Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Определение хлоридов амперометрическим методом

    В 1 М соляной кислоте или хлориде калия ферроцианид осаждает только цинк, кадмий же остается в растворе. Это явление использовано в простом амперометрическом методе раздельного определения обоих элементов. [c.223]

    Титратор лабораторный Т-201 изготавливается в двух модификациях с серебряными электродами и с платиновыми электродами. Первый тип предназначен для определения хлорид-иона, второй - для проведения кулонометрических титрований методом бромометрии, перманганатометрии, иодометрии и т. д. Для индикации к.т.т. используется амперометрический метод. [c.284]


    В 1 М соляной кислоте или хлориде калия ферроцианид осаждает [5, 6] только цинк, кадмий же остается в растворе. Это явле- ние использовано в простом амперометрическом методе раздельного определения [6] обоих элементов. Титрование проводят с двумя платиновыми электродами при напряжении 0,05 В. [c.175]

    ОПРЕДЕЛЕНИЕ ХЛОРИДОВ АМПЕРОМЕТРИЧЕСКИМ МЕТОДОМ [c.124]

    Первоначально определение сульфата амперометрическим методом проводили, титруя анализируемый раствор сульфата раствором нитрата свинца [191]. Правильность определения составляет 0,3%, определению мешают высокие концентрации калия, кальция и хлорид-иона. Для автоматического амперометрического определения сульфата предложен метод [192], основанный на использовании стационарного ртутного электрода (в качестве электрода сравнения использован хлорсеребряный электрод). Метод позволяет титровать 0,001 М растворы сульфатов (титрант — 0,002 М раствор нитрата свинца). [c.552]

    Другой метод заключается в осаждении хлорида серебра и его последующем взвешивании [9, 481]. Пробу разлагают соляной и азотной кислотами, отделяют серебро от кремнекислоты растворением в растворе аммиака и вновь осаждают Ag l и взвешивают осадок. Известен метод амперометрического определения серебра титрованием раствором иодида калия с вращающимся платиновым микроэлектродом [355, 357]. Серебро в рудах и продуктах обогащения можно определять [214] дитизоном, маскируя Bi, Си и РЬ комплексоном III. Метод определения серебра в минеральном сырье [218] заключается в выделении серебра с осадком дитизоната и фотометрировании ассоциата фенантролинатного комплекса серебра с бромпирогаллоловым красным. [c.177]

    Определение хлоридов методом амперометрического титрования с двумя индикаторными электродами в среде изопропилового спирта [c.441]

    Амперометрическое титрование меркаптанов проводят в кислых и в аммиачных растворах нитратом серебра с вращающимся платиновым микроэлектродом. При титровании в аммиачных растворах не мешают хлориды [1004]. Описано определение SH-групп в аминокислотах и протеинах [1007] и серы в углеводородах [844]. Косвенный метод определения SH-групп [892] применим для ана- [c.75]

    В соединительных мостиках часто применяется агар-агар. Однако применения агар-агара следут избегать по ряду причин. Во-первых, применяя соединительные мостики (ключи), заполненные агаром, всегда следует опасаться того, что на агаре могут адсорбироваться ионы исследуемого раствора (или даже осадок при титровании по методу осаждения) при последующих тигрованиях с тем же мостиком эти ионы могут оказать весьма нежелательное влияние на ход определения. Во-вторых, агар-агар сам по себе бывает загрязнен всевозможными примесями, в частности хлорид-ионами, которые могут исказить диффузионный ток иона, определяющего электродную реакцию. Это становится особенно существенным при использовании амперометрического метода для определения микроколичеств вещества, когда приходится применять гальванометры высокой чувствительности, отзывающиеся на окислительно-восстановительные процессы даже в том случае, если концентрация вещества настолько мала, что не может быть прослежена обычными аналитическими реакциями. В-третьих, агар-агар относится к числу поверхностно-активных веществ и следы его в растворе могут изменить состояние поверхности индикаторного электрода. Наконец, заполнение соединительных мостиков, трубок и т. д. агаром требует лишнего времени и затрудняет замену этих приборов. Поэтому мы считаем более надежным и удобным совершенно исключить агар-агар из практики амперометрического титрования и пользоваться простыми мостиками, концы (или даже один конец) которых закрыты маленькими пробками из фильтровальной бумаги (беззольные фильтры). [c.141]


    Особенно пригоден амперометрический метод для определения хлорид-иона в окрашенных растворах, например в растворах, содержащих большое количество никеля, железа или меди [c.335]

