типа на основе кремнийорганических соединений применялись для улучшения свойств полиэфирных покрытий, формирующихся на стеклянных подложках. Для этой цели в качестве модификатора поверхности подложки были применены соединения, содержащие два радикала различной природы, один из которых может взаимодействовать с полиэфирной смолой с образованием химических связей, другой — с образованием физических связей. Предполагалось, что правильное чередование таких радикалов на поверхности подложки будет способствовать точечному взаимодействию на границе полимер— подложка. При соблюдении этого условия, наряду с понижением внутренних напряжений, может быть достигнуто и повышение адгезии покрытий. В качестве таких модификаторов применялись кремнийорганиче-ские соединения с одинаковой структурой органического радикала типа [c.93]


    Таким образом, адгезию полимеров к стеклянным волокнам можно улучшить введением в их состав окислов металлов (окиси свинца, меди, двуокиси циркония) или обработкой поверхности волокон гидрофобными веществами, например, на основе кремнийорганических соединений. Экспериментально доказано, что для улучшения адгезии полимеров к стеклянному волокну необходимо присутствие в них полярных групп (ОН, СООН, ЫНд и др.). В композиции с неполярными полимерами состав стекла и состояние поверхности волокна на адгезию не влияют. [c.264]

    На основе кремнийорганических соединений создано целое семейство лаков и эмалей, применяющихся в качестве теплостойких и атмосферостойких покрытий для защиты стали, алюминия и других металлов от коррозии. Эти покрытия используются для окраски электрических печей, электрических нагревателей, дымовых труб, самолетного оборудования, автомобильного оборудования, промышленных печей. И в этой области новые полимеры оставляют далеко позади аналогичные покрытия, созданные на основе обычных органических веществ. Например, эмаль, в которую, кроме кремнийорганической смолы, входят металлические красители, особенно алюминий, может работать при температуре до 550°. [c.110]

    Фундаментальные исследования К. А. Андрианова в области химии кремнийорганических соединений и И. Л. Кнунянца в области химии фторорганических соединений явились теоретической основой для создания в Советско.м Союзе производства кремний-и фторорганических полимеров. [c.14]

    Полимерные кремнийорганические соединения. В 1936 г. К. А. Андрианов разработал метод синтеза высокомолекулярных кремнийорганических соединений, положенный в основу промышленного способа получения ряда продуктов, обладающих ценными свойствами. После этого получено огромное количество кремнийорганических олигомеров и полимеров, нашедших разнообразное применение (см. разд. 31.1.2). [c.596]

    Кремнийорганические соединения. Об этих соединениях уже говорилось в гл. X, 14. Особенно многочисленны полимеры, в основе которых лежит цепь такого строения  [c.447]

    Например, исключительно большое значение приобретает проблема создания негорючих неметаллических материалов, и именно элементоорганическим полимерам принадлежит здесь ведущая роль. Уже сейчас научные достижения в области синтеза и изучения свойств полимеров с неорганическими цепями молекул позволили получить полимеры, в которых содержание органических групп не превышает 15%. На основе таких полимеров уже можно разрабатывать технологию получения полностью негорючих стекло- и асбопластиков с содержанием органических групп менее 5%. Негорючие полимеры, а также армированные и другие пластики на их основе можно синтезировать исходя из простейших кремнийорганических соединений с использованием силикатов натрия (для построения макромолекул полимеров) и неорганических наполнителей. Это один из интереснейших путей подхода к созданию синтетических негорючих неметаллических материалов. [c.19]


    Определение азотсодержащих кремнийорганических соединений. Азот и карбоксилсодержащие кремнийорганические соединения находят применение в производстве полимеров, а также гидрофобных и теплостойких материалов, получаемых на их основе. Описанные в литературе методы анализа этих соединений основаны [c.166]

    Книга представляет собой монографию, посвященную кремнийорганическим соединениям, специально переработанную и дополненную автором для русского издания. В ней рассматривается номенклатура кремний-органических соединений, их свойства, методы получения разнообразных классов соединений, а также полимеров на их основе (силиконовые масла, пасты, лаки, каучуки и т. д.). Специальная глава посвящена методам анализа кремнийорганических соединений. Приведена обширная библиография. [c.2]