    Амперометрическое определение хлорид-иона может быть вполне успешно осуществлено также в цинковом электролите и в насыщенном растворе сульфата цинка, что позволяет считать амперометрический аргентометрический метод определения хлорид-иона применимым не только для электролита, но и для определения сотых и тысячных долей процента хлоридов в металлическом цинке. [c.336]

    Определение хлоридов методом амперометрического титрования [c.460]

    В практическом отношении более надежны и просты методы второй группы, т. е. методы, основанные на окислении Fe +. В обычном объемном анализе чаше всего пользуются известным методом Циммермана — Рейнгардта [железо (III) восстанавливают хлоридом олова (II), избыток последнего удаляют раствором хлорида ртути (II) и титруют восстановленное железо перманганатом в присутствии сульфата марганца, серной и фосфорной кислот]. Так KjK перманганат легко восстанавливается на платиновом электроде, то это титрование хорошо удается в амперометрическом варианте — либо по току восстановления перманганата при + 0,5 в (МИЭ) либо по току окисления Ре + при -Ы,1 в (МИЭ). При этом устраняются некоторые затруднения, связанные с индикацией конечной точки титрования при обычном визуальном ее определении [c.201]

    Подготовку пробы к анализу можно проводить различно. Можно, например, разлагать навеску азотной кислотой в присутствии окислителей, переводя мышьяк в пятивалентный и отгоняя его затем в виде хлорида в присутствии восстановителей. Однако при амперометрическом титровании мышьяка (П1) броматом не мешают обычные элементы, могущие сопутствовать мышьяку (за исключением сурьмы, о которой будет сказано ниже), поэтому можно проводить определение без предварительной отгонки мышьяка (если определяют только трехвалентный мышьяк). Пробу разлагают серной кислотой при нагревании, разбавляют водой и либо переводят в мерную колбу и титруют при +0,5 в (МИЭ) аликвотную часть, либо непосредственно весь раствор, добавив предварительно немного сухого бромида калия. Метод очень быстр, прост, дает достаточно точные результаты и может быть применен для определения мышьяка не только в минеральном сырье, но и любых других объектах, в том числе и фармацевтических препаратах  [c.268]

    Быстрым является метод фотометрического определения никеля, основанный на измерении поглощения его сернокислого раствора [106, 859]. Кроме того, никель определяют полярографически на фоне хлорида аммония (если содержание никеля невелико) и методом амперометрического титрования ферроцианидом калия или диэтилдитиокарбаминатом [106]. [c.152]

    Можно анализировать смесь хлората и хлорида амперометрическим методом с использованием вращающегося платинового электрода [36]. Титрантом является 0,1 М раствор AgNOs. После предварительного определения хлорида хлорат восстанавливают кипячением с 0,6%-ным водным раствором SO2 в течение 5 мин и повторяют титрование для определения общего содержания хлорида. Анализ Проводят в 0,1 М растворе KNO3, содержащем 4 мл [c.286]

    Милуанова и Сонгина [57] разработали амперометрический метод определения иодида с использованием К2СГ2О7. Титрование проводят в 2 М Нг504. Не мешают определению 1000-кратный избыток хлорида и 2000-кратный избыток бромида. Относительная ошибка определения 2—3 мг иодида ниже 0,4%. [c.393]

    Для определения 4—85 мкг сульфидов предложено кулонометрическое титрование с внутренней генерацией ионов серебра в основном цианидном растворе [72]. Точку эквивалентности титрования индицируют потенциометрически или амперометрически. Определению сульфидов описываемым методом пе мешают 100-кратные избытки хлоридов, бромидов, иодидов, тиоцианатов и тиосульфатов. Следовые содержания сульфидов можно определить автоматически, используя электрогенерацию иода [73]. Этот метод позволяет определять 1—50 мкг серы в виде сероводорода при объеме образца 10 мл. [c.576]

    Довольно распространенным приемом повышения точности является проведение титрования в присутствии желатина [100, 315, 727]. Последний предотвращает рост крупных кристаллов Ag l и подавляет его восстановление [315]. Имеются указания, что предел определения в среде метанола (5-10 —5-10 N Na l) повышается при добавлении воды и понижается в присутствии азотной кислоты [648]. Поэтому титрование часто проводят в азотнокислой среде [100, 648]. Ошибка амперометрического метода определения хлорид-ионов при помощи растворов азотнокислого сереб-)а, по данным различных авторов, находится в пределах 0,2—4% 100, 150, 241, 648, 727]. [c.112]

    Амперометрический метод позволяет определять активный хлор в питьевой и сточной водах, используя в качестве титранта Hg2(NO )2. Относительная ошибка определения активного хлора в интервале концентраций 0,009—3,4 мг 1—2%. Такого же порядка ошибка наблюдается при амперометрическом определении хлорид-иона. В [47] дана методика определенпя хлорид-ионов в сточных водах нефтеперерабатывающих заводов, основанная на использовании в качестве титранта раствора нитрата серебра на фоне смеси нзоамплового и этилового спиртов (15 1), содержащей добавки Mg(NOз)2, СНзСООН и желатина вращаю- [c.160]


    Длительность и трудоемкость гравиметрического определения фосфора послужили причиной многочисленных попыток разработать амперометрический метод его определения. Для этой цели рекомендовали соли свинца [1, 2] и железа [3, 4], однако эти методы не получили практического применения, по всей вероятности в связи с тем, что состав осадка недостаточно постоянен и сильно зависит от pH раствора. При титровании солями свинца, кроме того, мешают сульфаты и хлориды. Гипофосфит (анион фосфорноватой кислоты) осаждают в виде РЬгРгОе в водно-спиртовой среде (10— 25% спирта по объему). Этим же способом титровали фосфат-ион и при анализе фосфорно-никелевйх сплавов [5]. Метод титрования солями железа (П1) недавно был вновь применен для определения фосфат-ионов [6]. Титруют фосфаты также раствором ванадила [7], нитратом ртути (I) [8] и уранил-ацетатом, образующим осадок состава KUO2PO4, отличающийся малой растворимостью постоянством состава [9—И]. [c.279]

    В настоящее время используются два стандартных метода определения хлоридов в нефти ГОСТ 2401 и ГОСТ 10097-62. Первый из них (объемный) весьма продолжителен и не обеспечивает полноты перевода С1 в водную фазу. Второй (потенциометрический) недостаточно точен, так как уже при титровании 0,01Ы AgNOз скачок потенциала составляет лишь около 15 мв. а обессоленные нефти требуют применения значительно более разбавленных рабочих растворов. Поэтому разработка точного и быстрого метода определения хлоридов является актуальной задачей химконтроля на нефтеперерабатывающих заводах. Нашими опытами установлено, что смесь этилового и изоамилового спиртов (1 8) может полностью растворять до 10% (по объему) нефти. При добавлении индифферентного электролита (Ь КОз или Мй(МОз)2) смесь оказалась пригодной в качестве фона для полярографического определения А +, а, следовательно, и для амперометрического титрования хлоридов. Разработка методики проводилась на установке для амперометрического титрования (О. А. Сонгина, амперометрическое титрование, 1957 г.) и самопищущем поляро-графе ОРИОН-КТШ типа 7—77—46 с диапазоном измерений от — 1 до —4 вольта. Индикаторным электродом служил платиновый вращающийся игольчатый электрод длиной 3 мм и диаметром 0,5 мм, электродом сравнения — насыщенный каломельный полуэлемент с большой поверхностью ртутного зеркала (около 30 см ). Соединение между ними обеспечивалось с помощью мостика, заполненного 3%-ным агар-агаром, содержащим 10% сульфата цинка. Постоянная заданная скорость вращения платино- [c.338]

    Ж. Сннсгеймер с соавторами для определения хлорида ацетилхолина применили метод амперометрического титрования растворам тетрафеиилбората натрия ири pH = 4,6. Метод отличается высокой чувствительностью и достаточной степенью точности. [c.123]

    Данные методы предназначены для определения летучих органических хлоридов в концентрации от 10 до 100 ppm в бутан-бутеновых смесях. Амперометрическое титрование не может быть непосредственно применено в присутствии веществ, которые взаимодействуют с ионом серебра или с хлороксидными ионами в разбавленном растворе кислоты. Бромиды, сульфиды, аммиак, табачный дым и перекись водорода в количестве более 25 мкг в анализируемом растворе мешают спектрофотометрическому определению. [c.24]

    Для определения рения используются алкалиметрическое титрование рениевой кислоты, окислительно-восстановительное и комплексоиетрическое титрования, а также титриметрические методы, основанные на образовании труднорастворимых соединений. При окислительно-восстаповительном титровании в качестве восстановителей используют иодиды, сульфат железа(П), хлорид олова(П), в качестве окислителей — перманганат и бихромат калия, сульфат церия(1У). Использование метода спектрофотометрического титрования перренат-иона раствором Зп(П) в присутствии комплексообразующих лигандов позволяет повысить чувствительность и избирательность определения рения. Методы потенциометрического и амперометрического титрования рассмотрены на стр. 146 и 148. [c.81]