    Для указанных целей используют компаунды холодного отверждения на основе эпоксидных смол общего и электроизоляционного назначения (табл. 55.5), герметики и клеи-герметики на основе кремнийорганических полимеров (табл. 55.6). Последние применяют для герметизации металлических соединений в воздушной среде при —60. .. - -250 °С в условиях воздействия механических нагрузок [3]. [c.644]

    Высокомолекулярные кремнийорганические соединения— с и-л и к о и ы—представляют собой новый класс полимеров, в основе молекул которых лежит группировка из чередующихся атомов кислорода и кремния, связанного с органическими радикалами. [c.821]

    Промышленное производство кремнийорганических соединений началось в США в 1944 г. В СССР К. А. Андрианов и М. М. Коттон разработали в 1935—1939 гг. теоретические основы производства этих материалов. Большие работы по теоретическому исследованию кремнийорганических полимеров провел в Англии Кип-пинг, который, однако недооценил практические возможности применения силиконов. [c.296]

    Свойства и применение полимеров на основе кремнийорганических соединений. Жидкие полиорганосилоксаны используются в машиностроении как смазочные масла. Они более устойчивы к окислению, чем смазочные масла чисто органического происхождения, и могут работать при более высоких температурах. [c.509]

    Техника предъявляет к резиновым изделиям самые разнообразные требования. В одном случае необходима большая прочность, в другом—высокая эластичность, в третьем—термическая устойчивость. Все эти требования невозможно удовлетворить одним каким-нибудь типом каучука. В связи с этим промышленность выпускает десятки сортов синтетического каучука, полученных на основе самых различных химических соединений. Выше указывались ценные свойства хлоропреновых каучуков и бутилкау-чука. Каучуки на основе кремнийорганических соединений отличаются сохранением эластических свойств как при низких, гак и при высоких температурах каучуки на основе фторорганических соединений сочетают высокую термостойкость с почти абсолютной химической устойчивостью каучуки, полученные сополиме-ризацией дивинила с акрилонитрилом, хорошо выдерживают действие бензина и других нефтепродуктов. Наиболее массовым типом каучука, широко применяемым для изготовления шин, является каучук, получаемый сополимеризацией дивинила со стиролом (стр. 486). Эти каучуки отличаются хорошей прочностью и поэтому изготавливаются в громадных количествах. Однако по эластичности и некоторым другим свойствам они все же уступают натуральному каучуку, вследствие чего до последнего времени он являлся незаменимым для целого ряда изделий. Эти ценные свойства натурального каучука были связаны со строением полимерной цепи, которое отличалось строго регулярным расположением в пространстве отдельных звеньев. Такую структуру долго не удавалось воспроизвести в синтетических каучуках. Лишь в 50-х годах в СССР и в других странах было найдено, что проведение полимеризации в присутствии комплексных металлорганических катализаторов приводит к образованию полимеров регулярной структуры. [c.104]

    Другим направлением расширения возможностей газовой хроматографии на пористых полимерах для анализа высококипящих соединений является создание полимерных сорбентов на основе термостойких полимеров. Первые успехи в этом направлении уже имеются. Так, среди недавно созданных термостойких полимерных сорбентов следует отметить тенакс, который может быть использован до температур 400—450° С особый интерес представляют термостойкие полиимидные сорбенты на основе пиромеллитового диангидрида (полисорбимид-1 и полисорбимид-2) с температурным пределом использования 400—450° С, мелон и некоторые другие сорбенты на основе кремнийорганических соединений. [c.164]

    В зависимости от условий синтеза и ряда других факторов могут быть получены как жидкие и каучукоподобные, так и твердые полимеры. Жидкие полимеры применяются в качестве высокотемпературных смазок и гидрофобизирующих жидкостей. Термореактивные кремнийорганические смолы применяются в производстве изоляционных лаков, для изготовления прессовочных порошков и слоистых пластиков. Пластмассы на основе кремнийорганических соединений иногда называют силикопластами. [c.150]