    В качестве индикаторов на свободный иод используются родамин В и трипофлавин. Метод позволяет определить 0,5—10 мкг S и 0,5—35 мкг SaOg . Сульфат-, хлорид- и нитрат-ионы не мешают. Определению мешает присутствие в растворе больших количеств Сг(1П) [42, 834]. Возможна амперометрическая индикация КТТ [1105]. [c.72]

    Мп(П) и У(1У) [20, 160] их окисляют в сернокислой среде с по-мощ ью (N114)28208 в присутствии Ag(I) и оттитровывают раствором соли Мора. Затем снова добавляют персульфат аммония избыток его разрушают кипячением. Мп(УП) восстанавливают до Мп (II) хлоридом натрия или NaN02 в присутствии мочевины и титруют Сг(У1) и У(У) раствором соли Мора. Ионы У(1 ) окисляют с помощью КМпО при температуре не выше 20° С избыток последнего восстанавливают как описано выше, и титруют ионы У( ) раствором соли Мора. Содержание Сг и Мп определяют по разности. Электродом сравнения служит вращающийся Р1-электрод в сернокислом растворе КМПО4 в качестве индикаторного электрода используют вращающийся Р1-электрод [160]. Определение Мп, Сг и V в силикатных породах проводят методом амперометрического титрования с двумя индикаторными электродами [20], а для определения Сг и V в шлаках используют установку с вращающимся Р1-электродом [72]. Предел обнаружения хрома при анализе горных пород — 0,01 мг в 20 мл. Погрешность определения сотых долей процента хрома +15%. [c.37]

    При использовании цинкат-ионов в качестве амперометрического индикатора кальций титруют в 1—1,4 М растворе NaOH в присутствии 0,5 М хлорида калия при потенциале —1,7 б [1155]. Метод пригоден для титрования < 0,001 М растворов кальция. Магний понижает диффузионный ток цинката, но не мешает определению кальция. Авторы [1155] оценивают метод как более точный по сравнению с методами турбидиметрии и пламенной фотометрии. [c.78]

    Непосредственно связан с прямой вольтамперометрией метод амперометрического титрования. Он основан на измерении величины диффузионного тока, который проходит через электролитическую ячейку, состоящую из поляризующегося индикаторного электрода (ртутный капельный или вращающийся твердый электрод) и электрода сравнения (каломельного, хлорид-серебряного) (при постоянном значении потенциала). Величину потенциала с целью повыщения чувствительности метода выбирают таким образом, чтобы титрование проводилось при предельных токах восстановления или окисления веществ. Для фиксирования точки эквивалентности в методе амперометрического титрования используют появление или исчезновение диффузионного тока на поляризующемся электроде. В основе метода лежит пропорциональность между величиной диффузионного тока и концентрацией вещества, участвующего в электрохимическом процессе на элеетроде и обусловливающего наблюдаемый диффузионный ток. Для применения метода амперометрического титрования к какой-либо реакции, используемой для объемных определений, необходимо, чтобы одно из реагирующих веществ восстанавливалось или окислялось на индикаторном электроде и потенциал должен бьггь таким, чтобы величина диффузионного тока бьша бы пропорциональна концентрации [c.764]

    Влияние различных элементов на определение галлия методом амперометрического титрования Ы-бензоилфенилгидроксил-амином было изучено Галлай и Алимариным [132]. Определения проводились с 0,4—6 мг Оа в 10 мл раствора на фоне соляная кислота — бифталат калия. В присутствии алюминия удовлетворительные результаты были получены при pH 2,4—3,0 до соотношения А1 Оа = 65 1. Цинк и марганец не осаждаются БФГУ и не мешают определению до соотношения 500 1. При pH 2,4 100-кратные количества индия не влияют на результаты определения галлия. В 1присутств1ии свинца определение проводят при pH 3,0—4,0 на ацетатно-аммиачном фоне, во избежание осаждения хлорида свинца. Удовлетворительные результаты получены до содержания 500-кратных количеств свинца. [c.107]

    В другой работе того же авторав которой предлагается определять тем же методом кремнекислоту в питьевой и промышленной водах, недостаточно четко изложен вопрос о том, в какой мере будет сказываться на определении кремнекислоты присутствие хлоридов и сульфатов (а присутствие этих ионов в воде в том или ином количестве практически неизбежно). Выяснение этого вопроса особенно важно потому, что сульфат-ионы, как известно, можно определять амперометрически именно при помощи солей свинца (см. раздел Сера ), [c.242]

    Как известно, произведения растворимости хлорида, бромида и иодида серебра имеют следующий порядок (соответственно) 10 °, 10" 10" в. Большая разница между этими величинами позволяет определять амперометрически все три галогенида последовательно, если они совместно присутствуют в растворе. Ниже приводится описание этого метода. Разумеется, тот же метод применим и для определения каждого из галогенидов в отдельности. [c.334]

    В некоторых случаях, например при анализе воздуха, хлорировании водопроводной воды или при анализе сточных вод и т. д., возникает необходимость в определении не хлорид-иона, а свободного хлора. Для этой цели предложено несколько методов, основанных на измерении силы тока восстановления газообразного хлора на твердых электродах. При этом возможно как полярографическое решение этой задачи, т. е. непосредственное измерение высоты волны восстановления хлора, так и амперометрическое титрование тем или иным восстановителем. Примером первого типа определений является метод С. П. Макаровой, 3. Г. Беззубик и М. А. Проскурнина заключающийся в автоматической записи силы тока восстановления газообразного хлора на вращающемся серебряном катоде. Анализируемый воздух пропускают с определенной скоростью через соответственно сконструированный прибор газообразный хлор при этом растворяется в электролите [c.337]

    Можно назвать еще несколько реактивов, дающих осадки с цирконием и предложенных для его амперометрического определения. Например, а-нитрозо-(3-нафтол осаждает темно-коричневое соединение циркония для лучшей коагуляции добавляют хлорид калия. Титруют с капельным ртутным электродом по току ворстановления реактива. Метод позволяет определять от 0,004 до 0,05 ммоль циркония, т. е. от 0,36 до 4,5 мг. Однако вместе [c.355]

    В основе амперометрического титрования галогенидов в смеси лежит реакция осаждения их в виде галогенидов серебра. Этот метод был предложен Лайтиненом с сотр. [12]. Однако при воспроизведении нами указанного метода результаты анализа, рсо-. бенно при определении хлора, оказались сильно заниженными (до 3%) вследствие частичного соосаждения хлорида серебра во время осаждения иодида и бромида. Такое явление было обнаружено и другими авторами [13]. [c.167]

    Большинство реагентов и методы, использованные в этом исследовании, были такими же, как и в работе по кинетике разложения трибромамина [14]. В ней подробно рассмотрены способы приготовления всех реактивов и буферных растворов, описаны метод амперометрического титрования иода тиосульфатом для определения общего брома и определение концентраций бромамина с помощью УФ-спектроскопии, применение термостатированного алюминиевого шприца для быстрого смешивания исходных растворов бромноватистой кислоты и хлорида аммония непосредственно в кварцевой кювете спектрофотометра, а также сведения о машинной программе РОКТКАМ IV для расчета начальных скоростей. [c.154]

    Четко выраженные диффузионные волны дает купферон также при окислении на вращающемся платиновом микроаноде при наложении определенного потенциала. Предложен [278] метод амперометрического титрования купфероном с применением платинового электрода. Процесс титрования значительно улучшает добавление хлорида натрия, не изменяя при этом положения точки эквивалентности. Изменение кислотности раствора от 0,1 до 0,3 N не влияет на результаты. Определению циркония не мешают А1, Сг, Мп, Zn, Ni, F и другие элементы, а также двухкратное, по сравнению с цирконием, количество меди. Мешают Fe +, Ti(IV), V(V), окислители, способные окислять купферон, и восстановители, дающие анодный диффузионный ток при 0,8 в. [c.127]

    Для амперометрического титрования иО " , ТЬ, Т1 и 2г Кольтгофом и Джонсоном [6] была предложена л -нитрофенил-арсоповая кислота. При титровании измеряли диффузионный ток восстановления органического реагента. По данным авторов, для получения хороших результатов необходим чрезвычайно строгий контроль pH среды. Этими же авторами опубликован метод титрования ртути при помощи хлорида тетрафенил-арсония [7]. В этом случае для определения конечной точки титрования используется диффузионный ток определяемого элемента. На этом же принципе основан метод титрования висмута хлоридом трифенилселенония [В], а также германия тан-нином [9]. [c.353]


Смотреть страницы где упоминается термин Определение хлоридов амперометрическим методом: [c.72]    [c.273]    [c.117]    [c.161]    [c.53]    [c.341]    [c.362]    [c.143]   
Смотреть главы в:

Методы анализа некоторых материалов, применяемых в электровакуумной промышленности -> Определение хлоридов амперометрическим методом




ПОИСК





Смотрите так же термины и статьи:

Хлориды амперометрическое

Хлориды определение

Хлориды, определение методом



© 2025 chem21.info Реклама на сайте