    На основе кремнийорганических соединений получают также лаки (покрывные, пропитывающие, клеящие), смазочные материалы, различные пластические массы. Пленки полисилоксановых лаков обладают высокой гидрофобностью и с успехом применяются для сообщения гидрофобных свойств бумаге, кеоамическим материалам, стеклу и др. Образование гидрофобной пленки основывается на свойстве хлорсиланов превращаться в полимеры при воздействии воДы. [c.163]

    В области производства низковольтной аппаратуры массовых серий большое значенне имеет применение полимерных материалов, перерабатываемых литьем под давлением и эхструзией. Это — поликарбонат (обычный и упрочненный стеклянньши волокнами), полиформальдегид. Применение могут найти различные профильные стеклопластики, позволяющие рационализировать конструкцию аппаратов. Во многих случаях к деталям низковольтной аппаратуры предъявляется требование повышенной стойкости против действия электрической дуги. Как правило,этому требованию удовлетворяют пресскомпозиции, содержащие в качестве связующих полимеры на основе кремнийорганических соединений и меламина. [c.170]

    Для получения на основе кремнийорганических соединений высокомолекулярных продуктов линейного строения чаще всего применяют дигалоидные производные (в частности, диметилдихлорсилан). В присутствии следов моногалоидпроизводных значительно снижается молекулярный вес поликонденсатов. Примесь тригалоидпроизводного способствует получению разветвленных структур и желатинированию. В случае присутствия в дигалоидпроизводном как моно-, так и тригалоидпроизводных получаются полимеры, характеризующиеся частыми перекрестными связями между короткими цепями. Для получения линейных поликонденсатов необходима тщательная очистка мономера от примесей. [c.493]

    Можно синтезировать полимеры также и на основе кремнийорганических соединений, содержащих ненасыщенные радикалы, ианример из соединений типа СН2=СН — Si 2H5)a- [c.424]

    Пленкообразование в результате применения дисперсионных смол. Принцип метода заключается в том, что в летучем нерастворителе диспергируют частицы полимера. Данный способ не исключает применения растворителя, но в этом случае имеется возможность не ждать, пока полимер полностью растворится. Условия получения покрытия подобны условиям получения дисперсии пигментов в обычных связующих, где смола вместе с пигментом является частью диспергированной фазы, а не частью связующего. При диспергировании связующего в воде получается латекс или эмульсия частицы смолы концентрируются и осаждаются в результате испарения диспергирующей среды. При этом образуется однородная плотная пленка за счет коалесценции. Дисперсионный метод образования пленки — важнейшее достижение технологии лаков и красок за последние годы. Он открывает большие возможности использования химически стойких термопластичных смол, таких как поливиниловые, нерастворимые синтетические каучуки и политетрафторэтилены. Ниже, в качестве примера характеризуются полимерные пленкообразователи на основе кремнийорганических соединений. Кремнийорганические полимеры получают двумя основными способами путем замещения и путем прямого синтеза. В методе замещения применяются такие соединения кремния, как четыреххлористый кремний или тетраэтилортосиликат. Галоидная или сложноэфирная группа заменяется органическими группами в результате простых или сложных реакций. Основные химические реакции обоих указанных методов сводятся к следующему. [c.155]

    Свойства УУКМ изменяются в широком диапазоне. Прочность карбонизованного УУКМ пропорциональна плотности. Графитация карбонизованного УУКМ повышает его прочность. Прочность УУКМ на основе высокопрочных УВ выше прочности КМ на основе высокомодульных УВ, полученных при различных температурах обработки. К уникальным свойствам УУКМ относится высокая температуростойкость в инертных и восстановительных средах. По способности сохранять форму и физико-механические свойства в этих средах УУКМ превосходит известные конструкционные материалы. Некоторые УУКМ, особенно полученные карбонизацией углепластика на основе органических полимеров, характеризуются увеличением прочности с повышением температуры эксплуатации от 20 до 2700 С. При температурах выше 3000°С УУКМ работоспособны в течение короткого времени, так как начинается интенсивная сублимация графита. Чем совершенней кристаллическая структура графита, тем при более высокой температуре и с меньшей скоростью происходят термодеструктивные процессы. Свойства УУКМ изменяются на воздутсе при длительном воздействии относительно невысоких температур. Так, при 400 - 650°С в воздушной среде происходит окисление УУКМ и, как следствие, быстрое снижение прочности в результате нарастания пористости. Окисление матрицы опережает окисление УВ, если последние имеют более совершенную структуру углерода. Скорость окисления УУКМ снижается с повышением температуры их получения и уменьшением числа дефектов. Эффективно предотвращает окисление УУКМ пропитка их кремнийорганическими соединениями из-за образования карбида и оксида кремния. [c.92]

    Кремнийорганические соединения — представители более широкого класса так называемых элементоргантеских соединений. Полимерные элементорганические соединения сочетают термическую стойкость, присущую неорганическим материалам, с рядом свойств полимерных органических веществ. В настоящее время разработаны методы синтеза полимерных фосфор-, мышьяк-, сурьма-, титан-, олово-, свинец-органических, бор-, алюминий- и других элементорга-нических соединений. Большинство из этих соединений в природе не встречается. Усиленно исследуются теплостойкие полимеры, в основе которых лежат цепи  [c.481]

    Из практики известно, что обкладочные резины (резины, предназначенные для крепления к текстильному или металлическому корду, ткани или проволоке) следует тщательно предохранять от попадания силоксановых каучуков и кремнийорганических жидкостей, поскольку они, как правило, несовместимы с углеводородными каучуками и, вследствие этого, стремятся выйти на поверхность раздела между армирующим материалом и полимером. От этих процессов в наибольшей степени страдают адгезионные свойства композиций. В то же время, известно, что в некоторых случаях малые добавки кремнийорганических соединений оказывают положительное влияние на свойства эластомерных композиций на основе обычных углеводородных каучуков, в частности, на их вязкость и уровень упруго-прочностных и динамических показателей их вулканизатов. Известно также, применение кремнийоранических добавок, содержащих функциональные группы, в качестве промоторов взаимодействия неполярных каучуков с гидрофильными наполнителями, особенно, кремнекислотного типа. [c.112]

    Силиконы, или кремнийорганические полимеры, которые можно рассматривать как органические производные силикатов, получают путем проведения последовательно гидролиза мономеров и поликонденсации из алкил- и арилхлорсиланов и т. д. Они отличаются высокой термостойкостью, химической стойкостью и эластичностью. В зависимости от характера связи между молекулами и природы входящих в их состав радикалов силиконы можно получать в виде смол, каучукоподобных веществ, масел или жидкостей. На основе этих соединений производят жаростойкие, жаропрочные лаки, жидкие смазки, силиконовые каучуки и слоистые пластики. Наибольшее значение приобретают силиконовые полимеры, используемые в качестве покрытий, устойчивых во многих агрессивных средах, кислороде, озоне, влажной атмосфере, к действию ультрафиолетового облучения, а в комбинации с различными наполнителями и к нагреву до 500—550 °С. В качестве наполнителей используют чаще всего порошкообразные алюминий, титан или бор. Силиконовые покрытия наносят на различные металлические конструкции для защиты их от коррозии. [c.141]

    Хорошими свойствами обладают и покрытия на основе ХПЭ, отвержденные различными кремнийорганическими соединениями. Эти покрытия отличаются высокой стойкостью к тепловому старению, хорошими физико-механическими свойствами, достаточной коррозионной стойкостью [59]. На основе ХПЭ получают полимер-бетоны с высокой стойкостью к истиранию, безрулонную кровлю. ХПЭ используют и в качестве связующего для огнезащитных составов, однако благодаря сравнительно малому содержанию хлора эти составы применяют значительно меньше, чем огнезащитные на основе хлоркаучука и ВХПЭ. [c.177]

    Силиконы — высокомолекулярные кремнийорганические соединения, представляющие собой новый класс полимеров, в основе молекул которых лежит группировка из чередующихся атомов кислорода и кремния, связанного с органическими радикалами. В нитевидных молекулах силиконов атомы кремния л кислордда чередуются следующим образом  [c.95]

    К весьма термостабильным клеям относятся большинство клеев на основе кремнийорганических полимеров. Потеря массы этих клеев происходит вследствие деструкции боковых групп, а не основной цепи. При этом происходит дальнейшее структурирование полимера и рост его термостабильности. Склеиваемые материалы, как правило, не ускоряют уменьшение прочности соединений при старении. Наблюдаемое снижение прочности соединений на кремнийорганических клеях, видимо, в значительной степени объясняется увеличением их жесткости, поскольку модификация полиорганосилоксанов эластичным полн-органометаллосилоксаном приводит к росту термостабильности. [c.37]

    Соединения бетона и асбестоцемента на эпоксидных клеях водостойки. Очевидно, это является результатом особенностей химического состава бетона, а не его пористости. Соединения такого пористого материала, как древесина, на эпоксидных клеях ограниченно водостойки. Достаточно высокой водостой костью независимо от природы склеиваемых материалов отличаются соединения на эпоксидных клеях, отвержденных низко-молекулярными полиамидами (ПО-300, Л-20 и т. п.), в то время как избыток алифатических аминов против стехиометрического количества приводит к снижению прочности и переходу от когезионного разрушения к адгезионному [9]. Модификация эпоксидных клеев кремнийорганическими полимерами увеличивает их водостойкость. Достаточно привести в качестве примера эпоксидно-кремнийорганические клеи [29]. Клеи-герметики на основе кремнийорганических эластомеров тем не менее без применения специальных грунтов дают ограниченно водостойкие соединения металлов. [c.42]

    Волокнистая разновидность этого минерала называется хризотил-асбестом [77 79, с. 197]. Длина волокон природного хризотил-асбеста достигает нескольких сантиметров, диаметр их очень мал. Эти столбчатые кристаллы плотно упаковываются, но нод действием механических сил разделяются на мелкие волоконца. При помощи специальных приемов диспергирования можно добиться получения волокон диаметром от 200 до 500 A. В настоящее время имеются убедительные доказательства того, что волокна хризотил-асбеста являются полыми имеют внутренний капилляр диаметром около 150 Л. Другие разновидности асбеста принадлежат к минералам группы амфиболов. В качестве наполнителей наиболее часто используются хризотил- и антофиллит-асбесты. Присутствие на поверхности волокон асбеста гидроксильных групп обеспечивает их высокую усиливающую способность [80, 81]. Например, введение асбеста в состав клеевой композиции на основе кремнийорганической и фенолоформальдегидной смол (1 1) приводит к повышению прочности склеивания [80]. Причину такого влияния асбеста на прочностные свойства клеевого соединения следует искать в химическом взаимодействии наполнителя (асбеста) с полимером за счет участия в реакции остаточных функциональных групп смолы (алкокси-, ацетокси-грунпы). В частности, между прокаленным асбестом, на поверх-ностп которого содержится некоторое количество ОН-групп, и кремнийорганическим мономером может протекать следующая реакция  [c.336]

    Основой вулканизующихся клеев служат полихлоропрен, бутадиенакрило-нитрильные каучуки, карбоксилсодержащие каучуки, кремнийорганические соединения и другие синтетические полимеры. [c.134]

    Развитие химии кремнийорганических соединений в СССР принесло исключительные плоды главным образом благодаря работам ее основоположника К. А. Андрианова, впервые в 1937 г. получившего на основе диалкил- и диарилзамещенных эфиров ортокремневой кислоты силано-лы, которые уже в процессе синтеза вступают в поликонденсацию с образованием полимеров [43]  [c.88]

    Проводятся исследования в области модификации полимеров и нолучо-ния кремнийорганических соединений, фторопластов и ионообменных смол. Расширение производства материалов па основе кремпийорганиче-ских соединений обусловлено ростом потребности в них новейших отраслей техники. Перспективно их использование в производстве каучуков, масел, смазок и н идкостей. [c.148]


Смотреть страницы где упоминается термин Полимеры на основе кремнийорганических соединений: [c.166]    [c.152]    [c.415]    [c.575]    [c.389]    [c.553]    [c.238]   
Смотреть главы в:

Санитарная химия полимеров -> Полимеры на основе кремнийорганических соединений




ПОИСК





Смотрите так же термины и статьи:

Кремнийорганические полимеры

Кремнийорганические соединени

Кремнийорганические соединения

Основа соединения



© 2025 chem21.info Реклама на сайте